Plant-Based Meat Alternatives on the Island of Ireland: Changes in the Market and Comparisons with Conventional Meat
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Collection
2.2. Data Extraction
2.3. Nutritional Assessment
2.4. Ingredient Analysis
2.5. Comparison with Meat Products
2.6. Statistical Analysis
3. Results
3.1. Assessment of the Market
3.2. Changes in the Nutritional Composition of PBMAs over Time
3.3. Changes in Ingredients, Allergens and Additives
3.4. Claims
3.5. Recyclability of Packaging
3.6. Nutritional Comparison with Meat
4. Discussion
4.1. PBMAs: Changes over Time
4.2. Nutritional Assessment of PBMAs and Meat
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bouvard, V.; Loomis, D.; Guyton, K.Z.; Grosse, Y.; El Ghissassi, F.; Benbrahim-Tallaa, L.; Guha, N.; Mattock, H.; Straif, K.; Corpet, D. Carcinogenicity of Consumption of Red and Processed Meat. Lancet Oncol. 2015, 16, 1599–1600. [Google Scholar] [CrossRef] [PubMed]
- Rouhani, M.H.; Salehi-Abargouei, A.; Surkan, P.J.; Azadbakht, L. Is There a Relationship between Red or Processed Meat Intake and Obesity? A Systematic Review and Meta-Analysis of Observational Studies. Obes. Rev. 2014, 15, 740–748. [Google Scholar] [CrossRef]
- Micha, R.; Michas, G.; Mozaffarian, D. Unprocessed Red and Processed Meats and Risk of Coronary Artery Disease and Type 2 Diabetes--an Updated Review of the Evidence. Curr. Atheroscler. Rep. 2012, 14, 515–524. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Bishop, T.R.; Imamura, F.; Sharp, S.J.; Pearce, M.; Brage, S.; Ong, K.K.; Ahsan, H.; Bes-Rastrollo, M.; Beulens, J.W.; et al. Meat consumption and incident type 2 diabetes: An individual-participant federated meta-analysis of 1· 97 million adults with 100 000 incident cases from 31 cohorts in 20 countries. Lancet Diabetes Endocrinol. 2024, 12, 619–630. [Google Scholar] [CrossRef]
- Poore, J.; Nemecek, T. Reducing Food’s Environmental Impacts through Producers and Consumers. Science 2018, 360, 987–992. [Google Scholar] [CrossRef] [PubMed]
- Willett, W.; Rockström, J.; Loken, B.; Springmann, M.; Lang, T.; Vermeulen, S.; Garnett, T.; Tilman, D.; DeClerck, F.; Wood, A.; et al. Food in the Anthropocene: The EAT—Lancet Commission on Healthy Diets from Sustainable Food Systems. Lancet 2019, 393, 447–492. [Google Scholar] [CrossRef]
- Bord Bia. Striking the Balance: Plant, Protein and the Planet Report—Meat and Dairy; Bord Bia: Dublin, Ireland, 2023. [Google Scholar]
- He, J.; Evans, N.M.; Liu, H.; Shao, S. A Review of Research on Plant-Based Meat Alternatives: Driving Forces, History, Manufacturing, and Consumer Attitudes. Compr. Rev. Food Sci. Food Saf. 2020, 19, 2639–2656. [Google Scholar] [CrossRef]
- Joshi, V.; Kumar, S. Meat Analogues: Plant Based Alternatives to Meat Products—A Review. Int. J. Food Ferment. Technol. 2015, 5, 107–119. [Google Scholar] [CrossRef]
- Safefood. Vegetarian Meat Substitutes; Safefood: Maharashtra, India, 2021. [Google Scholar]
- ING Research. Growth of Meat and Dairy Alternatives Is Stirring up the European Food Industry; ING Research: Brussels, Belgium, 2020. [Google Scholar]
- Barclays Investment Bank. Alternative Meat. Available online: http://tony-silva.com/eslefl/miscstudent/downloadpagearticles/almeatmarket-barclays.pdf (accessed on 21 May 2021).
- Curtain, F.; Grafenauer, S. Plant-Based Meat Substitutes in the Flexitarian Age: An Audit of Products on Supermarket Shelves. Nutrients 2019, 11, 2603. [Google Scholar] [CrossRef]
- Alae-Carew, C.; Green, R.; Stewart, C.; Cook, B.; Dangour, A.D.; Scheelbeek, P.F. The role of plant-based alternative foods in sustainable and healthy food systems: Consumption trends in the UK. Sci. Total Environ. 2022, 807, 151041. [Google Scholar] [CrossRef]
- Irish Universities Nutrition Alliance (IUNA). National Adult Nutrition Survey II: Summary Report; Irish Universities Nutrition Alliance (IUNA): Dublin, Ireland, 2024. [Google Scholar]
- Mintel. Plant-Based Push: UK Sales of Meat-Free Foods Shoot Up 40% Between 2014-19. Available online: https://www.mintel.com/press-centre/food-and-drink/plant-based-push-uk-sales-of-meat-free-foods-shoot-up-40-between-2014-19 (accessed on 12 February 2025).
- Mariseva, A.; Beitane, I. Assessment of ingredients and nutritional value of vegan products in Latvian market. Res. Rural. Dev. 2020, 35, 118–124. [Google Scholar]
- Alessandrini, R.; Brown, M.K.; Pombo-Rodrigues, S.; Bhageerutty, S.; He, F.J.; MacGregor, G.A. Nutritional Quality of Plant-Based Meat Products Available in the UK: A Cross-Sectional Survey. Nutrients 2021, 13, 4225. [Google Scholar] [CrossRef]
- Melville, H.; Shahid, M.; Gaines, A.; McKenzie, B.L.; Alessandrini, R.; Trieu, K.; Wu, J.H.Y.; Rosewarne, E.; Coyle, D.H. The Nutritional Profile of Plant-Based Meat Analogues Available for Sale in Australia. Nutr. Diet. 2023, 80, 211–222. [Google Scholar] [CrossRef]
- Bryngelsson, S.; Moshtaghian, H.; Bianchi, M.; Hallstrom, E. Nutritional Assessment of Plant-Based Meat Analogues on the Swedish Market. Int. J. Food Sci. Nutr. 2022, 73, 889–901. [Google Scholar] [CrossRef] [PubMed]
- Cole, E.; Goeler-Slough, N.; Cox, A.; Nolden, A. Examination of the Nutritional Composition of Alternative Beef Burgers Available in the United States. Int. J. Food Sci. Nutr. 2022, 73, 425–432. [Google Scholar] [CrossRef]
- Cutroneo, S.; Angelino, D.; Tedeschi, T.; Pellegrini, N.; Martini, D.; Grp, S.Y.W. Nutritional Quality of Meat Analogues: Results from the Food Labelling of Italian Products (FLIP) Project. Front. Nutr. 2022, 9, 852831. [Google Scholar] [CrossRef] [PubMed]
- Harnack, L.; Mork, S.; Valluri, S.; Weber, C.; Schmitz, K.; Stevenson, J.; Pettit, J. Nutrient Composition of a Selection of Plant-Based Ground Beef Alternative Products Available in the United States. J. Acad. Nutr. Diet. 2021, 121, 2401–2408. [Google Scholar] [CrossRef]
- Pointke, M.; Pawelzik, E. Plant-Based Alternative Products: Are They Healthy Alternatives? Micro- and Macronutrients and Nutritional Scoring. Nutrients 2022, 14, 601. [Google Scholar] [CrossRef]
