The Assessment of Mercury Concentrations in Two Species of Edible Forest Mushrooms, Aureoboletus projectellus and Imleria badia, and Their Impact on Consumers’ Health
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fan, I.; Pan, H.; Coccol, A.; Pandey, A.; Soccol, C. Advances in mushroom research in the last decade. Food Technol. Biotechnol. 2006, 44, 303–311. [Google Scholar]
- Muszyńska, B.; Kała, K.; Lazur, J.; Włodarczyk, A. Imleria badia culinary-medicinal mushroom with interesting biological properties. Food Biosci. 2020, 37, 100663. [Google Scholar] [CrossRef]
- Central Statistic Office. Statistical Yearbook of Agriculture. 2024. Available online: https://stat.gov.pl/obszary-tematyczne/roczniki-statystyczne/roczniki-statystyczne/rocznik-statystyczny-rolnictwa-2024,6,18.html (accessed on 23 December 2024).
- Chief Sanitary Inspectorate, Wartość Odżywcza Przydatność Kulinarna Grzybów. 2018. Available online: https://www.gov.pl/web/gis/wartosc-odzywcza-przydatnosc-kulinarna-grzybow (accessed on 12 December 2024).
- Motiejunait, J.; Kasparavicius, J.; Kacergius, A. Boletellus projectellus an alien mycorrhizal bolete new to Europe. Sydowia 2011, 63, 203–213. [Google Scholar]
- Wrzosek, M.; Motiejūnaitė, J.; Kasparavičius, J.; Wilk, M.; Mukins, E.; Schreiner, J.; Vishnevskiy, M.; Gorczak, M.; Okrasińska, A.; Istel, Ł.; et al. The progressive spread of Aureoboletus projectellus (fungi, basidiomycota) in Europe. Fungal. Ecol. 2017, 27, 134–136. [Google Scholar] [CrossRef]
- Banasiak, Ł.; Pietras, M.; Wrzosek, M.; Okrasińska, A.; Gorczak, M.; Kolanowska, M.; Pawłowska, J. Aureoboletus projectellus (Fungi, Boletales)—An American bolete rapidly spreading in Europe as a new model species for studying expansion of macrofungi. Fungal Ecol. 2019, 39, 94–99. [Google Scholar] [CrossRef]
- Siwulski, M.; Sobieralski, K.; Sas-Golak, I. Nutritional and health−promoting value of mushrooms in Polish forests. Sylwan 2014, 158, 151–160. [Google Scholar]
- Siwulski, M.; Sobieralski, K.; Sas-Golak, I. Nutritive and health-promoting value of mushrooms. Żywność Nauka Technol. Jakość. 2014, 1, 16–28. [Google Scholar]
- Meng, X.; Liang, H.; Luo, L. Antitumor polysaccharides from mushrooms: A review on the structural characteristics, antitumor mechanisms, and immunomodulating activities. Carbohydr. Res. 2016, 424, 30–41. [Google Scholar] [CrossRef]
- Grzywacz, A.; Argasinska, J.G.; Kala, K.; Opoka, W.; Muszyńska, B. Anti-Inflammatory activity of biomass extracts of the bay mushroom, Imleria badia (Agaricomycetes), in RAW 264.7 Cells. Int. J. Med. Mushrooms 2016, 18, 769–779. [Google Scholar] [CrossRef]
- Golianek, A.; Mazurkiewicz-Zapałowicz, K. Mushrooms in the human diet—Their nutritional and health-promoting value. Kosmos 2016, 65, 513–522. [Google Scholar]
- Zhang, M.; Cui, S.W.; Cheung, P.; Wang, Q. Antitumor polysaccharides from mushrooms, a review on their isolation process, structural characteristics and antitumor activity. Trend Food Sci. Technol. 2007, 18, 4–19. [Google Scholar] [CrossRef]
- Barros, L.; Ferreira, I.C.F.R.; Baptista, P. Phenolics and antioxidant activity of the mushroom Leucopaxillus giganteus mycelium at different carbon sources. Food Sci. Technol. Int. 2008, 14, 47–55. [Google Scholar] [CrossRef]
- Ferreira, I.C.F.R.; Vaz, J.A.; Vasconcelos, M.H.; Martins, A. Compounds from Wild Mushrooms with Antitumor Potential. Anticancer Agents Med. Chem. 2010, 10, 424–436. [Google Scholar] [CrossRef] [PubMed]
- Guillamón, E.; Garcia-Lafuente, A.; Lozano, M.; DÁrrigo, M.; Rostagno, M.A.; Villares, A.; Martinez, J.A. Edible mushrooms: Role in the prevention of cardiovascular diseases. Fitoterapia 2010, 81, 715–723. [Google Scholar] [CrossRef]
