Evaluation of the Gelation Characteristics and Printability of Edible Filamentous Fungi Flours and Protein Extracts
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Flour Processing and Protein Extraction
2.3. Material Characterization
2.3.1. Protein Content
2.3.2. SDS-PAGE
2.3.3. ATR-FTIR
2.3.4. Particle Size and Zeta Potential Analysis
2.3.5. Color
2.4. Minimum Gelation Concentration
2.5. Rheology
2.6. Three-Dimensional Bioprinting
2.7. Texture Profile Analysis
3. Results and Discussion
3.1. Flour Processing, Protein Extraction, and Color
3.2. SDS-PAGE Protein Characterization
3.3. ATR-FTIR
3.4. Zeta Potential and Particle Size of Flours and Protein Extracts
3.5. Hydrated Flour and Extract Color and Minimum Gelation Concentrations
3.6. Rheology Behavior
3.7. Three-Dimensional Bioprinting of Fungal Gels
3.8. Texture Profile Analysis of Printed Constructs
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AF | A. awamori flour |
AP | A. awamori protein extract |
OF | P. ostreatus, oyster mushroom, flour |
OP | P. ostreatus, oyster mushroom, protein extract |
WF | A. auricula-judae, wood ear mushroom, flour |
Appendix A
Material | 15% | 20% | 25% |
---|---|---|---|
A. awamori protein extract | 0.52 | 0.74 | 0.99 |
A. awamori flour | 0.26 | 0.37 | 0.49 |
P. ostreatus protein extract | 0.45 | 0.64 | 0.86 |
P. ostreatus flour | 0.23 | 0.32 | 0.43 |
A. auricula-judae flour | 0.05 | 0.07 | 0.10 |
References
- Henchion, M.; Hayes, M.; Mullen, A.M.; Fenelon, M.; Tiwari, B. Future protein supply and demand: Strategies and factors influencing a sustainable equilibrium. Foods 2017, 6, 53. [Google Scholar] [CrossRef] [PubMed]
- Chang, S.T.; Wasser, S.P. The cultivation and environmental impact of mushrooms. In Oxford Research Encyclopedia of Environmental Science; Oxford University Press: Oxford, UK, 2017. [Google Scholar]
- Schweiggert-Weisz, U.; Eisner, P.; Bader-Mittermaier, S.; Osen, R. Food proteins from plants and fungi. Curr. Opin. Food Sci. 2020, 32, 156–162. [Google Scholar] [CrossRef]
- Lonchamp, J.; Akintoye, M.; Clegg, P.S.; Euston, S.R. Functional fungal extracts from the Quorn fermentation co-product as novel partial egg white replacers. Eur. Food Res. Technol. 2020, 246, 69–80. [Google Scholar] [CrossRef]
- Zeng, B.; Nilsson, K.; Teixeira, P.G.; Bergenståhl, B. Study of mycoprotein extraction methods and its functional properties. Colloids Surf. A Physicochem. Eng. Asp. 2023, 659, 130800. [Google Scholar] [CrossRef]
- Lonchamp, J.; Clegg, P.; Euston, S.R. Foaming, emulsifying and rheological properties of extracts from a co-product of the Quorn fermentation process. Eur. Food Res. Technol. 2019, 245, 1825–1839. [Google Scholar] [CrossRef]
- Tomašević, I.; Putnik, P.; Valjak, F.; Pavlić, B.; Šojić, B.; Bebek Markovinović, A.; Bursać Kovačević, D. 3D printing as novel tool for fruit-based functional food production. Curr. Opin. Food Sci. 2021, 41, 138–145. [Google Scholar] [CrossRef]
- Derossi, A.; Caporizzi, R.; Azzollini, D.; Severini, C. Application of 3D printing for customized food. A case on the development of a fruit-based snack for children. J. Food Eng. 2018, 220. [Google Scholar] [CrossRef]