- D’Alessandro, C.; Pezzica, J.; Bolli, C.; Di Nicola, A.; Falai, A.; Giannese, D.; Cupisti, A. Processed Plant-Based Foods for CKD Patients: Good Choice, but Be Aware. Int. J. Environ. Res. Public. Health 2022, 19, 6653. [Google Scholar] [CrossRef]
- Romao, B.; Botelho, R.B.A.; Nakano, E.Y.; Raposo, A.; Han, H.; Vega-Munoz, A.; Ariza-Montes, A.; Zandonadi, R.P. Are Vegan Alternatives to Meat Products Healthy? A Study on Nutrients and Main Ingredients of Products Commercialized in Brazil. Front. Public. Health 2022, 10, 900598. [Google Scholar] [CrossRef]
- Tonheim, L.E.; Austad, E.; Torheim, L.E.; Henjum, S. Plant-Based Meat and Dairy Substitutes on the Norwegian Market: Comparing Macronutrient Content in Substitutes with Equivalent Meat and Dairy Products. J. Nutr. Sci. 2022, 11, e9. [Google Scholar] [CrossRef] [PubMed]
- Petersen, T.; Hartmann, M.; Hirsch, S. Which Meat (Substitute) to Buy? Is Front of Package Information Reliable to Identify the Healthier and More Natural Choice? Food Qual. Prefer. 2021, 94, 104298. [Google Scholar] [CrossRef]
- Guess, N.; Klatt, K.; Wei, D.; Williamson, E.; Ulgenalp, I.; Trinidade, O.; Kusaslan, E.; Yildirim, A.; Gowers, C.; Guard, R.; et al. A Cross-Sectional Analysis of Products Marketed as Plant-Based Across the United States, United Kingdom, and Canada Using Online Nutrition Information. Curr. Dev. Nutr. 2023, 7, 100059. [Google Scholar] [CrossRef] [PubMed]
- Rizzolo-Brime, L.; Orta-Ramirez, A.; Puyol Martin, Y.; Jakszyn, P. Nutritional Assessment of Plant-Based Meat Alternatives: A Comparison of Nutritional Information of Plant-Based Meat Alternatives in Spanish Supermarkets. Nutrients 2023, 15, 1325. [Google Scholar] [CrossRef]
- Penna Franca, P.A.; Duque-Estrada, P.; da Fonseca e Sá, B.F.; van der Goot, A.J.; Pierucci, A.P.T.R. Meat Substitutes—Past, Present, and Future of Products Available in Brazil: Changes in the Nutritional Profile. Future Foods 2022, 5, 100133. [Google Scholar] [CrossRef]
- Gurung, I.; Tobi, R.; Leigh-Taylor, K.; Buszard, S.; Mackean, C.; English, A. The Food Foundation: Rethinking Plant-Based Meat Alternatives; UK Research and Innovation: Swindon, UK, 2024. [Google Scholar]
- Zhang, L.; Langlois, E.; Williams, K.; Tejera, N.; Omieljaniuk, M.; Finglas, P.; Traka, M.H. A Comparative Analysis of Nutritional Quality, Amino Acid Profile, and Nutritional Supplementations in Plant-Based Products and Their Animal-Based Counterparts in the UK. Food Chem. 2024, 448, 139059. [Google Scholar] [CrossRef]
- Ciobotaru, R.; Tas, A.A.; Khan, T.A. Healthiness of Meat-Based Products in Comparison to Their Plant-Based Alternatives in the UK Market: A Packaging Evaluation. Foods 2024, 13, 3346. [Google Scholar] [CrossRef]
- Gallani, V.; Klapp, A.-L. Building Bridges between Habit and Health. In An Investigation into the Nutritional Value of Plant-Based Meat and Milk Alternatives; 24AD; ProVeg International: Berlin, Germany, 2024. [Google Scholar]
- Lindberg, L.; Mulhall, S.; Woodside, J.; Walton, J.; Nugent, A. The Nutritional Profile of Plant-Based Meat Alternatives Compared with Meat Products: An Audit of Products Available in the UK and Ireland. Proc. Nutr. Soc. 2022, 81, E103. [Google Scholar] [CrossRef]
- Lindberg, L.; Woodside, J.V.; Vogan, H.; Campbell, N.; Fitzgerald, H.; Walton, J.; Nugent, A.P. Micronutrient Content of Plant-Based Meat Alternatives Available in the UK and Ireland: Product Audits (2021 and 2023). Proceedings 2023, 91, 256. [Google Scholar]
- Linberg, L.; Woodside, J.; Vogan, H.; Campbell, N.; Mulhal, S.; Fitzgerald, H.; Walton, J.; Nugent, A. A Product Audit of Plant-Based Meat Alternatives Available in the UK and Ireland in 2021 and 2023: Changes over Time. Proc. Nutr. Soc. 2023, 82, E273. [Google Scholar] [CrossRef]
- Lindberg, L.; Woodside, J.V.; Walton, J.; Nugent, A.P. An Audit of Plant-Based Meat Alternatives Available in the UK and Ireland. Ann. Nutr. Metab. 2023, 79, 858. [Google Scholar]
- Boukid, F.; Castellari, M. Veggie Burgers in the EU Market: A Nutritional Challenge? Eur. Food Res. Technol. 2021, 247, 2445–2453. [Google Scholar] [CrossRef] [PubMed]
- De Marchi, M.; Costa, A.; Pozza, M.; Goi, A.; Manuelian, C.L. Detailed Characterization of Plant-Based Burgers. Sci. Rep. 2021, 11, 2049. [Google Scholar] [CrossRef] [PubMed]
- Berardy, A.; Fresán, U.; Matos, R.A.; Clarke, A.; Mejia, A.; Jaceldo-Siegl, K.; Sabaté, J. Environmental Impacts of Foods in the Adventist Health Study-2 Dietary Questionnaire. Sustainability 2020, 12, 10267. [Google Scholar] [CrossRef]
- Coffey, A.A.; Lillywhite, R.; Oyebode, O. Meat versus Meat Alternatives: Which Is Better for the Environment and Health? A Nutritional and Environmental Analysis of Animal-Based Products Compared with Their Plant-Based Alternatives. J. Hum. Nutr. Diet. 2023, 36, 2147–2156. [Google Scholar] [CrossRef]
- Smetana, S.; Profeta, A.; Voigt, R.; Kircher, C.; Heinz, V. Meat Substitution in Burgers: Nutritional Scoring, Sensorial Testing, and Life Cycle Assessment. Future Foods 2021, 4, 100042. [Google Scholar] [CrossRef]
- Saget, S.; Costa, M.P.; Santos, C.S.; Vasconcelos, M.; Styles, D.; Williams, M. Comparative Life Cycle Assessment of Plant and b Eef-Base d Patties, Including Carbon Opportunity Costs. Sustain. Prod. Consum. 2021, 28, 936–952. [Google Scholar] [CrossRef]
- Saget, S.; Costa, M.; Santos, C.S.; Vasconcelos, M.W.; Gibbons, J.; Styles, D.; Williams, M. Substitution of Beef with Pea Protein Reduces the Environmental Footprint of Meat Balls Whilst Supporting Health and Climate Stabilisation Goals. J. Clean. Prod. 2021, 297, 126447. [Google Scholar] [CrossRef]
- Beacom, E.; Bogue, J.; Repar, L. Market-Oriented Development of Plant-Based Food and Beverage Products: A Usage Segmentation Approach. J. Food Prod. Mark. 2021, 27, 204–222. [Google Scholar] [CrossRef]
- Coppola, D. Grocery Market Share in Great Britain 2017–2021. Available online: https://www.statista.com/statistics/280208/grocery-market-share-in-the-united-kingdom-uk/ (accessed on 25 May 2024).
