Efficacy of Household and Commercial Washing Agents in Removing the Pesticide Thiabendazole Residues from Fruits
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Fruit Sample Preparation
2.3. Characterize the Properties of Starch and Starch Suspension
2.4. Fabrication and Utilization of SERS-Active Substrate
2.5. Quantitative Analysis of Thiabendazole Residue Using SERS
2.6. Validation of the Removal Efficiency of Washing Strategies Using LC-MS/MS
2.7. Statistical Analysis
3. Results and Discussion
3.1. Characterization and Quantitative Analysis of Systemic Thiabendazole Residue on Apple Surfaces
3.2. Optimizing the Starch-Based Soaking Strategy
3.3. Optimizing the Homemade Soaking Strategy
3.4. Optimizing the Washing Strategy Using Commercial Agents
3.5. Validating the Efficiency of Washing Strategies Using Homemade and Commercial Agents on Different FRUITS
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Sandoval-Insausti, H.; Chiu, Y.; Lee, D.H.; Wang, S.; Hart, J.E.; Mínguez-Alarcón, L.; Laden, F.; Ardisson Korat, A.V.; Birmann, B.; Heather Eliassen, A.; et al. Intake of Fruits and Vegetables by Pesticide Residue Status in Relation to Cancer Risk. Environ. Int. 2021, 156, 106744. [Google Scholar] [CrossRef]
- Lee, G.; Choi, K. Adverse Effects of Pesticides on the Functions of Immune System. Comp. Biochem. Physiol. Part C Toxicol. Pharmacol. 2020, 235, 108789. [Google Scholar] [CrossRef]
- Rani, L.; Thapa, K.; Kanojia, N.; Sharma, N.; Singh, S.; Grewal, A.S.; Srivastav, A.L.; Kaushal, J. An Extensive Review on the Consequences of Chemical Pesticides on Human Health and Environment. J. Clean. Prod. 2021, 283, 124657. [Google Scholar] [CrossRef]
- Carrasco Cabrera, L.; Di Piazza, G.; Dujardin, B.; Medina Pastor, P. The 2021 European Union Report on Pesticide Residues in Food. EFSA J. 2023, 21, e07939. [Google Scholar] [CrossRef]
- Wu, Y.; An, Q.; Li, D.; Wu, J.; Pan, C. Comparison of Different Home/Commercial Washing Strategies for Ten Typical Pesticide Residue Removal Effects in Kumquat, Spinach and Cucumber. Int. J. Environ. Res. Public. Health 2019, 16, 472. [Google Scholar] [CrossRef] [PubMed]
- Chung, S.W.W.C. How Effective Are Common Household Preparations on Removing Pesticide Residues from Fruit and Vegetables? A Review. J. Sci. Food Agric. 2018, 98, 2857–2870. [Google Scholar] [CrossRef]
- Kaushik, G.; Satya, S.; Naik, S.N. Food Processing a Tool to Pesticide Residue Dissipation—A Review. Food Res. Int. 2009, 42, 26–40. [Google Scholar] [CrossRef]
- Giacinti, G.; Raynaud, C.; Capblancq, S.; Simon, V. Matrix-Matching as an Improvement Strategy for the Detection of Pesticide Residues. J. Food Sci. 2016, 81, T1342–T1350. [Google Scholar] [CrossRef] [PubMed]
- Bajwa, U.; Sandhu, K.S. Effect of Handling and Processing on Pesticide Residues in Food—A Review. J. Food Sci. Technol. 2014, 51, 201–220. [Google Scholar] [CrossRef]