- Zhang, L.; Fan, C.; Liu, S.; Zang, Z.; Jiao, L. Chemical composition and antitumor activity of polysaccharide from Inonotus obliquus. J. Med. Plants Res. 2011, 5, 1251–1260. [Google Scholar]
- Alves, M.J.; Ferreira, I.C.F.R.; Dias, J.; Teixeira, V.; Martins, A.; Pintado, M. A review on antimicrobial activity of mushroom (Basidiomycetes) extracts and isolated compounds. Planta Medica 2012, 78, 1707–1718. [Google Scholar] [CrossRef]
- Guggenheim, A.G.; Wright, K.M.; Zwickey, H.L. Immune modulation from five major mushrooms: Application to integrative oncology. Integr. Med. 2014, 13, 32–41. [Google Scholar]
- Heleno, S.A.; Ferreira, R.C.; Antonio, A.L.; Queiroz, M.J.R.P.; Barros, L.; Ferreira, I.C.F.R. Nutritional value, bioactive compounds, and antioxidant properties of three edible mushrooms from Poland. Food Biosci. 2015, 11, 48–55. [Google Scholar] [CrossRef]
- Ruthes, A.C.; Smiderle, F.R.; Iacomini, M. Mushroom heteropolysaccharides: A review on their sources, structure and biological effects. Carbohydr. Polym. 2016, 136, 358–375. [Google Scholar] [CrossRef]
- Ferreira, I.C.F.R.; Barros, L.; Abreu, R.M.V. Antioxidants in wild mushrooms. Curr. Med. Chem. 2009, 16, 1543–1560. [Google Scholar] [CrossRef]
- Chun, S.; Gopal, J.; Muthu, M. Antioxidant activity of mushroom extracts/polysaccharides-their antiviral properties and plausible antiCOVID-19 properties. Antioxidants 2021, 10, 1899. [Google Scholar] [CrossRef]
- Das, A.; Chen, C.M.; Mu, S.C.; Yang, S.H.; Ju, Y.M.; Li, S.C. Medicinal components in edible mushrooms on diabetes mellitus treatment. Pharmaceutics 2022, 14, 436. [Google Scholar] [CrossRef]
- Sas-Golak, I.; Sobieralski, K.; Siwulski, M.; Talisiecka, J. Composition, nutritional value and medicinal properties of wild mushrooms. Kosmos 2011, 60, 483–490. [Google Scholar]
- Kobayashi, M.; Kawashima, H.; Takemori, K.; Ito, H.; Murai, A.; Masuda, S.; Yamada, K.; Uemura, D.; Horio, F. Ternatin, a cyclic peptide isolated from mushroom, and its derivative suppress hyperglycemia and hepatic fatty acid synthesis in spontaneously diabetic KK-A(y) mice. Biochem. Biophys. Res. Commun. 2012, 427, 299–304. [Google Scholar] [CrossRef]
- Roupas, P.; Jennifer, K.; Noakes, M.; Margetts, C.; Taylor, P. The role of edible mushrooms in health: Evaluation of the evidence. J. Funct. Foods 2012, 4, 687–709. [Google Scholar] [CrossRef]
- Smina, T.P.; Nitha, B.; Devasagayam, T.P.; Janardhanan, K.K. Ganoderma lucidum total triterpenes induce apoptosis in MCF-7 cells and attenuate DMBA induced mammary and skin carcinomas in experimental animals. Mutat. Res. 2017, 813, 45–51. [Google Scholar] [CrossRef]
- Orywal, K.; Socha, K.; Nowakowski, P.; Zoń, W.; Kaczyński, P.; Mroczko, B.; Łozowicka, B.; Perkowski, M. Health risk assessment of exposure to toxic elements resulting from consumption of dried wild-grown mushrooms available for sale. PLoS ONE 2021, 16, e0252834. [Google Scholar] [CrossRef]
- Falandysz, J.; Borovička, J. Macro and trace mineral constituents and radionuclides in mushrooms: Health benefits and risks. Appl. Microbiol. Biotechnol. 2012, 97, 477–501. [Google Scholar] [CrossRef]
- Adamiak, E.A.; Kalembasa, S.; Kuziemska, B. Contents of heavy metals in selected species of edible mushrooms. Acta Agroph. 2013, 20, 7–16. [Google Scholar]
- Širić, I.; Humar, M.; Kasap, A.; Kos, I.; Mioč, B.; Pohleven, F. Heavy metal bioaccumulation by wild edible saprophytic and ectomycorrhizal mushrooms. Environ. Sci. Pollut. Res. 2016, 23, 18239–18252. [Google Scholar] [CrossRef]
- Rzymski, P.; Mleczek, M.; Siwulski, M.; Gąsecka, M.; Niedzielski, P. The risk of high mercury accumulation in edible mushrooms cultivated on contaminated substrates. J. Food Compos. Anal. 2016, 51, 55–60. [Google Scholar] [CrossRef]