- Xing, X.; Chitrakar, B.; Hati, S.; Xie, S.; Li, H.; Li, C.; Liu, Z.; Mo, H. Development of black fungus-based 3D printed foods as dysphagia diet: Effect of gums incorporation. Food Hydrocoll. 2022, 123, 107173. [Google Scholar] [CrossRef]
- Handral, H.; Hua Tay, S.; Wan Chan, W.; Choudhury, D. 3D Printing of cultured meat products. Crit. Rev. Food Sci. Nutr. 2022, 62, 272–281. [Google Scholar] [CrossRef]
- Barzee, T.J.; El Mashad, H.M.; Cao, L.; Chio, A.; Pan, Z.; Zhang, R. Cell-cultivated food production and processing: A review. Food Bioeng. 2022, 1, 4–25. [Google Scholar] [CrossRef]
- Kang, D.-H.; Louis, F.; Liu, H.; Shimoda, H.; Nishiyama, Y.; Nozawa, H.; Kakitani, M.; Takagi, D.; Kasa, D.; Nagamori, E.; et al. Engineered whole cut meat-like tissue by the assembly of cell fibers using tendon-gel integrated bioprinting. Nat. Commun. 2021, 12, 5059. [Google Scholar] [CrossRef] [PubMed]
- Alasibi, S.; Kazir, M.; Israel, Á.; Livney, Y.D. Algal protein-based 3D-printed fish-analogs as a new approach for sustainable seafood. Curr. Res. Food Sci. 2024, 9, 100905. [Google Scholar] [CrossRef] [PubMed]
- Gurel, M.; Rathod, N.; Cabrera, L.Y.; Voyton, S.; Yeo, M.; Ozogul, F.; Ozbolat, I.T. A narrative review: 3D bioprinting of cultured muscle meat and seafood products and its potential for the food industry. Trends Food Sci. Technol. 2024, 152, 104670. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Liu, S. 3D printing of soy protein-and gluten-based gels facilitated by thermosensitive cocoa butter in a model study. ACS Food Sci. Technol. 2021, 1, 1990–1996. [Google Scholar] [CrossRef]
- Santhapur, R.; Jayakumar, D.; McClements, D.J. Formation and Characterization of Mycelium–Potato Protein Hybrid Materials for Application in Meat Analogs or Substitutes. Foods 2024, 13, 4109. [Google Scholar] [CrossRef]
- Bhardwaj, A.; Vasselli, J.; Lucht, M.; Pei, Z.; Shaw, B.; Grasley, Z.; Wei, X.; Zou, N. 3D Printing of Biomass-Fungi Composite Material: A Preliminary Study. Manuf. Lett. 2020, 24, 96–99. [Google Scholar] [CrossRef]
- Cascone, S.; Lamberti, G. Hydrogel-based commercial products for biomedical applications: A review. Int. J. Pharm. 2020, 573, 118803. [Google Scholar] [CrossRef]
- Dobrinčić, A.; Balbino, S.; Zorić, Z.; Pedisić, S.; Bursać Kovačević, D.; Elez Garofulić, I.; Dragović-Uzelac, V. Advanced technologies for the extraction of marine brown algal polysaccharides. Mar. Drugs 2020, 18, 168. [Google Scholar] [CrossRef]
- Mariod, A.A.; Fadul, H. Gelatin, source, extraction and industrial applications. Acta Sci. Pol. Technol. Aliment. 2013, 12, 135–147. [Google Scholar]
- Muñoz, G.; Valencia, C.; Valderruten, N.; Ruiz-Durántez, E.; Zuluaga, F. Extraction of chitosan from Aspergillus niger mycelium and synthesis of hydrogels for controlled release of betahistine. React. Funct. Polym. 2015, 91, 1–10. [Google Scholar] [CrossRef]
