Characterization of Fusarium venenatum Mycoprotein-Based Harbin Red Sausages
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Sausage Preparation
2.3. Nutrient Content Analysis
2.4. Color Measurement
2.5. DSC Analysis
2.6. Sensory Analysis
2.7. Electronic Nose Analysis
2.8. GC-IMS Analysis
2.9. Statistical Analysis
3. Results
3.1. Effect of F. venenatum Mycoprotein on Nutritional Components of Red Sausage
3.2. Effect of F. venenatum Mycoprotein on Color Difference in Red Sausage
3.3. DSC Analysis of F. venenatum Mycoprotein Red Sausage
3.4. Effect of F. venenatum Mycoprotein on Sensory Evaluation of Red Sausage
3.5. The Results of Electronic Nose Analysis of F. venenatum Mycoprotein Red Sausage
3.6. GC-IMS Analysis of F. venenatum Mycoprotein Red Sausage
3.6.1. Gas Chromatography–Ion Mobility Spectrometry (GC-IMS) Analysis
3.6.2. Fingerprinting Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Shao, L.; Bi, J.; Li, X.; Dai, R. Effects of vegetable oil and ethylcellulose on the oleogel properties and its application in Harbin red sausage. Int. J. Biol. Macromol. 2023, 239, 124299. [Google Scholar] [CrossRef]
- Järviö, N.; Parviainen, T.; Maljanen, N.-L.; Kobayashi, Y.; Kujanpää, L.; Ercili-Cura, D.; Landowski, C.P.; Ryynänen, T.; Nordlund, E.; Tuomisto, H.L. Ovalbumin production using Trichoderma reesei culture and low-carbon energy could mitigate the environmental impacts of chicken-egg-derived ovalbumin. Nat. Food 2021, 2, 1005–1013. [Google Scholar] [CrossRef] [PubMed]
- Gastaldello, A.; Giampieri, F.; De Giuseppe, R.; Grosso, G.; Baroni, L.; Battino, M. The rise of processed meat alternatives: A narrative review of the manufacturing, composition, nutritional profile and health effects of newer sources of protein, and their place in healthier diets. Trends Food Sci. Technol. 2022, 127, 263–271. [Google Scholar] [CrossRef]
- Li, D.; Tong, S.; Zeng, Y.; Yang, J.; Qi, X.; Wang, Q.; Sun, Y. Low carbon biomanufacturing for future food. Chin. J. Biotechnol. 2022, 38, 4311–4328. [Google Scholar] [CrossRef]
- Cardoso Alves, S.; Díaz-Ruiz, E.; Lisboa, B.; Sharma, M.; Mussatto, S.I.; Thakur, V.K.; Kalaskar, D.M.; Gupta, V.K.; Chandel, A.K. Microbial meat: A sustainable vegan protein source produced from agri-waste to feed the world. Food Res. Int. 2023, 166, 112596. [Google Scholar] [CrossRef]
- Wang, B.; Shi, Y.; Lu, H.; Chen, Q. A critical review of fungal proteins: Emerging preparation technology, active efficacy and food application. Trends Food Sci. Technol. 2023, 141, 104178. [Google Scholar] [CrossRef]
- Ma, Y.; Zeng, Y.; Zhang, X. The Invention Relates to a Processing Method of Edible Mycelium Protein and Application Thereof. Filed 2021, and Issued. Available online: https://Max.book118.com/html/2023/0622/8125137050005103.shtm (accessed on 1 January 2025).
- Ma, Y.; Li, D.; Qi, X. A Protein-Producing Strain and Its Application. Filed 2021, and Issued. Available online: https://zhuanli.tianyancha.com/7caa559aacdc9369b70909752135082d (accessed on 1 January 2025).