- Department of Health. Nutrient Profiling Technical Guidance; Department of Health: London, UK, 2011. [Google Scholar]
- Department of Health. FSA Guide to Creating a Front of Pack (FoP) Nutrition Label for Pre-Packed Products Sold through Retail Outlets; Department of Health: London, UK, 2016. [Google Scholar]
- European Commission. Nutrition Claims. Available online: https://food.ec.europa.eu/safety/labelling-and-nutrition/nutrition-and-health-claims/nutrition-claims_en#:~:text=SOURCE%20OF%20PROTEIN%20A%20claim%20that%20a%20food,the%20food%20is%20provided%20by%20protein.%20HIGH%20PROTEIN (accessed on 18 April 2024).
- European Food Safety Authority. Scientific Opinion on the Evaluation of Allergenic Foods and Food Ingredients for Labelling Purposes. EFSA J. 2014, 12, 3894. [Google Scholar] [CrossRef]
- Monteiro, C.A.; Cannon, G.; Lawrence, M.; Laura Da Costa Louzada, M.; Machado, P.P. Ultra-Processed Foods, Diet Quality, and Health Using the NOVA Classification System Prepared By; Food and Agriculture Organization: Rome, Italy, 2019. [Google Scholar]
- Roe, M.; Pinchen, H.; Church, S.; Finglas, P. McCance and Widdowson’s the Composition of Foods Seventh Summary Edition and Updated Composition of Foods Integrated Dataset. Nutr. Bull. 2015, 40, 36–39. [Google Scholar] [CrossRef]
- Finder, U.K. How Many Vegetarians and Vengans Are in the UK in 2024? Available online: https://www.finder.com/uk/stats-facts/uk-diet-trends (accessed on 20 November 2024).
- Kerslake, E.; Kemper, J.A.; Conroy, D. What’s Your Beef with Meat Substitutes? Exploring Barriers and Facilitators for Meat Substitutes in Omnivores, Vegetarians, and Vegans. Appetite 2022, 170, 105864. [Google Scholar] [CrossRef]
- International Food Information Council. Consumer Survey on Plant Alternatives to Meat Shows That Nutrition Facts Are More Influential than the Ingredients List; International Food Information Council: Washington, DC, USA, 2020. [Google Scholar]
- Andreani, G.; Sogari, G.; Marti, A.; Froldi, F.; Dagevos, H.; Martini, D. Plant-Based Meat Alternatives: Technological, Nutritional, Environmental, Market, and Social Challenges and Opportunities. Nutrients 2023, 15, 452. [Google Scholar] [CrossRef]
- Hoek, A.C.; Luning, P.A.; Weijzen, P.; Engels, W.; Kok, F.J.; de Graaf, C. Replacement of Meat by Meat Substitutes. A Survey on Person- and Product-Related Factors in Consumer Acceptance. Appetite 2011, 56, 662–673. [Google Scholar] [CrossRef]
- Van der Weele, C.; Feindt, P.; Jan van der Goot, A.; van Mierlo, B.; van Boekel, M. Meat Alternatives: An Integrative Comparison. Trends Food Sci. Technol. 2019, 88, 505–512. [Google Scholar] [CrossRef]
- Schösler, H.; de Boer, J.; Boersema, J.J. Can We Cut out the Meat of the Dish? Constructing Consumer-Oriented Pathways towards Meat Substitution. Appetite 2012, 58, 39–47. [Google Scholar] [CrossRef]
- Aschemann-Witzel, J.; Peschel, A.O. Consumer Perception of Plant-Based Proteins: The Value of Source Transparency for Alternative Protein Ingredients. Food Hydrocoll. 2019, 96, 20–28. [Google Scholar] [CrossRef]
- Lindberg, L.; McCann, R.R.; Smyth, B.; Woodside, J.V.; Nugent, A.P. The Environmental Impact, Ingredient Composition, Nutritional and Health Impact of Meat Alternatives: A Systematic Review. Trends Food Sci. Technol. 2024, 149, 104483. [Google Scholar] [CrossRef]
- Lima, M.; da Silva Junior, C.A.; Rausch, L.; Gibbs, H.K.; Johann, J.A. Demystifying Sustainable Soy in Brazil. Land Use Policy 2019, 82, 349–352. [Google Scholar] [CrossRef]
- Gasparri, N.I.; Grau, H.R.; Gutiérrez Angonese, J. Linkages between Soybean and Neotropical Deforestation: Coupling and Transient Decoupling Dynamics in a Multi-Decadal Analysis. Glob. Environ. Change 2013, 23, 1605–1614. [Google Scholar] [CrossRef]
- Efeca. The UK Soy Manifesto. Available online: https://www.efeca.com/uk-soy-manifesto/ (accessed on 13 January 2025).
- Fresán, U.; Mejia, M.A.; Craig, W.J.; Jaceldo-Siegl, K.; Sabaté, J. Meat Analogs from Different Protein Sources: A Comparison of Their Sustainability and Nutritional Content. Sustainability 2019, 11, 3231. [Google Scholar] [CrossRef]
- Svarc, P.L.; Jensen, M.B.; Langwagen, M.; Poulsen, A.; Trolle, E.; Jakobsen, J. Nutrient Content in Plant-Based Protein Products Intended for Food Composition Databases. J. Food Compos. Anal. 2022, 106, 104332. [Google Scholar] [CrossRef]
- Cocking, C.; Walton, J.; Kehoe, L.; Cashman, K.D.; Flynn, A. The Role of Meat in the European Diet: Current State of Knowledge on Dietary Recommendations, Intakes and Contribution to Energy and Nutrient Intakes and Status. Nutr. Res. Rev. 2020, 33, 181–189. [Google Scholar] [CrossRef]
- Kehoe, L.; O’Sullivan, E.; Cocking, C.; McNulty, B.A.; Nugent, A.P.; Cashman, K.D.; Flynn, A.; Walton, J. Fresh Beef and Lamb Consumption in Relation to Nutrient Intakes and Markers of Nutrition and Health Status among the Population Aged 5–90 Years in Ireland. Nutrients 2023, 15, 313. [Google Scholar] [CrossRef]
- Murphy, S.P.; Allen, L.H. Nutritional Importance of Animal Source Foods. J. Nutr. 2003, 133, 3932S–3935S. [Google Scholar] [CrossRef] [PubMed]
- Global Nutrition Report Country Nutrition Profiles. Available online: https://globalnutritionreport.org/resources/nutrition-profiles/ (accessed on 25 August 2024).