- Bomkamp, C.; Skaalure, S.C.; Fernando, G.F.; Ben-Arye, T.; Swartz, E.W.; Specht, E.A. Scaffolding biomaterials for 3D cultivated meat: Prospects and challenges. Adv. Sci. 2022, 9, 2102908. [Google Scholar] [CrossRef]
- Teo, Y.X.; Lee, K.Y.; Goh, C.J.H.; Wang, L.C.; Sobota, R.M.; Chiam, K.-H.; Du, C.; Wan, A.C. Fungus-derived protein particles as cell-adhesive matrices for cell-cultivated food. npj Sci. Food 2023, 7, 34. [Google Scholar] [CrossRef] [PubMed]
- Gravel, A.; Doyen, A. The use of edible insect proteins in food: Challenges and issues related to their functional properties. Innov. Food Sci. Emerg. Technol. 2020, 59, 102272. [Google Scholar] [CrossRef]
- Singh, P.; Kumar, R.; Sabapathy, S.; Bawa, A. Functional and edible uses of soy protein products. Compr. Rev. Food Sci. Food Saf. 2008, 7, 14–28. [Google Scholar] [CrossRef]
- Shanthakumar, P.; Klepacka, J.; Bains, A.; Chawla, P.; Dhull, S.B.; Najda, A. The current situation of pea protein and its application in the food industry. Molecules 2022, 27, 5354. [Google Scholar] [CrossRef]
- Falowo, A.B.; Mukumbo, F.E.; Idamokoro, E.M.; Lorenzo, J.M.; Afolayan, A.J.; Muchenje, V. Multi-functional application of Moringa oleifera Lam. in nutrition and animal food products: A review. Food Res. Int. 2018, 106, 317–334. [Google Scholar] [CrossRef]
- Brouwer, P.; Nierop, K.G.J.; Huijgen, W.J.J.; Schluepmann, H. Aquatic weeds as novel protein sources: Alkaline extraction of tannin-rich Azolla. Biotechnol. Rep. 2019, 24, e00368. [Google Scholar] [CrossRef]
- Tamayo Tenorio, A.; Kyriakopoulou, K.E.; Suarez-Garcia, E.; van den Berg, C.; van der Goot, A.J. Understanding differences in protein fractionation from conventional crops, and herbaceous and aquatic biomass—Consequences for industrial use. Trends Food Sci. Technol. 2018, 71, 235–245. [Google Scholar] [CrossRef]
- Aime Roger, R.; Rawdkuen, S. Properties of Moringa oleifera leaf protein from alkaline−acid extraction. Food Appl. Biosci. J. 2020, 8, 43–67. [Google Scholar]
- Cao, L.; Barzee, T.J.; El Mashad, H.M.; Pan, Z.; Zhang, R. Potential of utilizing almond hull extract for filamentous fungi production by submerged cultivation. Food Bioeng. 2024, 3, 3–13. [Google Scholar] [CrossRef]
- Barzee, T.J.; Cao, L.; Pan, Z.; Zhang, R. Fungi for future foods. J. Future Foods 2021, 1, 25–37. [Google Scholar] [CrossRef]
- Bauer Petrovska, B. Protein fraction in edible Macedonian mushrooms. Eur. Food Res. Technol. 2001, 212, 469–472. [Google Scholar] [CrossRef]
- Li, H.; Hao, Y.-P.; Dai, Y.; Chen, Z.-Z.; Ping, Y.-L.; Zhao, B.-B. Effects of protein-polysaccharide extracted from Auricularia auricula-judae mushroom on the quality characteristics of Chinese wheat noodles. LWT 2023, 182, 114783. [Google Scholar] [CrossRef]
- Talukdar, S.; Barzee, T.J. Fungal-assisted immobilization of microalgae for simultaneous harvesting and product customization: Effects of geometry, loading, and microalgae concentration. Algal Res. 2023, 74, 103242. [Google Scholar] [CrossRef]
- D7481-18; Standard Test Methods for Determining Loose and Tapped Bulk Densities of Powders Using a Graduated Cylinder. ASTM: West Conshohocken, PA, USA, 2018.