- Zhang, X.; Zeng, Y.; Dong, T.; Meng, J.; Sun, Y. Effects of mycoprotein on properties of plant meat. Food Res. Dev. 2023, 44, 26–31. [Google Scholar]
- Rai, A.; Sharma, V.K.; Sharma, M.; Singh, S.M.; Singh, B.N.; Pandey, A.; Nguyen, Q.D.; Gupta, V.K. A global perspective on a new paradigm shift in bio-based meat alternatives for healthy diet. Food Res. Int. 2023, 169, 112935. [Google Scholar] [CrossRef] [PubMed]
- Yin, X.; Chen, Q.; Liu, Q.; Wang, Y.; Kong, B. Influences of smoking in traditional and industrial conditions on flavour profile of harbin red sausages by comprehensive two-dimensional gas chromatography mass spectrometry. Foods 2021, 10, 1180. [Google Scholar] [CrossRef] [PubMed]
- Dong, H.; Chen, J.; Li, Y.; Wang, C.; Jiao, C.; Wang, L. Influence of liquid nitrogen pre-freezing and drying methods on the collagen content, physical properties, and flavor of fish swim bladder. Foods 2024, 13, 2790. [Google Scholar] [CrossRef] [PubMed]
- Marušić Radovčić, N.; Poljanec, I.; Petričević, S.; Mora, L.; Medić, H. Influence of muscle type on physicochemical parameters, lipolysis, proteolysis, and volatile compounds throughout the processing of smoked dry-cured ham. Foods 2021, 10, 1228. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Yuan, Y.; Zhu, X.; Xu, R.; Shen, H.; Zhang, Q.; Ge, X. The effect of different extraction methods on extraction yield, physicochemical properties, and volatile compounds from field muskmelon seed oil. Foods 2022, 11, 721. [Google Scholar] [CrossRef] [PubMed]
- Vaskoska, R.; Vénien, A.; Ha, M.; White, J.D.; Unnithan, R.R.; Astruc, T.; Warner, R.D. Thermal denaturation of proteins in the muscle fibre and connective tissue from bovine muscles composed of type I (masseter) or type II (cutaneous trunci) fibres: DSC and FTIR microspectroscopy study. Food Chem. 2021, 343, 128544. [Google Scholar] [CrossRef] [PubMed]
- Savanovic, D.; Grujic, R.; Rakita, S.; Torbica, A.; Bozickovic, R. Melting and crystallization DSC profiles of different types of meat. Chem. Ind. Chem. Eng. Q. 2017, 23, 473–481. [Google Scholar] [CrossRef]
- Ríos-Reina, R.; Azcarate, S.M.; Camiña, J.M.; Callejón, R.M. Sensory and spectroscopic characterization of Argentinean wine and balsamic vinegars: A comparative study with European vinegars. Food Chem. 2020, 323, 126791. [Google Scholar] [CrossRef] [PubMed]
- Koné, G.A.; Good, M.; Tiho, T.; Ngatta, Z.R.; Grongnet, J.F.; Kouba, M. Sensory characteristics and consumer preference for meat from guinea fowl fed hevea seed meal or cashew nut meal supplemented diets. Poult. Sci. 2022, 101, 102212. [Google Scholar] [CrossRef]
- Byarugaba, R.; Nabubuya, A.; Muyonga, J. Descriptive sensory analysis and consumer preferences of bean sauces. Food Sci. Nutr. 2020, 8, 4252–4265. [Google Scholar] [CrossRef]