- Gupta, R.K.; Gangoliya, S.S.; Singh, N.K. Reduction of Phytic Acid and Enhancement of Bioavailable Micronutrients in Food Grains. J. Food Sci. Technol. 2015, 52, 676–684. [Google Scholar] [CrossRef] [PubMed]
- Rubio, N.R.; Xiang, N.; Kaplan, D.L. Plant-Based and Cell-Based Approaches to Meat Production. Nat. Commun. 2020, 11, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Derbyshire, E.; Ayoob, K.T. Mycoprotein: Nutritional and Health Properties. Nutr. Today 2019, 54, 7–15. [Google Scholar] [CrossRef]
- Department of Health & Social Care. Fortified Foods: Guidance to Compliance on European Regulation (EC) No. 1925/2006 on the Addition of Vitamins and Minerals and Certain Other Substances to Food; Department of Health & Social Care: London, UK, 2021. [Google Scholar]
- Taghian Dinani, S.; Zhang, Y.; Vardhanabhuti, B.; Jan van der Goot, A. Enhancing Textural Properties in Plant-Based Meat Alternatives: The Impact of Hydrocolloids and Salts on Soy Protein-Based Products. Curr. Res. Food Sci. 2023, 7, 100571. [Google Scholar] [CrossRef]
- Weinrich, R. Opportunities for the Adoption of Health-Based Sustainable Dietary Patterns: A Review on Consumer Research of Meat Substitutes. Sustainability 2019, 11, 4028. [Google Scholar] [CrossRef]
- University of Leeds. Helping Alternative Proteins Go Mainstream for a Sustainable Planet. Available online: https://environment.leeds.ac.uk/news/article/5835/helping-alternative-proteins-go-mainstream-for-a-sustainable-planet (accessed on 29 August 2024).
- St. Pierre, S.R.; Darwin, E.C.; Adil, D.; Aviles, M.C.; Date, A.; Dunne, R.A.; Lall, Y.; Parra Vallecillo, M.; Perez Medina, V.A.; Linka, K.; et al. The Mechanical and Sensory Signature of Plant-Based and Animal Meat. Sci. Food 2024, 8, 94. [Google Scholar] [CrossRef] [PubMed]
- Mertens, E.; Biesbroek, S.; Dofková, M.; Mistura, L.; D’Addezio, L.; Turrini, A.; Dubuisson, C.; Havard, S.; Trolle, E.; Geleijnse, J.M.; et al. Potential Impact of Meat Replacers on Nutrient Quality and Greenhouse Gas Emissions of Diets in Four European Countries. Sustainability 2020, 12, 6838. [Google Scholar] [CrossRef]
- Salomé, M.; Huneau, J.-F.; Le Baron, C.; Kesse-Guyot, E.; Fouillet, H.; Mariotti, F. Substituting Meat or Dairy Products with Plant-Based Substitutes Has Small and Heterogeneous Effects on Diet Quality and Nutrient Security: A Simulation Study in French Adults (INCA3). J. Nutr. 2021, 151, 2435–2445. [Google Scholar] [CrossRef]
- De las Heras-Delgado, S.; Shyam, S.; Cunillera, È.; Dragusan, N.; Salas-Salvadó, J.; Babio, N. Are Plant-Based Alternatives Healthier? A Two-Dimensional Evaluation from Nutritional and Processing Standpoints. Food Res. Int. 2023, 169, 112857. [Google Scholar] [CrossRef]
- Crimarco, A.; Springfield, S.; Petlura, C.; Streaty, T.; Cunanan, K.; Lee, J.; Fielding-Singh, P.; Carter, M.M.; Topf, M.A.; Wastyk, H.C.; et al. A Randomized Crossover Trial on the Effect of Plant-Based Compared with Animal-Based Meat on Trimethylamine-N-Oxide and Cardiovascular Disease Risk Factors in Generally Healthy Adults: Study with Appetizing Plantfood—Meat Eating Alternative Trial (SWAP-MEAT). Am. J. Clin. Nutr. 2020, 112, 1188–1199. [Google Scholar] [CrossRef]
- Bianchi, F.; Aveyard, P.; Astbury, N.M.; Cook, B.; Cartwright, E.; Jebb, S.A. Replacing Meat with Alternative Plant-Based Products (RE-MAPs): Protocol for a Randomised Controlled Trial of a Behavioural Intervention to Reduce Meat Consumption. BMJ Open 2019, 9, e027016. [Google Scholar] [CrossRef]
- Bottin, J.H.; Swann, J.R.; Cropp, E.; Chambers, E.S.; Ford, H.E.; Ghatei, M.A.; Frost, G.S. Mycoprotein Reduces Energy Intake and Postprandial Insulin Release without Altering Glucagon-like Peptide-1 and Peptide Tyrosine-Tyrosine Concentrations in Healthy Overweight and Obese Adults: A Randomised-Controlled Trial. Br. J. Nutr. 2016, 116, 360–374. [Google Scholar] [CrossRef] [PubMed]
- Douglas, S.M.; Lasley, T.R.; Leidy, H.J. Consuming Beef vs. Soy Protein Has Little Effect on Appetite, Satiety, and Food Intake in Healthy Adults. J. Nutr. 2015, 145, 1010–1016. [Google Scholar] [CrossRef]
- Pham, T.; Knowles, S.; Bermingham, E.; Brown, J.; Hannaford, R.; Cameron-Smith, D.; Braakhuis, A. Plasma Amino Acid Appearance and Status of Appetite Following a Single Meal of Red Meat or a Plant-Based Meat Analog: A Randomized Crossover Clinical Trial. Curr. Dev. Nutr. 2022, 6, nzac082. [Google Scholar] [CrossRef]