- Zhou, Q.; Bian, Y.; Peng, Q.; Liu, F.; Wang, W.; Chen, F. The Effects and Mechanism of Using Ultrasonic Dishwasher to Remove Five Pesticides from Rape and Grape. Food Chem. 2019, 298, 125007. [Google Scholar] [CrossRef] [PubMed]
- Mir, S.A.; Dar, B.N.; Mir, M.M.; Sofi, S.A.; Shah, M.A.; Sidiq, T.; Sunooj, K.V.; Hamdani, A.M.; Mousavi Khaneghah, A. Current Strategies for the Reduction of Pesticide Residues in Food Products. J. Food Compos. Anal. 2022, 106, 104274. [Google Scholar] [CrossRef]
- Tang, J.; Zhang, Q.; Zhou, J.; Fang, H.; Yang, H.; Wang, F. Investigation of Pesticide Residue Removal Effect of Gelatinized Starch Using Surface-Enhanced Raman Scattering Mapping. Food Chem. 2021, 365, 130448. [Google Scholar] [CrossRef] [PubMed]
- Acoglu, B.; Omeroglu, P.Y. Effectiveness of Different Type of Washing Agents on Reduction of Pesticide Residues in Orange (Citrus sinensis). LWT 2021, 147, 111690. [Google Scholar] [CrossRef]
- Rodrigues, A.A.Z.; de Queiroz, M.E.L.R.; Faroni, L.R.D.A.; Prates, L.H.F.; Neves, A.A.; de Oliveira, A.F.; de Freitas, J.F.; Heleno, F.F.; Zambolim, L. The Efficacy of Washing Strategies in the Elimination of Fungicide Residues and the Alterations on the Quality of Bell Peppers. Food Res. Int. 2021, 147, 110579. [Google Scholar] [CrossRef]
- Liang, Y.; Wang, W.; Shen, Y.; Liu, Y.; Liu, X.J. Effects of Home Preparation on Organophosphorus Pesticide Residues in Raw Cucumber. Food Chem. 2012, 133, 636–640. [Google Scholar] [CrossRef]
- Andrade, G.C.R.M.; Monteiro, S.H.; Francisco, J.G.; Figueiredo, L.A.; Rocha, A.A.; Tornisielo, V.L. Effects of Types of Washing and Peeling in Relation to Pesticide Residues in Tomatoes. J. Braz. Chem. Soc. 2015, 26, 1994–2002. [Google Scholar] [CrossRef]
- Fauth, M.; Schweizer, P.; Buchala, A.; Markstädter, C.; Riederer, M.; Kato, T.; Kauss, H. Cutin Monomers and Surface Wax Constituents Elicit H2O2 in Conditioned Cucumber Hypocotyl Segments and Enhance the Activity of Other H2O2 Elicitors. Plant Physiol. 1998, 117, 1373. [Google Scholar] [CrossRef] [PubMed]
- Du, X.; Gao, Z.; He, L. Quantifying the Effect of Non-ionic Surfactant Alkylphenol Ethoxylates on the Persistence of Thiabendazole on Fresh Produce Surface. J. Sci. Food Agric. 2024, 104, 2630–2640. [Google Scholar] [CrossRef] [PubMed]
- Lian, X.; Wang, Z.; Liao, H.; Li, R.; Tao, X.; Wang, Y. Natural Rice Starch Granules for Green Cleaning. Langmuir 2019, 35, 13157–13164. [Google Scholar] [CrossRef] [PubMed]
- Nasrollahzadeh, M.; Sajjadi, M.; Iravani, S.; Varma, R.S. Starch, Cellulose, Pectin, Gum, Alginate, Chitin and Chitosan Derived (Nano)Materials for Sustainable Water Treatment: A Review. Carbohydr. Polym. 2021, 251, 116986. [Google Scholar] [CrossRef]
- Selecting and Serving Produce Safely|FDA. Available online: https://www.fda.gov/food/buy-store-serve-safe-food/selecting-and-serving-produce-safely (accessed on 28 February 2024).