- Zhang, Z.; Jiang, J.; Zang, M.; Zhang, K.; Li, D.; Li, X. Flavor profile analysis of instant and traditional lanzhou beef bouillons using hs-spme-gc/ms, electronic nose and electronic tongue. Bioengineering 2022, 9, 582. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Ma, K.; Niu, W.; Sun, H.; Ren, X.; Ma, L. Effect of starters on the formation and changes of flavor substances in air-dried sausages. Food Sci. 2022, 43, 125–135. [Google Scholar]
- Wang, S.; Chen, H.; Sun, B. Recent progress in food flavor analysis using gas chromatography–ion mobility spectrometry (GC–IMS). Food Chem. 2020, 315, 126158. [Google Scholar] [CrossRef]
- Li, X.; Zeng, X.; Song, H.; Xi, Y.; Li, Y.; Hui, B.; Li, H.; Li, J. Characterization of the aroma profiles of cold and hot break tomato pastes by GC-O-MS, GC × GC-O-TOF-MS, and GC-IMS. Food Chem. 2023, 405, 134823. [Google Scholar] [CrossRef]
- Liu, B.; Yang, Y.; Ren, L.; Su, Z.; Bian, X.; Fan, J.; Wang, Y.; Han, B.; Zhang, N. Hs-gc-ims and pca to characterize the volatile flavor compounds in three sweet cherry cultivars and their wines in China. Molecules 2022, 27, 9056. [Google Scholar] [CrossRef]
- Yin, X.; Lv, Y.; Wen, R.; Wang, Y.; Chen, Q.; Kong, B. Characterization of selected Harbin red sausages on the basis of their flavour profiles using HS-SPME-GC/MS combined with electronic nose and electronic tongue. Meat Sci. 2021, 172, 108345. [Google Scholar] [CrossRef]
- Lv, Y.; Yin, X.; Wang, Y.; Chen, Q.; Kong, B. The prediction of specific spoilage organisms in Harbin red sausage stored at room temperature by multivariate statistical analysis. Food Control 2021, 123, 107701. [Google Scholar] [CrossRef]
- Ostojić, S.; Micić, D.; Zlatanović, S.; Lončar, B.; Filipović, V.; Pezo, L. Thermal characterisation and isoconversional kinetic analysis of osmotically dried pork meat proteins longissimus dorsi. Foods 2023, 12, 2867. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Ertbjerg, P. On the origin of thaw loss: Relationship between freezing rate and protein denaturation. Food Chem. 2019, 299, 125104. [Google Scholar] [CrossRef] [PubMed]
- Yang, T.; Wang, S.; Liu, X.; Xue, L.; Guo, Y.; Guo, P.; Sun, G. Integrated quality control strategy for red yeast rice combining DSC and HPLC profiles. Food Control 2024, 158, 110260. [Google Scholar] [CrossRef]
- Ke, W.; Lee, Y.-Y.; Cheng, J.; Tan, C.-P.; Lai, O.-M.; Li, A.; Wang, Y.; Zhang, Z. Physical, textural and crystallization properties of ground nut oil-based diacylglycerols in W/O margarine system. Food Chem. 2024, 433, 137374. [Google Scholar] [CrossRef] [PubMed]