- Coelho, M.O.C.; Monteyne, A.J.; Dirks, M.L.; Finnigan, T.J.A.; Stephens, F.B.; Wall, B.T. Daily Mycoprotein Consumption for 1 Week Does Not Affect Insulin Sensitivity or Glycaemic Control but Modulates the Plasma Lipidome in Healthy Adults: A Randomised Controlled Trial. Br. J. Nutr. 2021, 125, 147–160. [Google Scholar] [CrossRef]
- Crimarco, A.; Landry, M.J.; Carter, M.M.; Gardner, C.D. Assessing the Effects of Alternative Plant-Based Meats v. Animal Meats on Biomarkers of Inflammation: A Secondary Analysis of the SWAP-MEAT Randomized Crossover Trial. J. Nutr. Sci. 2022, 11, e82. [Google Scholar] [CrossRef] [PubMed]
- Toribio-Mateas, M.A.; Bester, A.; Klimenko, N. Impact of Plant-Based Meat Alternatives on the Gut Microbiota of Consumers: A Real-World Study. Foods 2021, 10, 2040. [Google Scholar] [CrossRef] [PubMed]
- Gibbs, J.; Leung, G.-K. The Effect of Plant-Based and Mycoprotein-Based Meat Substitute Consumption on Cardiometabolic Risk Factors: A Systematic Review and Meta-Analysis of Controlled Intervention Trials. Dietetics 2023, 2, 104–122. [Google Scholar] [CrossRef]
- Nájera Espinosa, S.; Hadida, G.; Jelmar Sietsma, A.; Alae-Carew, C.; Turner, G.; Green, R.; Pastorino, S.; Picetti, R.; Scheelbeek, P. Mapping the Evidence of Novel Plant-Based Foods: A Systematic Review of Nutritional, Health, and Environmental Impacts in High-Income Countries. Nutr. Rev. 2024, nuae031. [Google Scholar] [CrossRef]
- James, W.H.M.; Lomax, N.; Birkin, M.; Collins, L.M. Targeted Policy Intervention for Reducing Red Meat Consumption: Conflicts and Trade-Offs. BMC Nutr. 2022, 8, 80. [Google Scholar] [CrossRef]
- Public Health England. NDNS: Results from Years 9 to 11 (Combined)—Statistical Summary; Public Health England: London, UK, 2020. [Google Scholar]
- Hay, S.I.; Abajobir, A.A.; Abate, K.H.; Abbafati, C.; Abbas, K.M.; Abd-Allah, F.; Abdulkader, R.S.; Abdulle, A.M.; Abebo, T.A.; Abera, S.F.; et al. Global, Regional, and National Disability-Adjusted Life-Years (DALYs) for 333 Diseases and Injuries and Healthy Life Expectancy (HALE) for 195 Countries and Territories, 1990–2016: A Systematic Analysis for the Global Burden of Disease Study 2016. Lancet 2017, 390, 1260–1344. [Google Scholar] [CrossRef]
- Newton, J.N.; Briggs, A.D.M.; Murray, C.J.L.; Dicker, D.; Foreman, K.J.; Wang, H.; Naghavi, M.; Forouzanfar, M.H.; Ohno, S.L.; Barber, R.M.; et al. Changes in Health in England, with Analysis by English Regions and Areas of Deprivation, 1990–2013: A Systematic Analysis for the Global Burden of Disease Study 2013. Lancet 2015, 386, 2257–2274. [Google Scholar] [CrossRef]
- Afshin, A.; Sur, P.J.; Fay, K.A.; Cornaby, L.; Ferrara, G.; Salama, J.S.; Mullany, E.C.; Abate, K.H.; Abbafati, C.; Abebe, Z.; et al. Health Effects of Dietary Risks in 195 Countries, 1990–2017: A Systematic Analysis for the Global Burden of Disease Study 2017. Lancet 2019, 393, 1958–1972. [Google Scholar] [CrossRef]
- Farsi, D.N.; Uthumange, D.; Munoz, J.M.; Commane, D.M. The Nutritional Impact of Replacing Dietary Meat with Meat Alternatives in the UK: A Modelling Analysis Using Nationally Representative Data. Br. J. Nutr. 2022, 127, 1731–1741. [Google Scholar] [CrossRef]
- Food and Agriculture Organization. Sustainable Healthy Diets: Guiding Principles; Food and Agriculture Organization: Rome, Italy, 2019. [Google Scholar]
Year, n | A-Score * | <12% Energy from Proteinβ | ≥12% Energy from Proteinβ | ≥20% Energy from Proteinβ | |
---|---|---|---|---|---|
MF Burgers | 2021 (n = 49) | 8.4 (4–19) | 18 30.6% | 7 14.3% | 27 55.1% |
2022 (n = 44) | 8.0 (4–19) | 15 34.1% | 6 13.6% | 23 52.3% | |
2023 (n = 56) | 7.8 (5–18) | 14 25% | 7 12.5% | 35 62.5% | |
MF Sausages | 2021 (n = 42) | 9.1 (5–17) | 1 2.4% | 7 16.7% | 34 81% |
2022 (n = 40) | 8.6 (5–17) | 1 2.5% | 9 22.5% | 30 75.0% | |
2023 (n = 45) | 8.8 (5–18) | 2 4.4% | 5 11.1% | 38 84.4% | |
MF Pastry products | 2021 (n = 19) | 13.6 (9–17) | 7 36.8% | 11 57.9% | 1 5.3% |
2022 (n = 15) | 12.7 (5–17) | 5 33.3% | 9 60.0% | 1 6.7% | |
2023 (n = 19) | 12.7 (5–18) | 9 47.4% | 9 47.4% | 1 5.3% | |
MF Bacon/slices | 2021 (n = 13) | 10.5 (5–16) | 0 0.0% | 3 23.1% | 10 76.9% |
2022 (n = 10) | 10.8 (6–14) | 0 0.0% | 2 20% | 8 80% | |
2023 (n = 26) | 11.0 (5.0–21) | 0 0.0% | 3 11.5% | 23 88.5% | |
MF Mince | 2021 (n =12) | 6.3 (1–14) | 0 0% | 1 8.3% | 11 91.7% |
2022 (n = 10) | 4.7 (1–10) | 0 0.0% | 0 0.0% | 10 100% | |
2023 (n = 12) | 5.2 (1–12) | 0 0.0% | 0 0.0% | 12 100% | |
MF Chicken | 2021 (n = 67) | 7.6 (2–14) | 3 4.5% | 15 22.4% | 49 73.1% |