- McEvoy, G.K.; Snow, E.K.; Miller, J.; Kester, L.; Welsh, O.H. American Hospital Formulary Service AHFS Drug Information 2009; American Society of Health-System Pharmacists: Bethesda, MD, USA, 2009; ISBN 9781585282272. [Google Scholar]
- Lankas, G.R.; Nakatsuka, T.; Ban, Y.; Komatsu, T.; Matsumoto, H. Developmental Toxicity of Orally Administered Thiabendazole in ICR Mice. Food Chem. Toxicol. 2001, 39, 367–374. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Jiang, W.; Jian, Q.; Song, W.; Zheng, Z.; Ke, C.; Liu, X. Thiabendazole Uptake in Shimeji, King Oyster, and Oyster Mushrooms and Its Persistence in Sterile and Nonsterile Substrates. J. Agric. Food Chem. 2014, 62, 1221–1226. [Google Scholar] [CrossRef] [PubMed]
- Cabras, P.; Schirra, M.; Pirisi, F.M.; Garau, V.L.; Angioni, A. Factors Affecting Imazalil and Thiabendazole Uptake and Persistence in Citrus Fruits Following Dip Treatments. J. Agric. Food Chem. 1999, 47, 3352–3354. [Google Scholar] [CrossRef] [PubMed]
- Thiabendazole; Pesticide Tolerances. Available online: https://www.federalregister.gov/documents/2021/08/30/2021-18390/thiabendazole-pesticide-tolerances (accessed on 2 May 2023).
- Alligare 90®. Available online: https://alligare.com/products/alligare-90/ (accessed on 28 October 2021).
- Chen, N.; Xiao, T.-H.; Luo, Z.; Kitahama, Y.; Hiramatsu, K.; Kishimoto, N.; Itoh, T.; Cheng, Z.; Goda, K. Porous Carbon Nanowire Array for Surface-Enhanced Raman Spectroscopy. Nat. Commun. 2020, 11, 4772. [Google Scholar] [CrossRef] [PubMed]
- Lin, X.; Sun, D.-W. Recent Developments in Vibrational Spectroscopic Techniques for Tea Quality and Safety Analyses. Trends Food Sci. Technol. 2020, 104, 163–176. [Google Scholar] [CrossRef]
- Fang, L.; Liao, X.; Jia, B.; Shi, L.; Kang, L.; Zhou, L.; Kong, W. Recent Progress in Immunosensors for Pesticides. Biosens. Bioelectron. 2020, 164, 112255. [Google Scholar] [CrossRef]
- Langer, J.; Jimenez de Aberasturi, D.; Aizpurua, J.; Alvarez-Puebla, R.A.; Auguié, B.; Baumberg, J.J.; Bazan, G.C.; Bell, S.E.J.; Boisen, A.; Brolo, A.G.; et al. Present and Future of Surface-Enhanced Raman Scattering. ACS Nano 2020, 14, 28–117. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Haruna, S.A.; Sheng, W.; Bei, Q.; Ahmad, W.; Zareef, M.; Chen, Q.; Ding, Z. SERS-Activated Platforms for Chemical Contaminants in Food: Probes, Encoding Methods, and Detection. TrAC Trends Anal. Chem. 2023, 169, 117365. [Google Scholar] [CrossRef]
- Hou, R.; Tong, M.; Gao, W.; Wang, L.; Yang, T.; He, L. Investigation of Degradation and Penetration Behaviors of Dimethoate on and in Spinach Leaves Using in Situ SERS and LC-MS. Food Chem. 2017, 237, 305–311. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.; Sun, D.-W.; Pu, H.; Wei, Q. Surface Enhanced Raman Spectroscopy (SERS): A Novel Reliable Technique for Rapid Detection of Common Harmful Chemical Residues. Trends Food Sci. Technol. 2018, 75, 10–22. [Google Scholar] [CrossRef]
- Huang, Y.; Wang, X.; Lai, K.; Fan, Y.; Rasco, B.A. Trace Analysis of Organic Compounds in Foods with Surface-enhanced Raman Spectroscopy: Methodology, Progress, and Challenges. Compr. Rev. Food Sci. Food Saf. 2020, 19, 622–642. [Google Scholar] [CrossRef] [PubMed]