- García-Coronado, P.; Flores-Ramírez, A.; Grajales-Lagunes, A.; Godínez-Hernández, C.; Abud-Archila, M.; González-García, R.; Ruiz-Cabrera, M.A. The Influence of Maltodextrin on the Thermal Transitions and State Diagrams of Fruit Juice Model Systems. Polymers 2020, 12, 2077. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.; Ma, W.; Xian, Z.; Liu, Q.; Hui, A.; Zhang, W. The impact of quick-freezing methods on the quality, moisture distribution and microstructure of prepared ground pork during storage duration. Ultrason. Sonochem. 2021, 78, 105707. [Google Scholar] [CrossRef] [PubMed]
- Giezenaar, C.; Jonathan, R.; Godfrey, A.; Foster, M.; Hort, J. Effects of intrinsic and extrinsic product characteristics related to protein source, health and environmental sustainability, on product choice and sensory evaluation of meatballs and plant-based alternatives. Food Qual. Prefer. 2024, 113, 105070. [Google Scholar] [CrossRef]
- Ribeiro, A.C.P.; Magnani, M.; Baú, T.R.; Esmerino, E.A.; Cruz, A.G.; Pimentel, T.C. Update on emerging sensory methodologies applied to investigating dairy products. Curr. Opin. Food Sci. 2024, 56, 101135. [Google Scholar] [CrossRef]
- Hu, Y.; Wang, J.; Liu, Q.; Wang, Y.; Ren, J.; Chen, Q.; Kong, B. Unraveling the difference in flavor characteristics of dry sausages inoculated with different autochthonous lactic acid bacteria. Food Biosci. 2022, 47, 101778. [Google Scholar] [CrossRef]
- Yin, X.; Wen, R.; Sun, F.; Wang, Y.; Kong, B.; Chen, Q. Collaborative analysis on differences in volatile compounds of Harbin red sausages smoked with different types of woodchips based on gas chromatography–mass spectrometry combined with electronic nose. LWT 2021, 143, 111144. [Google Scholar] [CrossRef]
- Ma, R.; Shen, H.; Cheng, H.; Zhang, G.; Zheng, J. Combining e-nose and e-tongue for improved recognition of instant starch noodles seasonings. Front. Nutr. 2023, 9, 1074958. [Google Scholar] [CrossRef] [PubMed]
- Khorramifar, A.; Rasekh, M.; Karami, H.; Lozano, J.; Gancarz, M.; Łazuka, E.; Łagód, G. Determining the shelf life and quality changes of potatoes (Solanum tuberosum) during storage using electronic nose and machine learning. PLoS ONE 2023, 18, e0284612. [Google Scholar] [CrossRef]
- Chen, Y.P.; Cai, D.; Li, W.; Blank, I.; Liu, Y. Application of gas chromatography-ion mobility spectrometry (GC-IMS) and ultrafast gas chromatography electronic-nose (uf-GC E-nose) to distinguish four Chinese freshwater fishes at both raw and cooked status. J. Food Biochem. 2021, 46, e13840. [Google Scholar] [CrossRef] [PubMed]
- Cheng, H.; Mei, J.; Xie, J. The odor deterioration of tilapia (Oreochromis mossambicus) fillets during cold storage revealed by LC-MS based metabolomics and HS-SPME-GC–MS analysis. Food Chem. 2023, 427, 136699. [Google Scholar] [CrossRef]