2022 (n = 68) | 7.6 (3–14) | 3 4.4% | 19 27.9% | 46 67.6% | |
2023 (n = 84) | 7.0 (2–13) | 1 1.2% | 26 31% | 57 67.9% | |
FF Seafood | 2021 (n = 9) | 7.8 (5–13) | 4 44.4% | 3 33.3% | 2 22.2% |
2022 (n = 10) | 7.3 (5–11) | 5 50% | 3 30% | 2 20% | |
2023 (n = 16) | 6.6 (4–11) | 11 68.8% | 3 18.8% | 2 12.5% | |
MF Beef | 2021 (n = 13) | 8.5 (5–20) | 0 0.0% | 0 0.0% | 13 100% |
2022 (n = 8) | 6.9 (4–9) | 0 0.0% | 0 0.0% | 8 100% | |
2023 (n = 12) | 6.9 (4–10) | 0 0.0% | 0 0.0% | 12 100% | |
MF Meatballs | 2021 (n = 14) | 8.6 (4–14) | 0 0.0% | 0 0.0% | 14 100% |
2022 (n = 12) | 8.3 (4–14) | 0 0.0% | 0 0.0% | 12 100% | |
2023 (n = 14) | 7.4 (4–12) | 0 0.0% | 0 0.0% | 14 100% | |
Tofu/Tempeh | 2021 (n = 18) | 4.7 (0–10) | 0 0.0% | 3 16.7% | 15 83.3% |
2022 (n = 16) | 3.7 (0–10) | 0 0.0% | 1 6.3% | 15 93.8% | |
2023 (n = 17) | 3.3 (0–10) | 0 0.0% | 0 0.0% | 17 100% | |
MF Ready meals | 2021 (n = 42) | 5.7 (1–13) | 11 26.2% | 21 50.0% | 10 23.8% |
2022 (n = 44) | 6.0 (1.0–13.0) | 11 25.0% | 24 54.5% | 9 20.5% | |
2023 (n = 46) | 6.4 (1–13) | 10 21.7% | 17 63.0% | 7 15.2% | |
Other | 2021 (n = 19) | 6.5 (0–11) | 6 31.6% | 2 10.5% | 11 57.9% |
2022 (n = 15) | 6.3 (0–12) | 4 26.7% | 3 20.0% | 8 53.3% | |
2023 (n = 18) | 8.2 (0–19) | 2 11.1% | 5 27.8% | 11 61.1% | |
Vegetable-based dishes | 2021 (n = 9) | 4 (3–7) | 4 44.4% | 5 55.6% | 0 0.0% |
2022 (n = 7) | 3.9 (3–6) | 4 57.1% | 3 42.9% | 0 0.0% | |
2023 (n = 7) | 4.4 (3–10) | 3 42.9% | 4 57.1% | 0 0.0% | |
Legume-based dishes | 2021 (n = 15) | 3.1 (1–6) | 3 20.0% | 12 80.0% | 0 0.0% |
2022 (n = 13) | 3.8 (1–11) | 4 30.8% | 9 69.2% | 0 0.0% | |
2023 (n = 16) | 3.2 (1–6) | 4 25.0% | 12 75.0% | 0 0.0% | |
MF Pizza | 2021 (n = 4) | 9.3 (5–13) | 2 50.0% | 2 50.0% | 0 0.0% |
2022 (n = 6) | 9.0 (5–12) | 4 66.7% | 2 33.3% | 0 0.0% | |
2023 (n = 8) | 8.9 (5–12) | 7 87.5% | 1 12.5% | 0 0.0% | |
MF Sauce | 2021 (n = 5) | 4.2 (2–6) | 0 0.0% | 0 0.0% | 5 100% |
2022 (n = 3) | 4.0 (2.0–6.0) | 0 0.0% | 0 0.0% | 3 100% | |
2023 (n = 2) | 5.5 (5–6) | 0 0.0% | 0 0.0% | 2 100% |
Category | Year N, % | Vitamin B12 μg/100 g | No. Products ‘High in’ Vitamin B12 * N, % | Year N, % | Iron mg/100 g | No. Products ‘High in’ Iron * N, % |
---|---|---|---|---|---|---|
MF Burgers | 2021 2, 4% | 0.38 1 | 0 (0%) | 2021 3, 6% | 2.1 (2.1–4.1) | 0 (0%) |
2022 3, 7% | 0.8 (0.7–0.8) | 2 (67%) | 2022 3, 7% | 3.1 (2.3–4.6) | 1 (33%) | |
2023 4, 7% | 0.8 (0.7–1) | 3 (75%) | 2023 4, 7% | 3.9 (2.3–4.9) | 2 (50%) | |
MF Bacon/Slices | 2021 4, 31% | 0.8 (0.4–7.1) | 2 (50%) | 2021 4, 31% | 3.3 (2.1–10) | 1 (25%) |
2022 6, 60% | 0.7 (0.4–7.1) | 2 (33%) | 2022 6, 60% | 3.3 (2.1–10) | 2 (33%) | |
2023 8, 31% | 0.7 (0.3–8.3) | 3 (38%) | 2023 7, 27% | 3.8 (1.9–5.8) | 3 (43%) | |
MF Chicken | 2021 7, 10% | 0.4 (0.4–0.7) | 0 (0%) | 2021 7, 10% | 2.1 (2.1–4.0) | 0 (0%) |
2022 6, 9% | 0.6 (0.4–0.8) | 1 (17%) | 2022 6, 9% | 2.6 (2.1–3.8) | 0 (0%) | |
2023 13, 15% | 0.6 (0.4–1.4) | 3 (23%) | 2023 13, 15% | 3.7 (2.1–6.1) | 2 (15%) | |
MF Beef | 2021 3, 23% | 0.5 (0.4–2.4) | 1 (33%) | 2021 6, 46% | 2.95 (2.1–4.2) | 1 (17%) |
2022 2, 25% | - (0.5–2.4) 2 | 1 (50%) | 2022 4, 50% | 2.95 (2.5–3.3) | 0 (0%) | |
2023 5, 42% | 0.8 (0.6–2.4) | 3 (60%) | 2023 5, 42% | 4.7 (2.9–6.6) | 3 (60%) | |
Other | 2021 3, 16% | 0.4 (0.4–1.1) | 1 (33%) | - | - | - |
2023 4, 22% | 0.8 (0.5–1.0) | 3 (75%) | - | - | - |
Category | 2021 | n, (%) Products with ≥1 Allergen | 2022 | n, (%) Products with ≥1 Allergen | 2023 | n, (%) Products with ≥1 Allergen |
---|---|---|---|---|---|---|
MF Burgers | 19.6 (4–37) | 28 (57%) | 20.3 (4–37) | 23 (52%) | 19.4 (2–35) | 31 (55%) |
MF Sausages | 16.7 (7–33) | 15 (36%) | 17.3 (7–35) | 12 (30%) | 17.0 (2–34) | 14 (31%) |
MF Pastry | 15.3 (2–29) | 15 (79%) | 16.2 (2–29) | 12 (80%) | 19.4 (2–32) | 14 (74%) |
MF Bacon/slices | 12.1 (5–20) | 4 (31%) | 13.6 (5–24) | 3 (30%) | 16.4 (5–27) | 13 (50%) |
MF Mince | 11.7 (6–23) | 8 (67%) | 10.8 (7–19) | 6 (60%) | 14.8 (7–27) | 7 (58%) |
MF Chicken | 14.8 (2–31) | 32 (48%) | 17.0 (2–37) | 35 (51%) | 18.0 (2–37) | 48 (57%) |
MF Seafood | 17.8 (10–24) | 6 (67%) | 20.5 (10–38) | 4 (40%) | 16.9 (7–38) | 6 (38%) |
MF Beef | 14.0 (2–32) | 7 (54%) | 15.4 (4–32) | 4 (50%) | 13.5 (3–29) | 7 (58%) |
MF Meatballs | 18.1 (8–30) | 7 (50%) | 19.6 (2–30) | 6 (50%) | 20.8 (8–31) | 9 (64%) |
Tofu/tempeh | 5.9 (1–23) | 12 (67%) | 6 (1–24) | 11 (69%) | 5.8 (1–28) | 12 (71%) |
MF Ready-meals | 19.9 (2–46) | 13 (31%) | 20.9 (2–46) | 18 (41%) | 19.9 (2–35) | 18 (39%) |
