Applications of Machine Learning in Food Safety and HACCP Monitoring of Animal-Source Foods
Abstract
:1. Introduction
2. Feature Selection and Feature Extraction
2.1. Feature Selection
2.2. Feature Extraction
3. Machine Learning Algorithms
3.1. Naive Bayes
3.2. K-Nearest Neighbors
3.3. Discriminant Analysis
3.4. Support Vector Machine
3.5. Random Forest
3.6. Decision Trees
3.7. Gradient Boosting
3.8. Deep Learning
4. Applications of Machine Learning Algorithms in Food Safety and HACCP
4.1. Food Safety Risk and HACCP Monitoring
Product | Purpose of Study | Data | Machine Learning Algorithm | Output | Year | Reference |
---|---|---|---|---|---|---|
Food safety risk and HACCP monitoring | ||||||
Milk | Risk control by conducting a comprehensive hazard analysis of each parameter | Protein, fat, NMS 1, lactose, AM1 2, acidity | Unsupervised anomaly detection AE 3, K-Means, Isolation Forest, KNN 4, LOF 5, COF 6, SO-GAAL 7 | AE achieved 0.9954 prediction accuracy | 2022 | Zuo et al. [18] |
Milk | Hazards identification associated with an anomaly, prediction of food safety hazards | Raw milk price, number of patents related to the dairy sector, feed price, income of dairy farms, usage of antibiotics, usage of antibiotics, average temperature, average precipitation, total population, average age of dairy farmers, urban population, investment in R&D related to dairy sector, level of adoption of technology | Unsupervised anomaly detection BN 8 | >85% total accuracy | 2022 | Liu et al. [104] |
Milk | Early Hazard Analysis and Critical Control Points and traceability in the dairy supply chain | Temperature, O2, CO2, redox potential, pH, conductivity, Ca2+, NH4+, NO3−, Cl−, milk yield | MLP 9 | Cows with specific characteristics were spotted | 2024 | Dragone et al. [93] |
Dairy products | Classifying food safety alerts related to chemical and microbial contaminants | Data obtained from RASFF 10 WHO 11 GEMS 12 databases | MLP, DT 13, SVM 14, GNB 15, CNN 16 | The highest accuracy was achieved by DT and SVM (98%) | 2024 | Talari et al. [69] |
Microbiological hazards | ||||||
Milk and beef | Detection of E. coli O157:H7 | Surface-enhanced Raman scattering–based lateral flow assay | XGBoost 17 | Successfully forecast E. coli in samples spiked with 10 CFU/mL | 2020 | Yan et al. [85] |
Milk | Identification of practices affecting PPC 18 | Bacterial spoilage indicators dataset (Pseudomonas spp.) | RF 19, MMI 20 | Factors for reducing PPC were identified (quality control, sanitation, staff training) | 2021 | Murphy et al. [107] |
Meat, eggs, shellfish, dairy products, infant formula, etc. | Identification of parameters associated with the occurrence of Salmonella spp. | Salmonella spp. occurrence based on: product, region, and stage data | RF | Accuracy achieved 77.2% | 2023 | Rodríguez et al. [108] |
Meat, eggs, dairy products, processed food salad, fish, etc. | Identification of potential sources of Campylobacter spp. | Campylobacter spp. occurrence based on: product, region, and stage data | RF | Accuracy achieved 83.1% | 2024 | Sacristán et al. [109] |
Cheddar cheese | Pathogen identification | Salmonella enteritidis, E. coli O157:H7 identification by paper chromogenic array sensor dataset | DFFNN 21 | Accuracies ranging between 72 ± 11% and 92 ± 3% | 2024 | Jia et al. [91] |
Eggs, milk, meats, bakery products, seafood, etc. | Prevention of foodborne Salmonella outbreaks | Food surveillance data (month, longitude, latitude, area, food prevalence, food categories) | Tree regression, RF, GB 22 | RF and GB (R2 = 0.55) outperformed the tree regression algorithm (R2 = 0.42) | 2024 | Garcia-Vozmediano et al. [76] |
Milk | Identification of foodborne pathogenic and spoilage bacteria | Escherichia coli, Listeria innocua, Salmonella enterica, Staphylococcus aureus, Shigella sonnei, Bacillus cereus, Lactococcus lactis, Pseudomonas fluorescens identification by single-stranded DNA sensor array dataset | PLS-DA 23, KNN, RF, SVM, MLP, KAN 24 | MLP neural networks achieved the highest accuracy at 98.4% | 2025 | Wang et al. [60] |
Milk | Detection of Staphylococcus aureus | Nanogap-assisted surface-enhanced Raman scattering biosensor dataset | VCPA-PLS 25, RF-PLS 26, BOSS-PLS 27 | BOSS-PLS achieved the best results (Rp = 0.967) | 2025 | Xu et al. [110] |
Chemical hazards | ||||||
Milk, wheat, rice, coffee, maize | Detection of mycotoxins | Cystamine-derived carbon dot array concentration of mycotoxins | XGBoost | A 100% accuracy and mycotoxin detection at 10 pmol | Aggarwal et al. [111] | |
Milk | Detection of antibiotics | Optical immunosensor data concentration of antibiotics | PLSR 28 | Detection from pg/mL to ng/mL with an accuracy of >99% | 2024 | Zhou et al. [112] |