- Li, M.; Yang, R.; Zhang, H.; Wang, S.; Chen, D.; Lin, S. Development of a flavor fingerprint by HS-GC–IMS with PCA for volatile compounds of Tricholoma matsutake Singer. Food Chem. 2019, 290, 32–39. [Google Scholar] [CrossRef]
- Zhou, Y.; Wang, D.; Duan, H.; Zhou, S.; Guo, J.; Yan, W. Detection and analysis of volatile flavor compounds in different varieties and origins of goji berries using HS-GC-IMS. LWT 2023, 187, 115322. [Google Scholar] [CrossRef]
- Meijuan, Y.; Xiaole, X.; Huan, T.; Qun, Z.; Yang, S.; Hui, Y. Potential correlation between volatiles and microbiome of Xiang xi sausages from four different regions. Food Res. Int. 2021, 139, 109943. [Google Scholar]
- Bassam, S.M.; Noleto-Dias, C.; Farag, M.A. Dissecting grilled red and white meat flavor: Its characteristics, production mechanisms, influencing factors and chemical hazards. Food Chem. 2022, 371, 131139. [Google Scholar] [CrossRef]
- Wang, C.; Zhang, J.; Li, J.; Chai, Q.; Xie, J. HS-SPME-GC-MS-based untargeted metabolomics reveals the enhancement of pungent flavor quality in soilless-cultivated Chinese chives by preharvest application of methyl jasmonate. LWT 2023, 188, 115350. [Google Scholar] [CrossRef]
- Nie, R.; Zhang, C.; Liu, H.; Wei, X.; Gao, R.; Shi, H.; Zhang, D.; Wang, Z. Characterization of key aroma compounds in roasted chicken using SPME, SAFE, GC-O, GC–MS, AEDA, OAV, recombination-omission tests, and sensory evaluation. Food Chem. X 2024, 21, 101167. [Google Scholar] [CrossRef]
- Shahidi, F.; Abad, A. Lipid-Derived Flavours and Off-Flavours in Food. In Encyclopedia of Food Chemistry; Elsevier Inc.: Amsterdam, The Netherlands, 2019; pp. 182–192. [Google Scholar]
- Cheng, Z.; Luo, X.; Zhu, Z.; Huang, Y.; Yan, X. Furfural produces dose-dependent attenuating effects on ethanol-induced toxicity in the liver. Front. Pharmacol. 2022, 13, 906933. [Google Scholar] [CrossRef] [PubMed]
- Cousin, E.; Namhaed, K.; Pérès, Y.; Cognet, P.; Delmas, M.; Hermansyah, H.; Gozan, M.; Alaba, P.A.; Aroua, M.K. Towards efficient and greener processes for furfural production from biomass: A review of the recent trends. Sci. Total Environ. 2022, 847, 157599. [Google Scholar] [CrossRef]
Name: | Date: | Products: | |||
---|---|---|---|---|---|
Test instructions: | (1) samples A, B, C, D, E were sampled from left to right; (2) please judge the color, aroma, taste and shape of the sausage, rank the following products by how much you like them, from 1 very much to 5 very little. | ||||
1: | 2: | 3: | 4: | 5: |
Parameter | Optimization Conditions |
---|---|
Inlet temperature | 200 °C |
Injection duration | 40 s |
Initial trap temperature | 40 °C |
Trap shunting rate | 10 mL/min |
Final trap temperature | 200 °C |
The initial temperature of the column | 50 °C |