- Laemmli, U.K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 1970, 227, 680–685. [Google Scholar] [CrossRef]
- Thermo Scientific Instructions. Halt Protease Inhibitor Single-Use Cocktail EDTA-Free; Thermo Scientific Instructions: Waltham, MA, USA, 2014; p. 78425. [Google Scholar]
- Movasaghi, Z.; Rehman, S.; ur Rehman, D.I. Fourier transform infrared (FTIR) spectroscopy of biological tissues. Appl. Spectrosc. Rev. 2008, 43, 134–179. [Google Scholar] [CrossRef]
- Hunter, J.R.; Qiao, Q.; Zhang, Y.; Shao, Q.; Crofcheck, C.; Shi, J. Green solvent mediated extraction of micro-and nano-plastic particles from water. Sci. Rep. 2023, 13, 10585. [Google Scholar] [CrossRef]
- Schindelin, J.; Arganda-Carreras, I.; Frise, E.; Kaynig, V.; Longair, M.; Pietzsch, T.; Preibisch, S.; Rueden, C.; Saalfeld, S.; Schmid, B.; et al. Fiji: An open-source platform for biological-image analysis. Nat. Methods 2012, 9, 676–682. [Google Scholar] [CrossRef]
- Ma, T.; Xiong, Y.L.; Jiang, J. Calcium-aided fabrication of pea protein hydrogels with filler emulsion particles coated by pH12-shifting and ultrasound treated protein. Food Hydrocoll. 2022, 125, 107396. [Google Scholar] [CrossRef]
- Cavaille, D.; Combes, D. Effect of temperature and pressure on yeast invertase stability: A kinetic and conformational study. J. Biotechnol. 1995, 43, 221–228. [Google Scholar] [CrossRef]
- Cruz-Solorio, A.; Villanueva-Arce, R.; Garín-Aguilar, M.E.; Leal-Lara, H.; Valencia-del Toro, G. Functional properties of flours and protein concentrates of 3 strains of the edible mushroom Pleurotus ostreatus. J. Food Sci. Technol. 2018, 55, 3892–3901. [Google Scholar] [CrossRef] [PubMed]
- Pavithra, M.; Sridhar, K.; Karun, N. A note on functional properties of two edible wild mushrooms. Int. J. Agric. Sci. Technol 2020, 16, 1165–1174. [Google Scholar]
- Badjona, A.; Cherono, B.; Bradshaw, R.; Dubey, B. Gelation and rheological properties of ultrasound-extracted faba bean protein: A comparative study with commercial plant proteins. Food Hydrocoll. 2025, 162, 110997. [Google Scholar] [CrossRef]
- McClements, D.J. Modeling the rheological properties of plant-based foods: Soft matter physics principles. Sustain. Food Proteins 2023, 1, 101–132. [Google Scholar] [CrossRef]
- Zhang, Y.; Lee, A.Y.; Pojchanun, K.; Lee, C.P.; Zhou, A.; An, J.; Hashimoto, M.; Tan, U.-X.; Leo, C.H.; Wong, G. Systematic Engineering approach for optimization of multi-component alternative protein-fortified 3D printing food Ink. Food Hydrocoll. 2022, 131, 107803. [Google Scholar] [CrossRef]
- Xu, X.-L.; Han, M.-Y.; Fei, Y.; Zhou, G.-H. Raman spectroscopic study of heat-induced gelation of pork myofibrillar proteins and its relationship with textural characteristic. Meat Sci. 2011, 87, 159–164. [Google Scholar] [CrossRef]
- Paredes, J.; Cortizo-Lacalle, D.; Imaz, A.M.; Aldazabal, J.; Vila, M. Application of texture analysis methods for the characterization of cultured meat. Sci. Rep. 2022, 12, 3898. [Google Scholar] [CrossRef]
- Mora-Escobedo, R.; Robles-Ramírez, M.d.C.; Ramón-Gallegos, E.; Reza-Alemán, R. Effect of protein hydrolysates from germinated soybean on cancerous cells of the human cervix: An in vitro study. Plant Foods Hum. Nutr. 2009, 64, 271–278. [Google Scholar] [CrossRef]