- Hou, R.; Pang, S.; He, L. In Situ SERS Detection of Multi-Class Insecticides on Plant Surfaces. Anal. Methods 2015, 7, 6325–6330. [Google Scholar] [CrossRef]
- Ma, P.; Wang, L.; Xu, L.; Li, J.; Zhang, X.; Chen, H. Rapid Quantitative Determination of Chlorpyrifos Pesticide Residues in Tomatoes by Surface-Enhanced Raman Spectroscopy. Eur. Food Res. Technol. 2020, 246, 239–251. [Google Scholar] [CrossRef]
- Wang, T.; Ji, B.; Cheng, Z.; Chen, L.; Luo, M.; Wei, J.; Wang, Y.; Zou, L.; Liang, Y.; Zhou, B.; et al. Semi-Wrapped Gold Nanoparticles for Surface-Enhanced Raman Scattering Detection. Biosens. Bioelectron. 2023, 228, 115191. [Google Scholar] [CrossRef] [PubMed]
- Du, X.; Gao, Z.; Yang, T.; Qu, Y.; He, L. Understanding the Impact of a Non-Ionic Surfactant Alkylphenol Ethoxylate on Surface-Enhanced Raman Spectroscopic Analysis of Pesticides on Apple Surfaces. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2023, 301, 122954. [Google Scholar] [CrossRef] [PubMed]
- Qu, Y.; Tan, C.; Zhang, Z.; He, L. A Facile Solvent Mediated Self-Assembly Silver Nanoparticle Mirror Substrate for Quantitatively Improved Surface Enhanced Raman Scattering. Analyst 2017, 142, 4075–4082. [Google Scholar] [CrossRef] [PubMed]
- Yang, T.; Qu, Y.; Hickey, M.; Wang, W.; Zhao, B.; Bi, S.; Zhang, G.; He, L. Mapping of Pesticide Transmission on Biological Tissues by Surface Enhanced Raman Microscopy with a Gold Nanoparticle Mirror. ACS Appl. Mater. Interfaces 2019, 11, 44894–44904. [Google Scholar] [CrossRef] [PubMed]
- Lehotay, S.J.; O’Neil, M.; Tully, J.; García, A.V.; Contreras, M.; Mol, H.; Heinke, V.; Anspach, T.; Lach, G.; Fussell, R.; et al. Determination of Pesticide Residues in Foods by Acetonitrile Extraction and Partitioning with Magnesium Sulfate: Collaborative Study. J. AOAC Int. 2007, 90, 485–520. [Google Scholar] [CrossRef]
- Du, X.; Doherty, J.; Lee, J.; Clark, J.M.; He, L. Assessment of the Effect of Non-Ionic Surfactant Alkylphenol Ethoxylates on the Penetration of Pesticides in Fresh Produce. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2024, 330, 125691. [Google Scholar] [CrossRef]
- Kim, M.K.M.S.; Kim, M.K.M.S.; Lee, C.J.; Jung, Y.M.; Lee, M.S. Surface-Enhanced Raman Spectroscopy of Benzimidazolic Fungicides: Benzimidazole and Thiabendazole. Bull. Korean Chem. Soc. 2009, 30, 2930–2934. [Google Scholar] [CrossRef]
- Nie, P.; Dong, T.; Xiao, S.; Lin, L.; He, Y.; Qu, F. Quantitative Determination of Thiabendazole in Soil Extracts by Surface-Enhanced Raman Spectroscopy. Molecules 2018, 23, 1949. [Google Scholar] [CrossRef]
- Xuan, T.; Gao, Y.; Cai, Y.; Guo, X.; Wen, Y.; Yang, H. Fabrication and Characterization of the Stable Ag-Au-Metal-Organic-Frameworks: An Application for Sensitive Detection of Thiabendazole. Sens. Actuators B Chem. 2019, 293, 289–295. [Google Scholar] [CrossRef]
- Sujka, M.; Wiącek, A.E. Physicochemical Characteristics of Porous Starch Obtained by Combined Physical and Enzymatic Methods, Part 1: Structure, Adsorption, and Functional Properties. Int. J. Mol. Sci. 2024, 25, 1662. [Google Scholar] [CrossRef] [PubMed]