The programmed heating mode of column Temperature | 0.5 °C/min~100 °C,1 °C/min~200 °C |
Collection time | 140 s |
FID detector temperature | 260 °C |
Tasting Judges | The Order of Samples | ||||||||
---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | |||||
1 | D | E | = | B | A | C | |||
2 | E | = | D | C | B | A | |||
3 | D | E | C | B | A | ||||
4 | D | E | = | B | A | C | |||
5 | D | E | C | B | A | ||||
6 | D | E | A | C | B | ||||
7 | E | D | B | C | A | ||||
8 | D | E | C | B | A | ||||
9 | D | B | E | C | A | ||||
10 | E | D | B | C | A |
Tasting Judges | The Rank of the Sample | Rank Sum | ||||
---|---|---|---|---|---|---|
A | B | C | D | E | ||
1 | 4 | 2.5 | 5 | 1 | 2.5 | 15 |
2 | 5 | 4 | 3 | 1.5 | 1.5 | 15 |
3 | 5 | 4 | 3 | 1 | 2 | 15 |
4 | 4 | 2.5 | 5 | 1 | 2.5 | 15 |
5 | 5 | 4 | 3 | 1 | 2 | 15 |
6 | 5 | 5 | 4 | 1 | 2 | 15 |
7 | 5 | 3 | 4 | 2 | 1 | 15 |
8 | 5 | 3 | 4 | 1 | 2 | 15 |
9 | 5 | 2 | 4 | 1 | 3 | 15 |
10 | 5 | 3 | 4 | 2 | 1 | 15 |
Rank sum R for each sample | 48 | 33 | 39 | 12.5 | 19.5 | 150 |
Number | Volatile Matter | Retention INDEX | Retention Time/s | Migration Time | Peak Strength | ||||
---|---|---|---|---|---|---|---|---|---|
Mp1 | Mp2 | Mp3 | Mp4 | Mp5 | |||||
Alcohols | |||||||||
1 * | oct-1-en-3-ol | 982.7 | 549.12 | 1.16 | 76.04 ± 7.64 e | 218.49 ± 8.36 d | 325.31 ± 2.41 c | 385.87 ± 14.90 b | 527.91 ± 22.45 |
2 * | Diethylene glycol dimethyl ether | 960.3 | 503.37 | 1.14 | 271.70 ± 13.66 c | 196.00 ± 16.27 d | 260.58 ± 3.92 c | 515.34 ± 6.09 b | 1023.53 ± 18.09 a |
3 * | n-Hexanol | 871.3 | 357.82 | 1.32 | 88.66 ± 1.68 e | 497.93 ± 21.88 b | 574.11 ± 12.50 a | 454.46 ± 3.61 c | 373.73 ± 14.80 d |
4 * | 2-Hexanol | 819.3 | 296.35 | 1.28 | 255.76 ± 8.63 c | 282.86 ± 12.81 c | 294.84 ± 8.21 c | 378.74 ± 2.78 b | 1787.11 ± 43.50 a |
5 * | pentan-1-ol-D | 767.8 | 245.7 | 1.25 | 404.42 ± 14.65 e | 2549.14 ± 7.27 d | 2995.12 ± 18.09 c | 3120.45 ± 8.50 b | 3232.69 ± 32.84 a |
6 * | pentan-1-ol-M | 763 | 241.45 | 1.52 | 87.55 ± 7.64 e | 1349.24 ± 22.77 d | 2055.40 ± 32.40 c | 2500.90 ± 13.78 b | 2803.21 ± 93.60 a |
7 * | 2-methylbutan-1-ol | 739.8 | 221.73 | 1.22 | 113.40 ± 4.91 e | 263.11 ± 7.87 d | 359.12 ± 2.13 c | 410.94 ± 6.83 b | 600.34 ± 7.26 a |
8 * | 1,2-Dimethoxyethane | 644.3 | 164.34 | 1.29 | 255.42 ± 3.79 c | 309.17 ± 13.26 b | 282.12 ± 3.21 b | 287.06 ± 4.47 b | 494.59 ± 30.25 a |
9 * | 1-Butanol | 651.5 | 167.34 | 1.37 | 678.84 ± 14.04 e | 1385.13 ± 48.36 b | 1285.09 ± 10.54 c | 1032.22 ± 30.26 d | 1543.17 ± 84.86 a |
10 * | 1-propanol | 543.6 | 127.36 | 1.11 | 3597.01 ± 19.01 c | 3844.56 ± 27.59 b | 3405.23 ± 21.62 d | 3967.10 ± 14.25 a | 3617.92 ± 8.95 c |
11 * | 3-Methyl-2-butanol | 692.5 | 186.46 | 1.41 | 72.22 ± 7.66 e | 364.63 ± 38.51 d | 1131.39 ± 43.76 c | 1377.97 ± 18.64 b | 2179.57 ± 53.70 a |