- Kornet, R.; Penris, S.; Venema, P.; van der Goot, A.J.; Meinders, M.B.; van der Linden, E. How pea fractions with different protein composition and purity can substitute WPI in heat-set gels. Food Hydrocoll. 2021, 120, 106891. [Google Scholar] [CrossRef]
- Gooday, G. Cell walls. In The Growing Fungus; Springer: Berlin/Heidelberg, Germany, 1995; pp. 43–62. [Google Scholar]
- Colosimo, R.; Warren, F.J.; Finnigan, T.J.; Wilde, P.J. Protein bioaccessibility from mycoprotein hyphal structure: In vitro investigation of underlying mechanisms. Food Chem. 2020, 330, 127252. [Google Scholar] [CrossRef]
- Krishnaswamy, A.; Barnes, N.; Lotlikar, N.P.; Damare, S.R. An improved method for protein extraction from minuscule quantities of fungal biomass. Indian J. Microbiol. 2019, 59, 100–104. [Google Scholar] [CrossRef] [PubMed]
- Bridge, P.D.; Kokubun, T.; Simmonds, M.S. Protein extraction from fungi. In Protein Purification Protocols; Springer: Berlin/Heidelberg, Germany, 2004; pp. 37–46. [Google Scholar]
- Effiong, M.E.; Umeokwochi, C.P.; Afolabi, I.S.; Chinedu, S.N. Assessing the nutritional quality of Pleurotus ostreatus (oyster mushroom). Front. Nutr. 2024, 10, 1279208. [Google Scholar] [CrossRef] [PubMed]
- Okeudo-Cogan, M.C.; Murray, B.S.; Ettelaie, R.; Connell, S.D.; Radford, S.J.; Micklethwaite, S.; Sarkar, A. Understanding the microstructure of a functional meat analogue: Demystifying interactions between fungal hyphae and egg white protein. Food Hydrocoll. 2023, 140, 108606. [Google Scholar] [CrossRef]
- Dzurendová, S.; Shapaval, V.; Tafintseva, V.; Kohler, A.; Byrtusová, D.; Szotkowski, M.; Márová, I.; Zimmermann, B. Assessment of Biotechnologically Important Filamentous Fungal Biomass by Fourier Transform Raman Spectroscopy. Int. J. Mol. Sci. 2021, 22, 6710. [Google Scholar] [CrossRef]
- Finnigan, T.J.A.; Wall, B.T.; Wilde, P.J.; Stephens, F.B.; Taylor, S.L.; Freedman, M.R. Mycoprotein: The Future of Nutritious Nonmeat Protein, a Symposium Review. Curr. Dev. Nutr. 2019, 3, nzz021. [Google Scholar] [CrossRef]
- Talukdar, S.; Barzee, T.J. Metabolically active fungus is not always required for fungal-assisted microalgae immobilization. Algal Res. 2025, 86, 103908. [Google Scholar] [CrossRef]
- Karabulut, G.; Köroğlu, D.G.; Feng, H.; Karabulut, Z. Sustainable fungi-based protein extraction from agro-waste mushroom stem using deep eutectic solvents. Food Chem. X 2024, 24, 101931. [Google Scholar] [CrossRef]
- Baeva, E.; Bleha, R.; Lavrova, E.; Sushytskyi, L.; Čopíková, J.; Jablonsky, I.; Klouček, P.; Synytsya, A. Polysaccharides from Basidiocarps of Cultivating Mushroom Pleurotus ostreatus: Isolation and Structural Characterization. Molecules 2019, 24, 2740. [Google Scholar] [CrossRef]
- Gautam, I.; Yarava, J.R.; Xu, Y.; Li, R.; Scott, F.J.; Mentink-Vigier, F.; Momany, M.; Latgé, J.-P.; Wang, T. Comparative analysis of polysaccharide and cell wall structure in Aspergillus nidulans and Aspergillus fumigatus by solid-state NMR. Carbohydr. Polym. 2025, 348, 122907. [Google Scholar] [CrossRef]