- Fischer, A.; Ziemba, K.; Brodziak-Dopierała, B. Mercury concentration in mushrooms (Leccinum scabrum and Amanita muscaria) collected in Poland. Environ. Med. 2019, 22, 71–76. [Google Scholar] [CrossRef]
- Kavčič, A.; Mikuš, K.; Debeljak, M.; van Elteren, J.T.; Arčon, I.; Kodre, A.; Kump, P.; Karydas, A.G.; Migliori, A.; Czyzycki, M.; et al. Localization, ligand environment, bioavailability and toxicity of mercury in Boletus spp. and Scutiger pes-caprae mushrooms. Ecotoxicol. Environ. Saf. 2019, 30, 109623. [Google Scholar] [CrossRef]
- Mleczek, M.; Gąsecka, M.; Budka, A.; Siwulski, M.; Mleczek, P.; Magdziak, Z.; Budzyńska, S.; Niedzielski, P. Mineral composition of elements in wood-growing mushroom species collected from of two regions of Poland. Environ. Sci. Pollut. Res. 2021, 28, 4430–4442. [Google Scholar] [CrossRef]
- Mleczek, M.; Siwulski, M.; Budka, A.; Mleczek, P.; Budzyńska, S.; Szostek, M.; Kuczyńska-Kippen, N.; Kalač, P.; Niedzielski, P.; Gąsecka, M.; et al. Toxicological risks and nutritional value of wild edible mushroom species—A half-century monitoring study. Chemosphere 2021, 263, 128095. [Google Scholar] [CrossRef]
- Nowakowski, P.; Markiewicz-Zukowska, R.; Soroczynska, J.; Puscion-Jakubik, A.; Mielcarek, K.; Borawska, M.H.; Socha, K. Evaluation of toxic element content and health risk assessment of edible wild mushrooms. J. Food Compos. Anal. 2021, 96, 103698. [Google Scholar] [CrossRef]
- Eisler, R. Mercury Hazards to Living Organisms, 1st ed.; CRC Press: Boca Raton, FL, USA, 2006. [Google Scholar]
- Bjorklund, G.; Dadar, M.; Mutter, J.; Aaseth, J. The toxicology of mercury: Current research and emerging trends. Environ. Res. 2017, 159, 545–554. [Google Scholar] [CrossRef]
- Rytuba, J.J. Mercury from mineral deposits and potential environmental impact. Environ. Geol. 2003, 43, 326–338. [Google Scholar] [CrossRef]
- Morel, F.M.M.; Hall, G.; Kraepiel, A.M.L. The chemical cycle and bioaccumulation of Mercury. Ann. Rev. Ecol. Syst. 1998, 29, 543–566. [Google Scholar] [CrossRef]
- Kot, K.; Kosik-Bogacka, D.; Łanocha-Arendarczyk, N.; Ciosek, Ż. The influence of mercury compounds on the human body. Acad. Med. 2016, 9, 210–216. [Google Scholar]
- EFSA Panel on Contaminants in the Food Chain (CONTAM). Scientific Opinion on the risk for public health related to the presence of mercury and methylmercury in food. EFSA J. 2012, 10, 2985. [Google Scholar]
- EC (Commission of the European Communities). Commission Regulation No 1881/2006 of 19 December 2006 Setting Maximum Levels for Certain Contaminants in Foodstuffs. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:02006R1881-20160401&from=EN (accessed on 12 December 2024).
- Demková, L.; Árvay, J.; Hauptvogl, M.; Michalková, J.; Šnirc, M.; Harangozo, Ľ.; Bobuľská, L.; Bajčan, D.; Kunca, V. Mercury content in three edible wild-growing mushroom species from different environmentally loaded areas in Slovakia: An ecological and human health risk assessment. J. Fungi. 2021, 7, 434. [Google Scholar] [CrossRef]
- Risher, J.F.; Murray, H.E.; Prince, G.R. Organic mercury compounds: Human exposure and its relevance to public health. Toxicol. Ind. Health 2002, 18, 109–160. [Google Scholar] [CrossRef]
- Clarkson, T.W.; Magos, L. The toxicology of mercury and its chemical compounds. Crit. Rev. Toxicol. 2006, 36, 609–662. [Google Scholar] [CrossRef]
- Falandysz, J.; Mędyk, M.; Treu, R. Bio-concentration potential and associations of heavy metals in Amanita muscaria (L.) Lam. from northern regions of Poland. Environ. Sci. Pollut. Res. Int. 2018, 25, 25190–25206. [Google Scholar] [CrossRef]
- Snowarski, M. Fungi of Poland. 1997–2025. Available online: https://www.grzyby.pl/ (accessed on 15 August 2018).
- Regulation of the Minister of the Environment dated October 9, 2014, concerning the protection of species of fungi. J. Laws 2014, 1408.