Esters | |||||||||
12 * | Acetic acid, hexyl ester | 1008.9 | 600.29 | 1.41 | 327.57 ± 23.17 e | 574.67 ± 39.38 d | 953.89 ± 9.09 c | 1227.49 ± 8.05 b | 1575.63 ± 32.23 a |
13 * | isoamyl acetate | 874 | 361.36 | 1.3 | 47.25 ± 1.67 d | 150.76 ± 4.05 c | 237.18 ± 9.77 b | 255.99 ± 10.25 b | 343.89 ± 21.34 a |
14 * | Isoamyl formate | 796.4 | 272.77 | 1.27 | 782.84 ± 12.19 d | 1108.35 ± 5.16 c | 1220.96 ± 16.37 b | 1248.93 ± 7.73 a | 1269.77 ± 16.81 a |
15 * | Ethyl butyrate | 790.1 | 266.58 | 1.56 | 916.09 ± 20.60 e | 2968.30 ± 123.17 d | 4582.01 ± 32.62 c | 5603.71 ± 13.79 b | 6684.60 ± 150.21 a |
16 * | Formic acid, 3-methylbutyl ester | 786.9 | 263.49 | 1.27 | 648.66 ± 24.47 d | 837.37 ± 18.33 a | 787.03 ± 11.14 b | 730.20 ± 10.01 c | 645.82 ± 17.13 d |
17 * | Butanoic acid, methyl ester | 738.8 | 220.96 | 1.44 | 11.21 ± 1.05 e | 54.51 ± 11.21 d | 96.07 ± 0.56 c | 138.40 ± 5.82 b | 208.65 ± 12.29 a |
18 * | Butyl formate | 740.2 | 222.12 | 1.5 | 9.55 ± 0.24 e | 30.09 ± 2.43 d | 61.04 ± 2.60 c | 92.93 ± 3.08 b | 232.06 ± 15.63 a |
19 * | acetic acid ethyl ester | 596.3 | 145.52 | 1.09 | 219.77 ± 4.46 b | 226.88 ± 4.20 a | 199.67 ± 11.58 c | 217.47 ± 5.84 b | 202.24 ± 13.47 bc |
20 * | Hexanoic acid, 2-propen-1-yl ester | 1077.9 | 729.53 | 1.4 | 129.16 ± 24.66 e | 216.38 ± 12.84 d | 308.66 ± 24.66 c | 660.19 ± 18.95 a | 479.77 ± 660.19 b |
Aldehydes | |||||||||
21 * | 1-octanal | 1008.1 | 598.85 | 1.81 | 39.25 ± 2.89 d | 54.46 ± 5.39 d | 96.09 ± 1.26 c | 162.95 ± 4.42 b | 251.27 ± 20.35 a |
22 * | 2,4-Hexadienal, (E,E)-D | 913.2 | 418.87 | 1.11 | 296.28 ± 37.08 e | 443.87 ± 4.81 d | 662.47 ± 30.12 c | 1054.58 ± 13.09 b | 1192.19 ± 26.03 a |
23 * | 2,4-Hexadienal, (E,E)-E | 914 | 420.2 | 1.46 | 115.63 ± 10.49 d | 138.87 ± 5.59 d | 218.53 ± 17.80 c | 574.92 ± 14.19 b | 687.30 ± 43.51 a |
24 * | Heptanal-D | 899 | 396.31 | 1.34 | 357.97 ± 3.33 e | 651.17 ± 21.58 d | 1104.02 ± 38.50 c | 1390.65 ± 10.17 b | 1784.99 ± 41.06 a |
25 * | Heptanal-M | 898.1 | 394.98 | 1.69 | 90.77 ± 14.78 d | 137.55 ± 6.20 d | 336.83 ± 8.83 c | 502.34 ± 6.33 b | 912.33 ± 68.00 a |
26 * | Furfural-D | 831.6 | 309.88 | 1.32 | 68.09 ± 1.61 e | 128.83 ± 1.52 d | 292.52 ± 4.70 b | 148.97 ± 4.79 c | 640.03 ± 15.64 a |
27 * | Furfural-M | 830.9 | 309.11 | 1.08 | 13.58 ± 2.06 c | 15.17 ± 1.26 c | 29.17 ± 2.32 b | 14.53 ± 1.09 c | 118.27 ± 1.37 a |
28 * | 3-methyl butanal | 642.4 | 163.55 | 1.19 | 856.01 ± 9.59 b | 898.84 ± 23.30 a | 809.71 ± 5.88 c | 683.84 ± 10.48 e | 714.02 ± 13.64 d |
29 * | Nonanal | 1103.8 | 785.05 | 1.48 | 111.16 ± 3.57 d | 141.64 ± 12.84 c | 177.60 ± 20.71 b | 196.66 ± 8.64 b | 233.18 ± 17.73 a |
Ketones | |||||||||