Milk | Detection of the antibiotic levofloxacin | Quasi-ratiometric fluorescent probe provided fluorescence images | Hierarchical clustering | Low detection limit (4.53 nM) and excellent recovery rates (101.7–103.4%) were obtained | 2025 | Liu et al. [113] |
Milk | Detection of the antibiotics norfloxacin and ciprofloxacin | Surface-enhanced Raman scattering data | SVR 29, RF, XGBoost | The coefficient of determination (R2) was 0.996, with a detection limit of 10 ppb | 2025 | Liu et al. [114] |
Fraud/adulteration detection | ||||||
Milk | Adulteration detection | Fat, protein, non-fat solid, total solid, lactose, relative density, freezing point depression, acidity, infrared spectra | Ensemble model of ExtraTrees and XGBoost | A 0.9924 accuracy achieved | 2022 | Chung et al. [115] |
Milk | Fraud detection | Raman spectra | LightGBM 30, SVM, RF, XGBoost | The accuracy of each algorithm surpassed 90%, while the fusion model achieved an accuracy of 99% | 2024 | Feng et al. [47] |
Milk | Adulteration detection | Hyperspectral imaging | LR 31, DT, SVM, LDA 32 | LDA obtained 100% validation accuracy | 2025 | Aqeel et al. [116] |
Quality assessment | ||||||
Milk | Prediction of subclinical mastitis | Daily milk production, fat, protein, casein, lactose, pH, urea, somatic cell count, differential somatic cell count, beta-hydroxybutyrate, electrical conductivity, rennet coagulation time, curd firmness 30 min after rennet addition | Generalized Linear Models, SVM, RF, Neural Network | The neural network achieved the highest accuracy of 0.754 | 2023 | Bobbo et al. [41] |
Milk | Prediction of subclinical mastitis | Near-infrared spectra | PLS-DA, RF, SVM | The precision of SVM in detecting non-mastitis milk reached 0.81 | 2024 | da Silva Pereira [65] |
Milk | Prediction of subclinical mastitis | Daily milk yield, fat percentage, protein percentage, lactose percentage, milk urea concentration, somatic cell score | Dummy classifier, Logistic Regression, DT, SVM, GNB, KNN | 2024 | Satoła and Satoła [40] |
4.2. Identification of Microbiological Hazards
Product | Purpose of Study | Data | Machine Learning Algorithm | Output | Year | Reference |
---|---|---|---|---|---|---|
Microbiological hazards | ||||||
Milk and beef | Detection of Escherichia coli O157:H7 | Surface-enhanced Raman scattering–based lateral flow assay | XGBoost 1 | Successfully forecast E. coli in samples spiked with 10 CFU/mL | 2020 | Yan et al. [85] |
Beef | Prediction of total viable counts of microorganisms | Multispectral imaging (wavelength attributes) | Neuro-fuzzy model MLP 2, SVM 3, PLS 4 | The neuro-fuzzy model achieved the highest accuracy of 0.982 | 2023 | Alshejari et al. [42] |
Meat, eggs, shellfish, dairy products, infant formula, etc. | Identification of parameters associated with the occurrence of Salmonella spp. | Salmonella spp. occurrence based on: product, region, and stage | RF 5 | Accuracy achieved 77.2% | 2023 | Rodríguez et al. [108] |
Meat, eggs, dairy products, processed food salad etc. | Identification of potential sources of Campylobacter spp. | Campylobacter spp. occurrence based on product, region, and stage data | RF | Accuracy achieved 83.1% | 2024 | Sacristán et al. [109] |
Eggs, milk, meats, bakery products etc. | Prevention of foodborne Salmonella outbreaks | Food surveillance data (month, longitude, latitude, area, food prevalence, food categories) | Tree regression, RF, GB 6 | RF and GB (R2 = 0.55) outperformed the tree regression algorithm (R2 = 0.42) | 2024 | Garcia-Vozmediano et al. [76] |
Chicken | Simultaneous monitoring of multiple pathogens | Listeria monocytogenes, Salmonella, and E. coli O157:H7 detection by paper chromogenic array sensor | DFFNN 7 | Detection as low as 1 log CFU/g with more than 90% accuracy | 2024 | Jia et al. [92] |
Meat | Spoilage detection | pH sensing patch images dataset | CNN 8 | Accuracy achieved 0.98 | 2024 | Kadian et al. [129] |
Beef | Prediction of E. coli O157:H7 growth | Shiga toxin-producing E. coli counts | ANN 9, RF, SVM, MLR 10 | RF model exhibited the highest performance (R2 = 0.98) | 2024 | Al et al. [75] |
Beef | Spoilage detection | Data from 11 e-nose sensors (including ammonia, hydrogen sulfide, and hydrogen sensors) | SVM, KNN, CNN, hybrid (RF and CNN), hybrid (RF, CNN and GRU 10) | The hybrid model of RF, CNN, and GRU achieved 0.9977 accuracy | 2024 | Surjith et al. [73] |
Chemical hazards | ||||||
Pork sausages | Monitor residual nitrite concentrations | Hyperspectral imaging (images at the spectral range of 1000–2500 nm) | XGBoost, CATboost 11, LightGBM 12 | XGBoost achieved the highest accuracy (0.999) | 2024 | Son et al. [86] |
Beef | Predict ofloxacin concentration | Thin-layer chromatography-surface-enhanced Raman scattering sensor | BPNN 13 | A 0.01 ppm sensitivity with an accuracy level of 0.995 | 2024 | Lu et al. [19] |
Fraud/adulteration detection | ||||||