- Karić, N.; Vukčević, M.; Maletić, M.; Dimitrijević, S.; Ristić, M.; Grujić, A.P.; Trivunac, K. Physico-Chemical, Structural, and Adsorption Properties of Amino-Modified Starch Derivatives for the Removal of (in)Organic Pollutants from Aqueous Solutions. Int. J. Biol. Macromol. 2023, 241, 124527. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Li, Y.; Sun, P.; Yang, C. Pickering Emulsions Stabilized by Native Starch Granules. Colloids Surf. A Physicochem. Eng. Asp. 2013, 431, 142–149. [Google Scholar] [CrossRef]
- Lu, X.; Xiao, J.; Huang, Q. Pickering Emulsions Stabilized by Media-Milled Starch Particles. Food Res. Int. 2018, 105, 140–149. [Google Scholar] [CrossRef] [PubMed]
- Yusoff, A.; Murray, B.S. Modified Starch Granules as Particle-Stabilizers of Oil-in-Water Emulsions. Food Hydrocoll. 2011, 25, 42–55. [Google Scholar] [CrossRef]
- Lewis, K.A.; Tzilivakis, J.; Warner, D.J.; Green, A. An International Database for Pesticide Risk Assessments and Management. Hum. Ecol. Risk Assess. Int. J. 2016, 22, 1050–1064. [Google Scholar] [CrossRef]
- Koch, K.; Barthlott, W. Plant Epicuticular Waxes: Chemistry, Form, Self-Assembly and Function. Nat. Prod. Commun. 2006, 1, 1067–1072. [Google Scholar] [CrossRef]
- Wang, Y.-X.; Wang, X.-J.; Cao, Y.; Zhong, M.-S.; Zhang, J.; Yu, K.; Li, Z.-W.; You, C.-X.; Li, Y.-Y. Chemical Composition and Morphology of Apple Cuticular Wax during Fruit Growth and Development. Fruit. Res. 2022, 2, 5. [Google Scholar] [CrossRef]
- HESS, F.D.; FOY, C.L.; Chester, L.F. Interaction of Surfactants with Plant Cuticles. Weed Technol. 2000, 14, 807–813. [Google Scholar] [CrossRef]
- ECFR: Title 21 of the CFR—Food and Drugs. Available online: https://www.ecfr.gov/current/title-21 (accessed on 6 March 2024).
- ECFR: Title 40 of the CFR—Protection of Environment. Available online: https://www.ecfr.gov/current/title-40 (accessed on 6 March 2024).
Regression Equation | Range (ng/mm2) | R2 | |
---|---|---|---|
T | y = −10.80 + 56.01x | 0–4.08 | 0.958 |
y = −722.96 + 260.56 ln(x + 30.86) | 4.08–105.23 | 0.992 | |
y = 557.25 | 105.23–816.25 | ||
TA | y = 7.59 + 61.17x | 0–4.08 | 0.997 |
y = −4241.88 + 867.40 ln(x + 180.51) | 4.08–82.15 | 0.999 | |
y = 590.28 | 82.15–816.25 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Du, X.; Ho, L.; Li, S.; Doherty, J.; Lee, J.; Clark, J.M.; He, L. Efficacy of Household and Commercial Washing Agents in Removing the Pesticide Thiabendazole Residues from Fruits. Foods 2025, 14, 318. https://doi.org/10.3390/foods14020318
Du X, Ho L, Li S, Doherty J, Lee J, Clark JM, He L. Efficacy of Household and Commercial Washing Agents in Removing the Pesticide Thiabendazole Residues from Fruits. Foods. 2025; 14(2):318. https://doi.org/10.3390/foods14020318
Chicago/Turabian StyleDu, Xinyi, Lauren Ho, Sisheng Li, Jeffery Doherty, Junghak Lee, John M. Clark, and Lili He. 2025. "Efficacy of Household and Commercial Washing Agents in Removing the Pesticide Thiabendazole Residues from Fruits" Foods 14, no. 2: 318. https://doi.org/10.3390/foods14020318
APA StyleDu, X., Ho, L., Li, S., Doherty, J., Lee, J., Clark, J. M., & He, L. (2025). Efficacy of Household and Commercial Washing Agents in Removing the Pesticide Thiabendazole Residues from Fruits. Foods, 14(2), 318. https://doi.org/10.3390/foods14020318