30 | 2-heptanone-D | 889.1 | 381.71 | 1.26 | 246.81 ± 8.98 e | 711.22 ± 26.46 d | 969.06 ± 53.23 c | 1140.10 ± 22.52 b | 1319.86 ± 66.21 a |
31 | 2-heptanone-M | 887.2 | 379.05 | 1.62 | 35.93 ± 5.20 e | 118.32 ± 11.44 d | 193.73 ± 16.75 c | 255.31 ± 4.90 b | 350.98 ± 29.94 a |
32 | 2,3-pentanedione | 693.8 | 187.33 | 1.2 | 364.53 ± 6.07 d | 877.30 ± 50.39 c | 1288.15 ± 8.71 b | 1331.78 ± 18.72 b | 1384.61 ± 20.99 a |
33 | 3-Pentanone | 694.9 | 188.1 | 1.35 | 241.26 ± 6.66 d | 762.29 ± 22.41 c | 851.37 ± 19.10 b | 1042.54 ± 17.77 a | 1076.50 ± 46.20 a |
34 | 2-Butanone | 578.8 | 139.25 | 1.24 | 1366.58 ± 94.32 a | 1016.85 ± 34.25 b | 1030.21 ± 0.98 b | 801.57 ± 30.33 c | 1288.02 ± 100.67 a |
Sulfur compounds | |||||||||
35 | Ethyl 3-(methylthio)propanoate | 1095.2 | 766.21 | 1.2 | 79.49 ± 5.16 c | 82.75 ± 2.83 c | 99.90 ± 10.23 c | 163.82 ± 4.27 b | 786.64 ± 73.89 a |
36 * | 1-Propene, 3,3′-thiobis- | 852.6 | 334.37 | 1.11 | 3728.31 ± 139.28 b | 4174.29 ± 83.63 a | 3367.34 ± 182.63 c | 3903.09 ± 51.87 b | 2524.93 ± 114.85 d |
37 | 1-Propanethiol | 611.9 | 151.4 | 1.17 | 91.29 ± 3.63 e | 174.81 ± 7.13 d | 195.80 ± 0.45 b | 184.88 ± 1.97 c | 224.60 ± 0.26 a |
38 | 2-Propanethiol | 575.1 | 137.95 | 1.14 | 258.35 ± 4.24 d | 290.80 ± 7.92 c | 353.29 ± 8.01 b | 251.08 ± 7.98 d | 427.69 ± 2.85 a |
Pyrazines | |||||||||
39 * | methylpyrazine | 819.3 | 296.35 | 1.38 | 44.91 ± 7.23 b | 33.93 ± 3.46 b | 35.43 ± 3.51 b | 41.72 ± 2.25 b | 250.89 ± 7.43 a |
Heterocyclic class | |||||||||
40 * | 2-pentyl furan | 991.7 | 568.73 | 1.24 | 38.42 ± 4.27 e | 72.85 ± 2.15 d | 109.52 ± 13.66 c | 161.39 ± 7.59 b | 284.14 ± 35.39 a |
Alkanes | |||||||||
41 | Hexane, 2,3,5-trimethyl- | 817.9 | 294.8 | 1.65 | 56.67 ± 3.82 b | 55.87 ± 6.59 b | 57.34 ± 2.70 b | 60.22 ± 10.71 b | 1171.41 ± 94.94 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, X.-L.; Qi, X.-N.; Deng, J.-C.; Jiang, P.; Wang, S.-Y.; Xue, X.-L.; Wang, Q.-H.; Ren, X. Characterization of Fusarium venenatum Mycoprotein-Based Harbin Red Sausages. Foods 2025, 14, 556. https://doi.org/10.3390/foods14040556
Li X-L, Qi X-N, Deng J-C, Jiang P, Wang S-Y, Xue X-L, Wang Q-H, Ren X. Characterization of Fusarium venenatum Mycoprotein-Based Harbin Red Sausages. Foods. 2025; 14(4):556. https://doi.org/10.3390/foods14040556
Chicago/Turabian StyleLi, Xue-Li, Xian-Ni Qi, Jia-Chen Deng, Ping Jiang, Shu-Yuan Wang, Xing-Li Xue, Qin-Hong Wang, and Xiaoqing Ren. 2025. "Characterization of Fusarium venenatum Mycoprotein-Based Harbin Red Sausages" Foods 14, no. 4: 556. https://doi.org/10.3390/foods14040556
APA StyleLi, X.-L., Qi, X.-N., Deng, J.-C., Jiang, P., Wang, S.-Y., Xue, X.-L., Wang, Q.-H., & Ren, X. (2025). Characterization of Fusarium venenatum Mycoprotein-Based Harbin Red Sausages. Foods, 14(4), 556. https://doi.org/10.3390/foods14040556