Beef | Colorant and curing agent adulteration | Diffuse reflectance spectra, color images (RGB components) | AlexNet (with CNN architecture), SVM, Logistic Regression | AlexNet achieved the highest accuracy at 98.84% | 2023 | Jo et al. [96] |
Beef | Detection of adulteration with duck meat | Point discharge microplasma optical emission spectrometer (atomic emission spectra) | LDA 14 | Accuracy achieved 99.5% | 2024 | Ren et al. [62] |
Quality assessment | ||||||
Eggs | Detection of cracked eggs | Images (RGB components) | SVM | Accuracy achieved 98.75% | 2020 | Haoran et al. [130] |
Eggs | Detection of defective eggs | Machine vision system (images dataset) | BiLSTM 15 | Accuracy achieved 99.17%. | 2021 | Turkoglu [131] |
Eggs | Detection of defective eggs | Machine vision system (images dataset), weight measurements | CNN and RF | Accuracy achieved 94.8%, and R2 96.0% | 2023 | Yang et al. [72] |
Beef | Determine beef quality | RGB images dataset | Deep neural network, LSTM 16, GRU 17, Bi-GRU 18, Bi-LSTM | Bi-LSTM achieved the highest accuracy at 0.989 | 2024 | Büyükarıkan [95] |
4.3. Identification of Chemical Hazards
Product | Purpose of Study | Data | Machine Learning Algorithm | Output | Year | Reference |
---|---|---|---|---|---|---|
Microbiological hazards | ||||||
Cod, salmon | Detection of viable pathogens | Paper chromogenic array images dataset for Morganella morganii, Shewanella putrefaciens detection | Neural network | Accuracy reached 90% to 99% | 2022 | Yang et al. [127] |
Chemical hazards | ||||||
Fish | IoT 1 sensors for formaldehyde detection, fish freshness detection | Formaldehyde sensor ppm level concentration data, images dataset | CNN 2, DNN 3 | Accuracy reached 99.02% | 2024 | Harish et al. [143] |
Mackerel, tuna, and pompano species | Classification of fish into safe and unsafe based on urea content | Near-infrared spectroscopy data | DT 4, KNN 5, SVM 6, XGBoost 7, CNN | CNN achieved the highest accuracy at 83.9% | 2024 | Ninh et al. [58] |
Fish | Determine the freshness and formaldehyde | Formaldehyde sensor data, Images dataset | CNN | Accuracy reached 98.2% | 2024 | Joy et al. [144] |
Tuna | Assessment of histamine levels | Near-infrared spectroscopy data | PLSR 8, RF 9, SVM | SVM binary and multiclass models achieved the highest accuracy at 100% and 93% respectively | 2025 | Currò et al. [43] |
Fishery products | Detection of biogenic amines | LA-DBD-TLC-MS 10 data | PCA 11, RF, SVM, MLP 12 | MLP achieved 100% accuracy and detection limit of 0.230 pg/mm2 | 2025 | Zhang et al. [145] |
Quality assessment | ||||||
Fish | Evaluation of fish freshness | Images dataset | KNN, SVM, LR 13, RF, ANN 14 | Accuracy ranged from 99.6 to 100% | 2023 | Yasin et al. [48] |
Salmon and sablefish filets | Quality assessment | Visible near-infrared, short-wave infrared reflectance, and fluorescence spectroscopy data | SOM 15, LDA 16, QDA 17, KNN, RF, SVM, linear regression | The highest accuracy at 95% was obtained from the combination of three spectroscopy modes with LDA | 2023 | Kashani Zadeh et al. [59] |
Indian sardinella, yellowfin tuna | Quality evaluation | Images dataset | Neural Network architectures FishNET-S and FishNET-T | FishNET-S achieved an accuracy of 84.1% and FishNET-T 68.3% | 2023 | Jayasundara et al. [146] |
Sea bass | Freshness detection | Raman spectra data | PLS-DA18, SVM, CNN | CNN achieved the highest accuracy at 90.6% | 2023 | Wang et al. [39] |
Fish | Real-time freshness detection | Temperature, total viable count, total volatile basic nitrogen, K-value, electronic nose, gas chromatography-mass spectrometry, sensory analysis data | BP 19, GA-BP 20, RBF 21, ELM 22 | RBF neural network achieved the highest R2 value at 0.9994 | 2024 | Cui et al. [94] |
Mackerel, tuna, and pompano Species | Evaluating fish quality based on histamine content | Near-infrared spectroscopy data | DT, KNN, SVM, XGBoost, CNN | CNN achieved the highest accuracy at 93% | 2024 | Ninh et al. [57] |
Fish | Real-time evaluation of balsa fish freshness | Colorimetric sensor array data | PLSR, RF | RF achieved a higher correlation coefficient of prediction value (0.981) than PLS (0.877) | 2025 | Cao et al. [74] |
4.4. Fraud/Adulteration Detection
4.5. Food Quality Assessment
4.5.1. Milk Quality
4.5.2. Meat Quality
4.5.3. Fish Quality
4.5.4. Egg Quality
5. Summary of Findings
6. Categorization of Machine Learning Applications in Food Safety, Limitations, and Future Directions
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ML | Machine Learning |
HACCP | Hazard Analysis Critical Control Points |
ASF | Animal-Source Foods |
ANOVA | Analysis of Variance |
RFE | Recursive Feature Elimination |
GA | Genetic Algorithms |
LASSO | Least Absolute Shrinkage and Selection Operator |
CNN | Convolutional Neural Networks |
PLS | Partial Least Squares |
PCA | Principal Component Analysis |