- Ronda, O.; Grządka, E.; Ostolska, I.; Orzeł, J.; Cieślik, B.M. Accumulation of radioisotopes and heavy metals in selected species of mushrooms. Food Chem. 2022, 367, 130670. [Google Scholar] [CrossRef]
- GUS. Statistical Yearbook of the Republic of Poland. Forestry, 2019. Available online: https://stat.gov.pl/obszary-tematyczne/roczniki-statystyczne/roczniki-statystyczne/rocznik-statystyczny-lesnictwa-2019,13,2.html (accessed on 12 December 2024).
- Gąsecka, M.; Rzymski, P.; Mleczek, M.; Siwulski, M.; Budzyńska, S.; Magdziak, Z.; Niedzielski, P.; Sobieralski, K. The relationship between metal composition, phenolic acid, and flavonoid content in Imleria badia from non-polluted and polluted areas. J. Environ. Sci. Health Part B 2017, 52, 171–177. [Google Scholar] [CrossRef]
- Commission Regulation (EU) 2018/73 of 16 January 2018. OJEU. Available online: https://eur-lex.europa.eu/eli/reg/2018/73/oj/eng (accessed on 12 December 2024).
- Širić, I.; Falandysz, J. Contamination, bioconcentration and distribution of mercury in Tricholoma spp. mushrooms from southern and northern regions of Europe. Chemosphere 2020, 251, 126614. [Google Scholar] [CrossRef]
- GUS. Statistical Yearbook of the Republic of Poland. Touristics, 2022. Available online: https://stat.gov.pl/obszary-tematyczne/kultura-turystyka-sport/turystyka/turystyka-w-2022-roku,1,20.html (accessed on 12 December 2024).
Parameter | Aureoboloetus projectellus n = 102 | Imleria badia n = 92 | ||
---|---|---|---|---|
Cap diameter | Stipe length | Cap diameter | Stipe length | |
Average | 46.77 | 79.48 | 61.17 | 52.89 |
Median | 42.50 | 73.50 | 50.00 | 48.50 |
Minimum | 15.00 | 40.00 | 17.00 | 30.00 |
Maximum | 145.00 | 170.00 | 115.00 | 110.00 |
Q25 | 30.00 | 62.00 | 29.00 | 39.00 |
Q75 | 61.00 | 90.00 | 100.00 | 65.00 |
SD | 21.80 | 28.82 | 34.65 | 18.07 |
Species | Part | Statistical Parameters | |||||||
---|---|---|---|---|---|---|---|---|---|
n | Average | Median | Min | Max | Q25 | Q75 | SD | ||
Aureoboletus projectellus | Cap | 102 | 0.048 A | 0.043 | 0.001 | 0.116 | 0.025 | 0.066 | 0.026 |
Stipe | 0.032 B | 0.019 | 0.005 | 0.200 | 0.015 | 0.033 | 0.033 | ||
Imleria badia | Cap | 98 | 0.055 A | 0.043 | 0.004 | 0.179 | 0.028 | 0.084 | 0.037 |
Stipe | 0.025 B | 0.015 | 0.006 | 0.087 | 0.009 | 0.040 | 0.022 |
Aureoboletus projectellus | Stipe | Cap |
---|---|---|
Size | −0.178 | 0.196 |
Imleria badia | Stipe | Cap |
---|---|---|
Size | 0.018 | 0.613 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Skibniewski, M.; Skibniewski, B.; Lasocka, I.; Skibniewska, E. The Assessment of Mercury Concentrations in Two Species of Edible Forest Mushrooms, Aureoboletus projectellus and Imleria badia, and Their Impact on Consumers’ Health. Foods 2025, 14, 631. https://doi.org/10.3390/foods14040631
Skibniewski M, Skibniewski B, Lasocka I, Skibniewska E. The Assessment of Mercury Concentrations in Two Species of Edible Forest Mushrooms, Aureoboletus projectellus and Imleria badia, and Their Impact on Consumers’ Health. Foods. 2025; 14(4):631. https://doi.org/10.3390/foods14040631
Chicago/Turabian StyleSkibniewski, Michał, Bartosz Skibniewski, Iwona Lasocka, and Ewa Skibniewska. 2025. "The Assessment of Mercury Concentrations in Two Species of Edible Forest Mushrooms, Aureoboletus projectellus and Imleria badia, and Their Impact on Consumers’ Health" Foods 14, no. 4: 631. https://doi.org/10.3390/foods14040631
APA StyleSkibniewski, M., Skibniewski, B., Lasocka, I., & Skibniewska, E. (2025). The Assessment of Mercury Concentrations in Two Species of Edible Forest Mushrooms, Aureoboletus projectellus and Imleria badia, and Their Impact on Consumers’ Health. Foods, 14(4), 631. https://doi.org/10.3390/foods14040631