- Israelachvili, J.N. Intermolecular and Surface Forces; Academic Press: Cambridge, MA, USA, 2011. [Google Scholar]
- Jayakumar, D.; Santhapur, R.; McClements, D.J. Preparation and Characterization of Plant Protein-Mushroom Hybrids: Toward more Healthy and Sustainable Foods. Food Biophys. 2024, 19, 1077–1094. [Google Scholar] [CrossRef]
- Lin, L.; Xu, J. Fungal pigments and their roles associated with human health. J. Fungi 2020, 6, 280. [Google Scholar] [CrossRef] [PubMed]
- Afroz Toma, M.; Rahman, M.H.; Rahman, M.S.; Arif, M.; Nazir, K.H.M.N.H.; Dufossé, L. Fungal Pigments: Carotenoids, Riboflavin, and Polyketides with Diverse Applications. J. Fungi 2023, 9, 454. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Bhandari, B.; Prakash, S.; Mantihal, S.; Zhang, M. Linking rheology and printability of a multicomponent gel system of carrageenan-xanthan-starch in extrusion based additive manufacturing. Food Hydrocoll. 2019, 87, 413–424. [Google Scholar] [CrossRef]
- Amorim, P.A.; d’Ávila, M.A.; Anand, R.; Moldenaers, P.; Van Puyvelde, P.; Bloemen, V. Insights on shear rheology of inks for extrusion-based 3D bioprinting. Bioprinting 2021, 22, e00129. [Google Scholar] [CrossRef]
- Duan, W.; Qiu, H.; Htwe, K.K.; Wei, S.; Liu, Y.; Wang, Z.; Sun, Q.; Han, Z.; Xia, Q.; Liu, S. Changes in advanced protein structure during dense phase carbon dioxide induced gel formation in golden pompano surimi correlate with gel strength. Front. Sustain. Food Syst. 2023, 7, 1189149. [Google Scholar] [CrossRef]
- Zavodszky, M.; Chen, C.-W.; Huang, J.-K.; Zolkiewski, M.; Wen, L.; Krishnamoorthi, R. Disulfide bond effects on protein stability: Designed variants of Cucurbita maxima trypsin inhibitor-V. Protein Sci. 2001, 10, 149–160. [Google Scholar] [CrossRef]
- Frihart, C.R.; Gargulak, M. Use of Dynamic Shear Rheology to Understand Soy Protein Dispersion Properties. Polymers 2022, 14, 5490. [Google Scholar] [CrossRef]
- Bao, H.; You, S.; Cao, L.; Zhou, R.; Wang, Q.; Cui, S.W. Chemical and rheological properties of polysaccharides from fruit body of Auricularia auricular-judae. Food Hydrocoll. 2016, 57, 30–37. [Google Scholar] [CrossRef]
- Pereira, T.; Barroso, S.; Gil, M.M. Food Texture Design by 3D Printing: A Review. Foods 2021, 10, 320. [Google Scholar] [CrossRef]
- Kamlow, M.-A.; Vadodaria, S.; Gholamipour-Shirazi, A.; Spy ropoulos, F.; Mills, T. 3D printing of edible hydrogels containing thiamine and their comparison to cast gels. Food Hydrocoll. 2021, 116, 106550. [Google Scholar] [CrossRef]
Material | Inclusion | Pressure (kPa) | Printing Speed (mm/s) |
---|---|---|---|
A. awamori Protein Extract (AP) | 15% | X * | X |
20% | 10.3 | 10 | |
25% | 41.4 | 4 | |
A. awamori Flour (AF) | 15% | 13.8 | 6 |
20% | 55.2 | 4 | |
25% | 138.0 | 5 | |
P. ostreatus Protein Extract (OP) | 15% | X | X |
20% | 10.3 | 8 | |
25% | 41.4 | 4 | |
P. ostreatus Flour (OF) | 15% | X | X |
20% | X | X | |
25% | 10.3 | 9 |
Sample | % Carbon | % Nitrogen | % Protein | Extract Yield (g/g Dry Biomass) | Protein Recovery (%) | Bulk Density (g/mL) | |
---|---|---|---|---|---|---|---|
A. awamori | Protein extract | 50.8 ± 0.1 | 9.4 ± 0.1 | 59.0 ± 0.4 | 0.16 ± 0.0 | 32.2 ± 0.0 | 0.45 |