CARS | Competitive Adaptive Reweighted Sampling |
NB | Naive Bayes |
DT | Decision Trees |
KNN | K-Nearest Neighbors |
SVM | Support Vector Machine |
LR | Logistic Regression |
RF | Random Forest |
DA | Discriminant Analysis |
GB | Gradient Boosting |
GNB | Gaussian Naïve Bayes |
LDA | Linear Discriminant Analysis |
PLS-DA | Partial Least Squares-Discriminant Analysis |
PLSR | Partial Least Squares Regression |
XGBoost | Extreme Gradient Boosting |
LightGBM | Light Gradient Boosting Machine |
CatBoost | Category boosting |
ANN | Artificial Neural Networks |
SLP | Single-Layer Perceptron |
MLP | Multilayer Perceptron |
RBNN | Radial Basis Neural Networks |
ELM | Extreme Learning Machines |
SOM | Self-organizing Map |
ART | Adaptive Resonance Theory |
LSTM | Long Short-Term Memory |
AE | Auto-encoder |
AM1 | Aflatoxin M1 |
GEMS | Global Environmental Monitoring System |
RASFF | Rapid Alert System for Food and Feed |
KAP | Quality Program for Agricultural Products |
POPAs | Points of Particular Attention |
CDC | Centers for Disease Control and Prevention |
PPC | Post-Pasteurization Contamination |
ELISA | Enzyme-Linked Immunosorbent Assay |
SVC | Support Vector Classifier |
SVR | Support Vector Regression |
KAN | Kolmogorov–Arnold Networks |
DFFNN | Deep Feed-Forward Neural Network |
GRU | Gated Recurrent Unit |
HPLC | High-Performance Liquid Chromatography |
TLC | Thin-Layer Chromatography |
SERS | Surface-Enhanced Raman Scattering |
NIR | Near-Infrared |
MPLS | Modified Partial Least Squares Regression |
FTIR | Fourier Transform Infrared |
SCC | Somatic Cell Count |
GLM | Generalized Linear Model |
Bi-LSTM | Bi-Directional Long-Short-Term Memory |
Bi-GRU | Bi-Directional Gated Recurrent Unit |
VGG16 | Visual Geometry Group 16 |
RGB | Red, Green, Blue |
HLS | Hue, Lightness, Saturation |
HSV | Hue, Saturation, Value |
ATP/PI NFAs | Attapulgite/Polyimide Nanofiber Composite Aerogels |
BP | Back Propagation |
RBF | Radial Basis Function |
GA-BP | Genetic Algorithm-Back Propagation |
GC-Ms/Ms | Gas Chromatography-Tandem Mass Spectrometry |
NMS | Nonfat Milk Solid |
LOF | Local Outlier Factor |
COF | Connectivity-Based Outlier Factor |
SO-GAAL | Single-Objective Generative Adversarial Active Learning |
BN | Bayesian Network |
WHO | World Health Organization |
KAN | Kolmogorov–Arnold Networks |
MMI | Multimodel Inference |
MLR | Multiple Linear Regression |
BPNN | Back Propagation Neural Network |
DNN | Dense Neural Networks |
QDA | Quadratic Discriminant Analysis |
VIS-NIR | Visible Near-Infrared |
SWIR | Short Wave Infrared |
LA-DBD-TLC-MS | Laser Ablation Dielectric Barrier Discharge Thin-Layer Chromatography-Mass Spectrometry |
VCPA-PLS | Variable Combined Cluster Analysis Partial Least-Squares |
RF-PLS | Randomized Frog Hopping Partial Least-Squares |
BOSS-PLS | Bootstrap Flexible Shrinkage Variable Selection Partial Least Squares |
PCR | Polymerase Chain Reaction |
References
- Sheffield, S.; Fiorotto, M.L.; Davis, T.A. Nutritional Importance of Animal-Sourced Foods in a Healthy Diet. Front. Nutr. 2024, 11, 1424912. [Google Scholar] [CrossRef] [PubMed]
- Newell, D.G.; Koopmans, M.; Verhoef, L.; Duizer, E.; Aidara-Kane, A.; Sprong, H.; Opsteegh, M.; Langelaar, M.; Threfall, J.; Scheutz, F.; et al. Food-Borne Diseases—The Challenges of 20 Years Ago Still Persist While New Ones Continue to Emerge. Int. J. Food Microbiol. 2010, 139 (Suppl. 1), S3–S15. [Google Scholar] [CrossRef]
- Grace, D. Food Safety in Low and Middle Income Countries. Int. J. Environ. Res. Public Health 2015, 12, 10490–10507. [Google Scholar] [CrossRef]
- Frazzoli, C.; Mantovani, A. Toxicants Exposures as Novel Zoonoses: Reflections on Sustainable Development, Food Safety and Veterinary Public Health. Zoonoses Public Health 2010, 57, e136–e142. [Google Scholar] [CrossRef]
- Vilar, M.J.; Rodríguez-Otero, J.L.; Sanjuán, M.L.; Diéguez, F.J.; Varela, M.; Yus, E. Implementation of HACCP to Control the Influence of Milking Equipment and Cooling Tank on the Milk Quality. Trends Food Sci. Technol. 2012, 23, 4–12. [Google Scholar] [CrossRef]
- Prache, S.; Adamiec, C.; Astruc, T.; Baéza-Campone, E.; Bouillot, P.E.; Clinquart, A.; Feidt, C.; Fourat, E.; Gautron, J.; Girard, A.; et al. Review: Quality of Animal-Source Foods. Animal 2022, 16, 100376. [Google Scholar] [CrossRef] [PubMed]
- Garcia, M.; Fearne, A.; Caswell, J.; Henson, S. Co-Regulation as a Possible Model for Food Safety Governance: Opportunities for Public-Private Partnerships. Food Policy 2007, 32, 299–314. [Google Scholar] [CrossRef]
- Owusu-Apenten, R.; Vieira, E. Food Safety Management, GMP & HACCP. In Elementary Food Science; Springer: Cham, Switzerland, 2023; pp. 217–236. ISBN 978-3-030-65431-3. [Google Scholar]