Other | 18.2 (3–33) | 9 (47%) | 15.7 (3–27) | 5 (33%) | 17.6 (9–35) | 5 (33%) |
Vegetable-based dishes | 24.7 (20–32) | 2 (22%) | 26.3 (20–32) | 2 (29%) | 21 (3–36) | 1 (14%) |
Legume-based dishes | 29.3 (16–46) | 4 (27%) | 29.8 (17–45) | 3 (23%) | 22.1 (4–39) | 7 (44%) |
MF Pizza | 19.3 (6–26) | 3 (75%) | 19.5 (8–26) | 5 (83%) | 20.0 (14–26) | 8 (100%) |
MF Sauce | 9.4 (2–25) | 2 (40%) | 13.7 (5–25) | 0 (0%) | 13.5 (11–16) | 1 (50%) |
2021 | 2022 | 2023 | |||
---|---|---|---|---|---|
Ingredients | |||||
Frequency | Description | Frequency | Description | Frequency | Description |
253 | Salt | 256 | Salt | 310 | Salt |
230 | Water | 230 | Water | 299 | Water |
185 | Rapeseed Oil | 181 | Rapeseed Oil | 237 | Rapeseed Oil |
120 | Sunflower Oil | 111 | Sunflower Oil | 133 | Yeast extract |
120 | Onion | 106 | Yeast extract | 118 | Onion Powder |
117 | Yeast extract | 105 | Onion | 117 | Onion |
112 | Natural Flavourings | 92 | Onion Powder | 114 | Wheat Flour |
89 | Onion Powder | 82 | Black Pepper | 104 | Dextrose |
84 | Black Pepper | 79 | Wheat Flour | 96 | Natural Flavourings |
83 | Wheat Flour | 78 | Sugar | 92 | Sugar |
Additives | |||||
170 | Methyl cellulose | 101 | Calcium carbonate | 142 | Methyl cellulose |
167 | Calcium carbonate | 89 | Methyl cellulose | 83 | Calcium carbonate |
26 | Calcium acetate | 25 | Sulphites | 42 | Plain caramel |
16 | Citric acid | 14 | Lactic acid | 29 | Citric acid |
16 | Carrageenan | 11 | Calcium acetate | 28 | Calcium acetate |
15 | Pectins | 11 | Citric acid | 22 | Sulphites |
14 | Sodium alginate | 10 | Carrageenan | 21 | Carrageenan |
13 | Sodium metabisulphite | 8 | Potassium lactate | 20 | Lactic acid |
9 | Potassium sorbate | 7 | Xanthan gum | 15 | Sodium alginate |
9 | Potassium chloride | 7 | Sodium alginate | 13 | Potassium lactate |
7 | Caramelised sugar powder |
Burgers | Sausages | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
PBMA (n = 56) | MB (n = 8) | p Value | PBMA (n = 45) | MB (n = 11) | p Value | |||||
Mean (SD) | Median (IQR) | Mean (SD) | Median (IQR) | Mean (SD) | Median (IQR) | Mean (SD) | Median (IQR) | |||
Energy (kcal) | 206.6 (40.5) | 205.5 (176.0–235.3) | 280.6 (40.5) | 289.5 (238.3–318.8) | <0.001 1 | 199.8 | 198.0 (155.0–221.0) | 249.6 | 275.0 (160.0–308.0) | 0.03 2 |
Protein (g) | 12.0 | 12.5 (5.8–17.0) | 21.2 | 21.1 (16.2–26.1) | <0.001 2 | 12.6 (3.8) | 11.3 (9.6–16.0) | 15.0 (2.0) | 14.5 (13.8–16.2) | 0.06 1 |
Fat (g) | 10.5 (4.4) | 10.0 (7.1–14.0) | 20.0 (4.5) | 21.1 (15.3–24.3) | <0.001 1 | 11.1 | 11.0 (6.2–13.2) | 17.8 | 21.1 (6.1–23.9) | <0.01 2 |
Saturates (g) | 2.1 | 1.1 (0.7–2.1) | 7.8 | 8.4 (5.3–10.7) | <0.001 2 | 2.2 | 1.2 (1.0–3.6) | 6.5 | 8.0 (2.2–8.5) | <0.001 2 |
CHO (g) | 14.0 | 13.4 (6.4–21.9) | 4.3 | 1.1 (0.1–7.6) | 0.001 2 | 10.2 | 10.0 (5.7–14.0) | 7.8 | 9.6 (2.6–10.7) | 0.13 2 |
Sugars (g) | 1.8 | 1.4 (0.7–2.6) | 1.0 | 0.9 (0.1–1.8) | 0.09 2 | 1.6 | 1.3 (0.6–2.5) | 1.8 | 1.5 (0.9–2.8) | 0.49 2 |
Fibre (g) | 4.2 | 4.8 (2.1–6.2) | 0.2 | 0.7 (0.4–0.7) | <0.0012 | 4.6 | 4.6 (3.3–6.4) | 2.0 | 4.6 (3.3–7.3) | <0.001 2 |
Salt (g) | 1.1 (0.3) | 1.1 (0.9–1.3) | 0.3 (0.1) | 0.9 (0.4–1.1) | 0.021 | 1.4 | 1.3 (1.1–1.5) | 1.5 | 1.4 (1.3–1.6) | 0.07 2 |
Total A points | 7.8 | 7.5 (5.0–9.0) | 13.4 | 12.0 (10.3–17.5) | <0.0012 | 8.8 | 8.0 (7.0–10.0) | 14.8 | 17.0 (11.0–17.0) | <0.0012 |
Bacon/Slices | Mince | |||||||||
PBMA (n = 26) | MB (n = 20) | p Value | PBMA (n = 12) | MB (n = 12) | p Value | |||||
Mean (SD) | Median (IQR) | Mean (SD) | Median (IQR) | Mean (SD) | Median (IQR) | Mean (SD) | Median (IQR) | |||
Energy (kcal) | 194.1 | 195.5 (143.8–223.3) | 273.1 | 284.5 (221.5–311.5) | <0.0012 | 166.0 (67.5) | 156.0 (95.3–235.0) | 192.4 (42.5) | 200.0 (145.3–221.0) | 0.27 1 |
Protein (g) | 19.3 | 17.7 (14.0–25.3) | 23.0 | 23.8 (19.3–24.7) | 0.062 | 18.7 (4.7) | 19.0 (13.5–22.5) | 21.1 (4.1) | 21.4 (19.2–24.4) | 0.19 1 |
Fat (g) | 9.1 | 7.4 (5.0–12.2) | 20.0 | 21.1 (16.1-23.5) | <0.0012 | 6.7 | 3.5 (1.7–11.7) | 11.9 | 12.8 (9.8–15.7) | 0.04 2 |
Saturates (g) | 1.6 | 0.9 (0.6–1.5) | 7.4 | 8.0 (6.1–8.7) | <0.0012 | 1.5 | 0.7 (0.4–2.6) | 5.2 | 5.8 (3.6–6.8) | <0.001 2 |
CHO (g) | 6.3 | 5.8 (3.7–8.0) | 0.2 | 0.0 (0.0–0.0) | <0.0012 | 5.5 | 5.7 (2.3–7.4) | 0.2 | 0.0 (0.0–0.0) | <0.001 2 |
Sugars (g) | 1.7 | 1.3 (0.8–2.6) | 0.2 | 0.0 (0.0–0.0) | <0.0012 | 1.0 | 0.7 (0.1–2.1) | 0.1 | 0.0 (0.0–0.0) | <0.001 2 |
Fibre (g) | 5.6 | 5.3 (4.3–6.9) | 0.0 | 0.0 (0.0–0.0) | <0.0012 | 4.8 | 5.4 (2.7–2.1) | 0.0 | 0.0 (0.0–0.0) | <0.001 2 |