Flour | 45.3 ± 0.2 | 4.7 ± 0.0 | 29.3 ± 0.3 | 0.20 | |||
P. ostreatus | Protein extract | 43.9 ± 0.0 | 8.2 ± 0.0 | 51.5 ± 0.2 | 0.09 ± 0.0 | 18.4 ± 0.0 | 0.61 |
Flour | 39.4 ± 0.1 | 4.1 ± 0.1 | 26.0 ± 0.4 | 0.43 | |||
A. auricula-judae | Flour | 38.9 ± 0.11 | 1.0 ± 0.1 | 6.0 ± 0.9 | - | - | 0.90 |
Sample | Particle Size Diameter (nm) | Zeta Potential (mV) | |
---|---|---|---|
A. awamori | Flour | 79.22 ± 18.62 | −31.61 ± 5.07 |
Protein Extract | 47.48 ± 9.85 | −22.71 ± 5.91 | |
P. ostreatus | Flour | 159.1 ± 32.55 | −14.65 ± 3.49 |
Protein Extract | 93.67 ± 21.82 | −21.65 ± 4.31 | |
A. auricula-judae | Flour | 206.6 ± 50.95 | −34.27 ± 4.12 −2.838 ± 7.543 |
Sample | Inclusion (%) | L* | a* | b* |
---|---|---|---|---|
Aspergillus awamori protein extract | 15 | 38.2 ± 0.6 | 4.5 ± 0.0 | 18.9 ± 0.1 |
20 | 37.6 ± 1.6 | 3.7 ± 0.1 | 18.8 ± 0.4 | |
25 | 23.6 ± 0.8 | 4.2 ± 0.3 | 17.7 ± 0.6 | |
Aspergillus awamori flour | 15 | 65.8 ± 0.8 | 8.7 ± 0.3 | 42.4 ± 0.4 |
20 | 61.3 ± 1.5 | 9.7 ± 0.7 | 43.6 ± 0.4 | |
25 | 65.9 ± 0.2 | 8.3 ± 0.2 | 42.8 ± 1.0 | |
P. ostreatus protein extract | 15 | 48.8 ± 0.5 | 7.8 ± 0.1 | 30.6 ± 0.3 |
20 | 49.0 ± 0.2 | 7.7 ± 0.1 | 30.0 ± 0.2 | |
25 | 49.3 ± 2.4 | 7.9 ± 0.7 | 25.7 ± 1.4 | |
P. ostreatus flour | 15 | 55.0 ± 0.6 | 17.1 ± 0.1 | 46.6 ± 0.6 |
20 | 56.1 ± 0.5 | 16.5 ± 0.4 | 44.7 ± 0.6 | |
25 | 52.4 ± 0.4 | 16.5 ± 0.9 | 41.4 ± 1.7 | |
A. auricula-judae flour | 15 | 31.4 ± 0.2 | 5.7 ± 0.1 | 10.4 ± 0.1 |
20 | 26.4 ± 1.4 | 6.7 ± 0.4 | 12.9 ± 1.0 | |
25 | 31.9 ± 1.3 | 7.9 ± 0.2 | 13.5 ± 0.3 |
Formulation | Power Law | |||
---|---|---|---|---|
η10 (Pa∙s) | K (Pa∙sn) | n | R2 | |
AP-15% | 0.20 | 0.73 | 0.439 | 0.955 |
AP-25% | 35.56 | 227.60 | 0.194 | 0.770 |
AF-15% | 67.21 | 280.90 | 0.379 | 0.884 |
AF-25% | 180.85 | 694.40 | 0.416 | 0.896 |
OP-15% | 0.34 | 1.04 | 0.513 | 0.785 |
OP-25% | 5.08 | 26.12 | 0.289 | 0.776 |
OF-15% | 0.07 | 0.18 | 0.585 | 0.952 |
OF-25% | 0.99 | 4.53 | 0.338 | 0.580 |
WF-15% | 10.88 | 64.69 | 0.226 | 0.797 |
WF-25% | 55.18 | 288.40 | 0.282 | 0.738 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Doyle, L.; Talukdar, S.; Xiong, Y.L.; Adedeji, A.; Barzee, T.J. Evaluation of the Gelation Characteristics and Printability of Edible Filamentous Fungi Flours and Protein Extracts. Foods 2025, 14, 923. https://doi.org/10.3390/foods14060923
Doyle L, Talukdar S, Xiong YL, Adedeji A, Barzee TJ. Evaluation of the Gelation Characteristics and Printability of Edible Filamentous Fungi Flours and Protein Extracts. Foods. 2025; 14(6):923. https://doi.org/10.3390/foods14060923
Chicago/Turabian StyleDoyle, Lauren, Suvro Talukdar, Youling L. Xiong, Akinbode Adedeji, and Tyler J. Barzee. 2025. "Evaluation of the Gelation Characteristics and Printability of Edible Filamentous Fungi Flours and Protein Extracts" Foods 14, no. 6: 923. https://doi.org/10.3390/foods14060923
APA StyleDoyle, L., Talukdar, S., Xiong, Y. L., Adedeji, A., & Barzee, T. J. (2025). Evaluation of the Gelation Characteristics and Printability of Edible Filamentous Fungi Flours and Protein Extracts. Foods, 14(6), 923. https://doi.org/10.3390/foods14060923