- Mortimore, S.; Wallace, C. An Introduction to HACCP and Its Role in Food Safety Control. In HACCP: A Practical Approach; Mortimore, S., Wallace, C., Eds.; Springer US: Boston, MA, USA, 2013; pp. 1–36. ISBN 978-1-4614-5028-3. [Google Scholar]
- Awuchi, C.G. HACCP, Quality, and Food Safety Management in Food and Agricultural Systems. Cogent Food Agric. 2023, 9, 2176280. [Google Scholar] [CrossRef]
- Wallace, C.; Sperber, W.; Mortimore, S. Food Safety for the 21st Century: Managing HACCP and Food Safety Throughout the Global Supply Chain; Wiley: Hoboken, NJ, USA, 2010; p. 310. ISBN 978-1-4051-8911-8. [Google Scholar]
- Noordhuizen, J.; da Silva, J.C.; Boersema, S.-J.; Vieira, A. Critical Control Points (CCP) and Points of Particular Attention (POPA): Their Standards and Tolerances or Targets, Their Monitoring, and Corrective Measures. In Applying HACCP-Based Quality Risk Management on Dairy Farms; Brill: Leiden, The Netherlands, 2007. [Google Scholar]
- Huang, J.Y. Infection with Pathogens Transmitted Commonly Through Food and the Effect of Increasing Use of Culture-Independent Diagnostic Tests on Surveillance—Foodborne Diseases Active Surveillance Network, 10 U.S. Sites, 2012–2015. MMWR Morbidity Mortal. Wkly. Rep. 2016, 65, 368–371. [Google Scholar] [CrossRef]
- Pandey, V.K.; Srivastava, S.; Dash, K.K.; Singh, R.; Mukarram, S.A.; Kovács, B.; Harsányi, E. Machine Learning Algorithms and Fundamentals as Emerging Safety Tools in Preservation of Fruits and Vegetables: A Review. Processes 2023, 11, 1720. [Google Scholar] [CrossRef]
- Shine, P.; Murphy, M.D. Over 20 Years of Machine Learning Applications on Dairy Farms: A Comprehensive Mapping Study. Sensors 2022, 22, 52. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.; Ma, J.; Wang, Q.; Sun, D.-W. Applications of Machine Learning Techniques for Enhancing Nondestructive Food Quality and Safety Detection. Crit. Rev. Food Sci. Nutr. 2023, 63, 1649–1669. [Google Scholar] [CrossRef]
- Yu, W.; Ouyang, Z.; Zhang, Y.; Lu, Y.; Wei, C.; Tu, Y.; He, B. Research Progress on the Artificial Intelligence Applications in Food Safety and Quality Management. Trends Food Sci. Technol. 2025, 156, 104855. [Google Scholar] [CrossRef]
- Zuo, E.; Du, X.; Aysa, A.; Lv, X.; Muhammat, M.; Zhao, Y.; Ubul, K. Anomaly Score-Based Risk Early Warning System for Rapidly Controlling Food Safety Risk. Foods 2022, 11, 2076. [Google Scholar] [CrossRef]
- Lu, X.; Ma, Y.; Jiang, S.; Wang, Z.; Yu, Q.; Ji, C.; Guo, J.; Kong, X. Quantitative Monitoring Ofloxacin in Beef by TLC-SERS Combined with Machine Learning Analysis. Spectrochim. Acta—Part A: Mol. Biomol. Spectrosc. 2024, 308, 123790. [Google Scholar] [CrossRef]
- El Naqa, I.; Murphy, M.J. What Is Machine Learning? In Machine Learning in Radiation Oncology: Theory and Applications; El Naqa, I., Li, R., Murphy, M.J., Eds.; Springer International Publishing: Cham, Switzerland, 2015; pp. 3–11. ISBN 978-3-319-18305-3. [Google Scholar]
- Liberty, J.T.; Habanabakize, E.; Adamu, P.I.; Bata, S.M. Advancing Food Manufacturing: Leveraging Robotic Solutions for Enhanced Quality Assurance and Traceability across Global Supply Networks. Trends Food Sci. Technol. 2024, 153, 104705. [Google Scholar] [CrossRef]
- Curti, P.d.F.; Selli, A.; Pinto, D.L.; Merlos-Ruiz, A.; Balieiro, J.C.d.C.; Ventura, R.V. Applications of Livestock Monitoring Devices and Machine Learning Algorithms in Animal Production and Reproduction: An Overview. Anim. Reprod. 2023, 20, e20230077. [Google Scholar] [CrossRef] [PubMed]
- Dineva, K.; Atanasova, T. Health Status Classification for Cows Using Machine Learning and Data Management on AWS Cloud. Animals 2023, 13, 3254. [Google Scholar] [CrossRef]
- Ding, H.; Tian, J.; Yu, W.; Wilson, D.; Young, B.; Cui, X.; Xin, X.; Wang, Z.; Li, W. The Application of Artificial Intelligence and Big Data in the Food Industry. Foods 2023, 12, 4511. [Google Scholar] [CrossRef]
- Rugji, J.; Erol, Z.; Taşçı, F.; Musa, L.; Hamadani, A.; Gündemir, M.G.; Karalliu, E.; Siddiqui, S.A. Utilization of AI—Reshaping the Future of Food Safety, Agriculture and Food Security—A Critical Review. Crit. Rev. Food Sci. Nutr. 2024, 1–45. [Google Scholar] [CrossRef]
- van Leeuwen, S.P.J.; Verschoor, A.M.; van der Fels-Klerx, H.J.; van de Schans, M.G.M.; Berendsen, B.J.A. A Novel Approach to Identify Critical Knowledge Gaps for Food Safety in Circular Food Systems. npj Sci. Food 2024, 8, 34. [Google Scholar] [CrossRef] [PubMed]
- Cabrera, V.E.; Bewley, J.; Breunig, M.; Breunig, T.; Cooley, W.; De Vries, A.; Fourdraine, R.; Giordano, J.O.; Gong, Y.; Greenfield, R.; et al. Data Integration and Analytics in the Dairy Industry: Challenges and Pathways Forward. Animals 2025, 15, 329. [Google Scholar] [CrossRef]
- Dhal, S.B.; Kar, D. Leveraging Artificial Intelligence and Advanced Food Processing Techniques for Enhanced Food Safety, Quality, and Security: A Comprehensive Review. Discov. Appl. Sci. 2025, 7, 75. [Google Scholar] [CrossRef]