Salt (g) | 2.2 (0.8) | 2.2 (1.5–2.8) | 3.5 (0.7) | 3.5 (2.9–4.1) | <0.0011 | 0.7 | 0.8 (0.2–0.9) | 0.2 | 0.2 (0.2–0.2) | 0.05 2 |
Total A points | 11.0 (3.8) | 11.0 (8.0–13.0) | 20.1 (3.5) | 21.0 (18.3–22.5) | <0.0011 | 5.2 (3.6) | 5.5 (1.5–7.5) | 6.8 (2.8) | 7.0 (5.0–8.0) | 0.22 1 |
Seafood | Beef | |||||||||
PBMA (n = 16) | MB (n = 14) | p Value | PBMA (n = 12) | MB (n = 8) | p Value | |||||
Mean (SD) | Median (IQR) | Mean | Median (IQR) | Mean (SD) | Median (IQR) | Mean (SD) | Median (IQR) | |||
Energy (kcal) | 213.7 | 216.5 (185.3–245.0) | 188.4 | 226.0 (99.5–240.0) | 0.76 2 | 162.0 (65.4) | 150.5 (105.0–207.8) | 177.6 (20.1) | 184.0 (160.8–191.0) | 0.52 1 |
Protein (g) | 5.9 | 4.8 (3.2–7.8) | 17.5 | 16.8 (13.0–23.0) | <0.001 2 | 18.0 | 15.5 (13.5–21.7) | 26.7 | 28.4 (22.9–28.7) | 0.004 2 |
Fat (g) | 10.4 | 9.7 (7.5–12.0) | 8.6 | 10.5 (0.8–14.7) | 0.82 2 | 5.9 (3.9) | 5.5 (2.8–9.6) | 7.9 (1.0) | 7.9 (7.2–8.7) | 0.12 1 |
Saturates (g) | 1.4 | 1.2 (0.7–2.0) | 2.0 | 1.4 (0.2–1.8) | 0.95 2 | 1.5 (1.4) | 1.1 (0.6–2.0) | 3.6 (0.5) | 3.6 (3.3–3.9) | <0.001 1 |
CHO (g) | 22.2 | 24.3 (19.3–27.3) | 12.4 | 15.1 (0.0–19.8) | <0.001 2 | 6.8 | 6.4 (3.0–8.6) | 0.0 | 0.0 (0.0–0.0) | <0.001 2 |
Sugars (g) | 2.6 | 2.1 (1.2–2.7) | 0.9 | 1.0 (0.0–1.3) | 0.01 2 | 1.4 | 1.2 (0.5–2.1) | 0.0 | 0.0 (0.0–0.0) | <0.001 2 |
Fibre (g) | 4.2 (3.9) | 3.0 (2.3–4.2) | 0.9 (0.8) | 0.5 (0.0–1.8) | <0.001 2 | 4.4 (2.2) | 4.7 (2.7–5.4) | - | - | - |
Salt (g) | 0.9 (0.3) | 0.9 (0.7–1.2) | 0.6 (0.3) | 0.4 (0.3–0.8) | <0.01 1 | 1.1 | 1.1 (1.0–1.3) | 0.2 | 0.2 (0.1–0.2) | <0.001 2 |
Total A points | 6.6 (1.9) | 6.5 (5.0–8.0) | 6.2 (3.5) | 6.5 (2.0–9.3) | 0.70 1 | 6.9 (2.0) | 6.5 (6.0–8.8) | 14.8 (0.9) | 15.0 (14.3–15.0) | <0.001 1 |
Pastry/Pies | Chicken | |||||||||
PBMA(n = 19) | MB(n = 5) | p Value | PBMA(n = 84) | MB(n = 4) | p Value | |||||
Mean (SD) | Median (IQR) | Mean (SD) | Median (IQR) | Mean (SD) | Median (IQR) | Mean (SD) | Median (IQR) | |||
Energy (kcal) | 290.1 (49.0) | 288.0 (267.0–316.0) | 336.4 (51.6) | 352.0 (282.5–382.5) | 0.08 1 | 205.7 (57.6) | 205.0 (164.8–252.8) | 157.3 | 154.5 (147.3–170.0) | <0.001 1 |
Protein (g) | 9.5 (2.1) | 9.6 (7.5–11.2) | 8.4 (1.5) | 8.4 (6.9-9.9) | 0.291 | 14.4 | 13.5 (11.0-17.1) | 30.1 | 29.8 (29.1–31.5) | <0.001 2 |
Fat (g) | 15.1 (3.6) | 14.7 (13.2–16.4) | 23.2 (4.6) | 24.1 (18.5–27.4) | <0.001 1 | 9.8 | 9.5 (5.8–14.5) | 4.1 | 3.9 (2.4–6.0) | 0.01 2 |
Saturates (g) | 6.1 | 6.2 (5.2–6.7) | 9.3 | 10.1 (7.8–10.5) | 0.001 2 | 1.4 | 1.2 (0.8–1.6) | 0.8 | 0.8 (0.2–0.9) | 0.03 2 |
CHO (g) | 27.6 (4.8) | 29.0 (23.1–30.0) | 26.0 (1.5) | 25.7 (24.8–27.4) | 0.49 1 | 12.6 | 12.6 (4.7–19.1) | 0.0 | 0.0 (0.0–0.0) | <0.001 2 |
Sugars (g) | 2.1 (0.6) | 2.1 (1.8–2.6) | 1.9 (0.4) | 2.1 (1.4–2.2) | 0.34 1 | 1.4 | 1.0 (0.5–1.8) | 0.0 | 0.0 (0.0–0.0) | <0.001 2 |
Fibre (g) | 3.0 (0.8) | 3.0 (2.3–3.6) | 3.0 (0.4) | 2.9 (2.7–3.4) | 0.96 1 | 4.8 | 5.0 (3.3–6.4) | 0.0 | 0.0 (0.0–0.0) | <0.001 2 |
Salt (g) | 1.0 (0.3) | 1.0 (0.8–1.2) | 1.0 (0.4) | 1.2 (0.6–1.4) | 0.82 1 | 1.0 | 1.0 (0.8–1.3) | 0.1 | 0.2 (0.1–0.2) | <0.001 2 |
Total A points | 12.7 (2.7) | 13.0 (11.0–14.0) | 20.6 (2.2) | 20.0 (19.0–22.5) | <0.0011 | 7.0 | 7.0 (6.0-8.0) | 4.0 | 1.5 (1.0–9.5) | 0.10 2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lindberg, L.; Woodside, J.V.; Fitzgerald, H.; Campbell, N.; Vogan, H.; Kelly, C.; Robinson, M.; Nugent, A.P. Plant-Based Meat Alternatives on the Island of Ireland: Changes in the Market and Comparisons with Conventional Meat. Foods 2025, 14, 903. https://doi.org/10.3390/foods14050903
Lindberg L, Woodside JV, Fitzgerald H, Campbell N, Vogan H, Kelly C, Robinson M, Nugent AP. Plant-Based Meat Alternatives on the Island of Ireland: Changes in the Market and Comparisons with Conventional Meat. Foods. 2025; 14(5):903. https://doi.org/10.3390/foods14050903
Chicago/Turabian StyleLindberg, Leona, Jayne V. Woodside, Hannah Fitzgerald, Niamh Campbell, Hannah Vogan, Ciara Kelly, Mehrnoush Robinson, and Anne P. Nugent. 2025. "Plant-Based Meat Alternatives on the Island of Ireland: Changes in the Market and Comparisons with Conventional Meat" Foods 14, no. 5: 903. https://doi.org/10.3390/foods14050903
APA StyleLindberg, L., Woodside, J. V., Fitzgerald, H., Campbell, N., Vogan, H., Kelly, C., Robinson, M., & Nugent, A. P. (2025). Plant-Based Meat Alternatives on the Island of Ireland: Changes in the Market and Comparisons with Conventional Meat. Foods, 14(5), 903. https://doi.org/10.3390/foods14050903