- Ikram; Mehmood, H.; Arshad, M.T.; Rasheed, A.; Noreen, S.; Gnedeka, K. Applications of Artificial Intelligence (AI) in Managing Food Quality and Ensuring Global Food Security. CyTA—J. Food 2024, 22, 2393287. [Google Scholar] [CrossRef]
- Wang, X.; Bouzembrak, Y.; Lansink, A.O.; van der Fels-Klerx, H.J. Application of Machine Learning to the Monitoring and Prediction of Food Safety: A Review. Compr. Rev. Food Sci. Food Saf. 2022, 21, 416–434. [Google Scholar] [CrossRef]
- Gbashi, S.; Njobeh, P.B. Enhancing Food Integrity through Artificial Intelligence and Machine Learning: A Comprehensive Review. Appl. Sci. 2024, 14, 3421. [Google Scholar] [CrossRef]
- Mu, W.; Kleter, G.A.; Bouzembrak, Y.; Dupouy, E.; Frewer, L.J.; Radwan Al Natour, F.N.; Marvin, H.J.P. Making Food Systems More Resilient to Food Safety Risks by Including Artificial Intelligence, Big Data, and Internet of Things into Food Safety Early Warning and Emerging Risk Identification Tools. Compr. Rev. Food Sci. Food Saf. 2024, 23, e13296. [Google Scholar] [CrossRef]
- Yaseer, A.; Chen, H. A Review of Sensors and Machine Learning in Animal Farming. In Proceedings of the 2021 IEEE 11th Annual International Conference on CYBER Technology in Automation, Control, and Intelligent Systems (CYBER), Jiaxing, China, 27–31 July 2021; pp. 747–752. [Google Scholar]
- Suthar, A.P.; Sindhi, S.H.; Kathiriya, J.B.; Sharma, A.K.; Singh, V.K.; Bhedi, K.R. Use of Artificial Intelligence (AI) in Ensuring Quality and Safety of Food of Animal Origin: A Review. Int. J. Vet. Sci. Anim. Husb. 2024, 9, 240–247. [Google Scholar] [CrossRef]
- Subramanian, J.; Simon, R. Overfitting in Prediction Models—Is It a Problem Only in High Dimensions? Contemp. Clin. Trials 2013, 36, 636–641. [Google Scholar] [CrossRef]
- Pudjihartono, N.; Fadason, T.; Kempa-Liehr, A.W.; O’Sullivan, J.M. A Review of Feature Selection Methods for Machine Learning-Based Disease Risk Prediction. Front. Bioinform. 2022, 2, 927312. [Google Scholar] [CrossRef]
- Sarker, I.H. Machine Learning: Algorithms, Real-World Applications and Research Directions. SN Comput. Sci. 2021, 2, 160. [Google Scholar] [CrossRef] [PubMed]
- Motoda, H.; Liu, H. Feature Selection, Extraction and Construction; Communication of IICM; Institute of Information and Computing Machinery: Taipei, Taiwan, 2002; Volume 5, pp. 67–72. [Google Scholar]
- Wang, K.; Yue, Z.; Lin, H.; Wang, Q.; Wang, L.; Tian, Y.; Ren, L. Rapid Classification of the Freshness Grades of Sea Bass (Lateolabrax japonicus) Fillets Using a Portable Raman Spectrometer with Machine Learning Method. Microchem. J. 2023, 192, 108948. [Google Scholar] [CrossRef]
- Satoła, A.; Satoła, K. Performance Comparison of Machine Learning Models Used for Predicting Subclinical Mastitis in Dairy Cows: Bagging, Boosting, Stacking, and Super-Learner Ensembles versus Single Machine Learning Models. J. Dairy Sci. 2024, 107, 3959–3972. [Google Scholar] [CrossRef]
- Bobbo, T.; Matera, R.; Pedota, G.; Manunza, A.; Cotticelli, A.; Neglia, G.; Biffani, S. Exploiting Machine Learning Methods with Monthly Routine Milk Recording Data and Climatic Information to Predict Subclinical Mastitis in Italian Mediterranean Buffaloes. J. Dairy Sci. 2023, 106, 1942–1952. [Google Scholar] [CrossRef] [PubMed]
- Alshejari, A.; Kodogiannis, V.S.; Leonidis, S. Combining Feature Selection Techniques and Neurofuzzy Systems for the Prediction of Total Viable Counts in Beef Fillets Using Multispectral Imaging. Sensors 2023, 23, 9451. [Google Scholar] [CrossRef]
- Currò, S.; Savini, F.; Fasolato, L.; Indio, V.; Tomasello, F.; Rampazzo, G.; Zironi, E.; Pagliuca, G.; Gazzotti, T.; Prandini, L.; et al. Application of Near-Infrared Spectroscopy as at Line Method for the Evaluation of Histamine in Tuna Fish (Thunnus albacares). Food Control 2025, 167, 110778. [Google Scholar] [CrossRef]
- Hayes, E.; Greene, D.; O’Donnell, C.; O’Shea, N.; Fenelon, M.A. Spectroscopic Technologies and Data Fusion: Applications for the Dairy Industry. Front. Nutr. 2023, 9, 1074688. [Google Scholar] [CrossRef]
- Dhal, P.; Azad, C. A Comprehensive Survey on Feature Selection in the Various Fields of Machine Learning. Appl. Intell. 2022, 52, 4543–4581. [Google Scholar] [CrossRef]
- Luna-Maldonado, A.I.; Rodriguez-Fuentes, H.; Vidales Contreras, J.A. Hyperspectral Imaging in Agriculture, Food and Environment; IntechOpen: Rijeka, Croatia, 2018. [Google Scholar] [CrossRef]
- Feng, Z.; Liu, D.; Gu, J.; Zheng, L. Raman Spectroscopy and Fusion Machine Learning Algorithm: A Novel Approach to Identify Dairy Fraud. J. Food Compos. Anal. 2024, 129, 106090. [Google Scholar] [CrossRef]
- Yasin, E.T.; Ozkan, I.A.; Koklu, M. Detection of Fish Freshness Using Artificial Intelligence Methods. Eur. Food Res. Technol. 2023, 249, 1979–1990. [Google Scholar] [CrossRef]
- Dönmez, P. Introduction to Machine Learning, 2nd Ed., by Ethem Alpaydın. Cambridge, MA: The MIT Press 2010. ISBN: 978-0-262-01243-0. $54/£ 39.95 + 584 Pages. Nat. Lang. Eng. 2013, 19, 285–288. [Google Scholar] [CrossRef]
- Shalev-Shwartz, S.; Ben-David, S. Understanding Machine Learning: From Theory to Algorithms; Cambridge University Press (CUP): Cambridge, UK, 2013. [Google Scholar] [CrossRef]
- Suthaharan, S. Machine Learning Models and Algorithms for Big Data Classification: Thinking with Examples for Effective Learning; Springer: New York, NY, USA, 2015; Volume 36, ISBN 978-1-4899-7640-6. [Google Scholar]
- Bhattacharyya, D.K.; Kalita, J. Network Anomaly Detection: A Machine Learning Perspective; CRC Press: Boca Raton, FL, USA, 2013; ISBN 9781466582088. [Google Scholar]
- Sabry, F. Naive Bayes Classifier: Fundamentals and Applications; Artificial Intelligence; One Billion Knowledgeable: London, UK, 2023. [Google Scholar]
- Berrar, D. Bayes’ Theorem and Naive Bayes Classifier. In Encyclopedia of Bioinformatics and Computational Biology, 2nd ed.; Elsevier: Amsterdam, The Netherlands, 2018; ISBN 978-0-12-809633-8. [Google Scholar]
- Shyrokykh, K.; Girnyk, M.; Dellmuth, L. Short Text Classification with Machine Learning in the Social Sciences: The Case of Climate Change on Twitter. PLoS ONE 2023, 18, e0290762. [Google Scholar] [CrossRef] [PubMed]
- Kramer, O. K-Nearest Neighbors. In Dimensionality Reduction with Unsupervised Nearest Neighbors; Kramer, O., Ed.; Springer: Berlin/Heidelberg, Germany, 2013; pp. 13–23. ISBN 978-3-642-38652-7. [Google Scholar]
- Ninh, D.K.; Phan, K.D.; Vo, C.T.; Dang, M.N.; Le Thanh, N. Classification of Histamine Content in Fish Using Near-Infrared Spectroscopy and Machine Learning Techniques. Information 2024, 15, 528. [Google Scholar] [CrossRef]
- Ninh, D.K.; Phan, K.D.; Nguyen, T.T.; Dang, M.N.; Le Thanh, N.; Ferrero, F. Classification of Urea Content in Fish Using Absorbance Near-Infrared Spectroscopy and Machine Learning. Appl. Sci. 2024, 14, 8586. [Google Scholar] [CrossRef]
- Kashani Zadeh, H.; Hardy, M.; Sueker, M.; Li, Y.; Tzouchas, A.; MacKinnon, N.; Bearman, G.; Haughey, S.A.; Akhbardeh, A.; Baek, I.; et al. Rapid Assessment of Fish Freshness for Multiple Supply-Chain Nodes Using Multi-Mode Spectroscopy and Fusion-Based Artificial Intelligence. Sensors 2023, 23, 5149. [Google Scholar] [CrossRef]
- Wang, Y.; Feng, Y.; Xiao, Z.; Luo, Y. Machine Learning Supported Single-Stranded DNA Sensor Array for Multiple Foodborne Pathogenic and Spoilage Bacteria Identification in Milk. Food Chem. 2025, 463, 141115. [Google Scholar] [CrossRef]
- Meyers, L.S.; Gamst, G.; Guarino, A.J. Applied Multivariate Research: Design and Interpretation; SAGE Publications: Thousand Oaks, CA, USA, 2006; ISBN 978-1-4129-0412-4. [Google Scholar]
- Ren, T.; Lin, Y.; Su, Y.; Ye, S.; Zheng, C. Machine Learning-Assisted Portable Microplasma Optical Emission Spectrometer for Food Safety Monitoring. Anal. Chem. 2024, 96, 5170–5177. [Google Scholar] [CrossRef] [PubMed]
- Cook, R.; Forzani, L. Partial Least Squares Regression: And Related Dimension Reduction Methods; CRC Press: Boca Raton, FL, USA, 2024; ISBN 978-1-00-348247-5. [Google Scholar]
- Lee, L.C.; Liong, C.-Y.; Jemain, A.A. Partial Least Squares-Discriminant Analysis (PLS-DA) for Classification of High-Dimensional (HD) Data: A Review of Contemporary Practice Strategies and Knowledge Gaps. Analyst 2018, 143, 3526–3539. [Google Scholar] [CrossRef]
- da Silva Pereira, E.; Cruz-Tirado, J.P.; Lourenço Crippa, B.; Martins Morasi, R.; Milagres de Almeida, J.; Fernandes Barbin, D.; Barbon Junior, S.; Cristina Cirone Silva, N. Portable near Infrared (NIR) Spectrometer Coupled with Machine Learning to Classify Milk with Subclinical Mastitis. Food Control 2024, 163, 110527. [Google Scholar] [CrossRef]
- Adams, M.J. Chemometrics and Statistics|Multivariate Classification Techniques. In Encyclopedia of Analytical, 2nd ed.; Worsfold, P., Townshend, A., Poole, C., Eds.; Elsevier: Oxford, UK, 2005; pp. 21–27. ISBN 978-0-12-369397-6. [Google Scholar]
- Ahmetoglu, H.; Das, R. A Comprehensive Review on Detection of Cyber-Attacks: Data Sets, Methods, Challenges, and Future Research Directions. Internet Things 2022, 20, 100615. [Google Scholar] [CrossRef]
- Castelli, M.; Vanneschi, L.; Largo, Á.R. Supervised Learning: Classification. In Encyclopedia of Bioinformatics and Computational Biology; Ranganathan, S., Gribskov, M., Nakai, K., Schönbach, C., Eds.; Academic Press: Oxford, UK, 2019; pp. 342–349. ISBN 978-0-12-811432-2. [Google Scholar]
- Talari, G.; Nag, R.; O’Brien, J.; McNamara, C.; Cummins, E. A Data-Driven Approach for Prioritising Microbial and Chemical Hazards Associated with Dairy Products Using Open-Source Databases. Sci. Total Environ. 2024, 908, 168456. [Google Scholar] [CrossRef] [PubMed]
- Cutler, A.; Cutler, D.; Stevens, J. Random Forests. In Machine Learning—ML; Springer: New York, NY, USA, 2011; Volume 45, pp. 157–176. ISBN 978-1-4419-9325-0. [Google Scholar]
- Son, J.; Yang, S. A New Approach to Machine Learning Model Development for Prediction of Concrete Fatigue Life under Uniaxial Compression. Appl. Sci. 2022, 12, 9766. [Google Scholar] [CrossRef]
- Yang, X.; Bist, R.B.; Subedi, S.; Chai, L. A Computer Vision-Based Automatic System for Egg Grading and Defect Detection. Animals 2023, 13, 2354. [Google Scholar] [CrossRef] [PubMed]
- Surjith, S.; Gayathri, R.; SM, A.R. Integrated RF-CNN-GRU Ensemble for Enhanced Beef Quality Classification: A Multi-Modal Approach. J. Food Compos. Anal. 2024, 134, 106503. [Google Scholar] [CrossRef]
- Cao, J.; Chen, Y.; Su, X.; Wang, Z.; Yan, H. Machine Learning-Enabled Attapulgite/Polyimide Nanofiber Composite Aerogels-Based Colorimetric Sensor Array for Real-Time Monitoring of Balsa Fish Freshness. Food Chem. 2025, 463, 141382. [Google Scholar] [CrossRef]
- Al, S.; Uysal Ciloglu, F.; Akcay, A.; Koluman, A. Machine Learning Models for Prediction of Escherichia Coli O157:H7 Growth in Raw Ground Beef at Different Storage Temperatures. Meat Sci. 2024, 210, 109421. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Vozmediano, A.; Maurella, C.; Ceballos, L.A.; Crescio, E.; Meo, R.; Martelli, W.; Pitti, M.; Lombardi, D.; Meloni, D.; Pasqualini, C.; et al. Machine Learning Approach as an Early Warning System to Prevent Foodborne Salmonella Outbreaks in Northwestern Italy. Vet. Res. 2024, 55, 72. [Google Scholar] [CrossRef]
- Bhavsar, D.; Jobanputra, Y.; Swain, N.K.; Swain, D. Milk Quality Prediction Using Machine Learning. EAI Endorsed Trans. Internet Things 2024, 10, 1–5. [Google Scholar] [CrossRef]
- Miller, A.; Panneerselvam, J.; Liu, L. A Review of Regression and Classification Techniques for Analysis of Common and Rare Variants and Gene-Environmental Factors. Neurocomputing 2022, 489, 466–485. [Google Scholar] [CrossRef]
- Chiu, M.-H.; Yu, Y.-R.; Liaw, H.L.; Hao, L.C. The Use of Facial Micro-Expression State and Tree-Forest Model for Predicting Conceptual-Conflict Based Conceptual Change. In Science Education Research: Engaging Learners for a Sustainable Future; ESERA eproceeding; University of Helsinki: Helsinki, Finland, 2016; ISBN 978-951-51-1541-6. [Google Scholar]
- Belyadi, H.; Haghighat, A. Chapter 5—Supervised Learning. In Machine Learning Guide for Oil and Gas Using Python; Belyadi, H., Haghighat, A., Eds.; Gulf Professional Publishing: Oxford, UK, 2021; pp. 169–295. ISBN 978-0-12-821929-4. [Google Scholar]
- Chen, R.; Dai, T.; Zhang, Y.; Zhu, Y.; Liu, X.; Zhao, E. GBDT-IL: Incremental Learning of Gradient Boosting Decision Trees to Detect Botnets in Internet of Things. Sensors 2024, 24, 2083. [Google Scholar] [CrossRef]
- Kotsiopoulos, T.; Sarigiannidis, P.; Ioannidis, D.; Tzovaras, D. Machine Learning and Deep Learning in Smart Manufacturing: The Smart Grid Paradigm. Comput. Sci. Rev. 2021, 40, 100341. [Google Scholar] [CrossRef]
- Jiang, J.; Pan, H.; Li, M.; Qian, B.; Lin, X.; Fan, S. Predictive Model for the 5-Year Survival Status of Osteosarcoma Patients Based on the SEER Database and XGBoost Algorithm. Sci. Rep. 2021, 11, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Thai, H.-T. Machine Learning for Structural Engineering: A State-of-the-Art Review. Structures 2022, 38, 448–491. [Google Scholar] [CrossRef]
- Yan, S.; Liu, C.; Fang, S.; Ma, J.; Qiu, J.; Xu, D.; Li, L.; Yu, J.; Li, D.; Liu, Q. SERS-Based Lateral Flow Assay Combined with Machine Learning for Highly Sensitive Quantitative Analysis of Escherichia Coli O157:H7. Anal. Bioanal. Chem. 2020, 412, 7881–7890. [Google Scholar] [CrossRef] [PubMed]
- Son, W.-Y.; Kang, M.-H.; Hwang, J.; Kim, J.-H.; Dixit, Y.; Kim, H.-W. Hyperspectral Imaging Combined with Machine Learning Can Be Used for Rapid and Non-Destructive Monitoring of Residual Nitrite in Emulsified Pork Sausages. Foods 2024, 13, 3173. [Google Scholar] [CrossRef]
- LeCun, Y.; Bengio, Y.; Hinton, G. Deep Learning. Nature 2015, 521, 436–444. [Google Scholar] [CrossRef]
- Abraham, C.T.; Martin, D.R.; Martin, P.A.; Balakrishnan, G. 1.08—Neural Networks in Medical Imaging. In Comprehensive Precision Medicine, 1st ed.; Ramos, K.S., Ed.; Elsevier: Oxford, UK, 2024; pp. 92–119. ISBN 978-0-12-824256-8. [Google Scholar]
- Katal, A.; Singh, N. Artificial Neural Network: Models, Applications, and Challenges. In Innovative Trends in Computational Intelligence; Tomar, R., Hina, M.D., Zitouni, R., Ramdane-Cherif, A., Eds.; Springer International Publishing: Cham, Switzerland, 2022; pp. 235–257. ISBN 978-3-030-78284-9. [Google Scholar]
- Dematos, G.; Boyd, M.S.; Kermanshahi, B.; Kohzadi, N.; Kaastra, I. Feedforward versus Recurrent Neural Networks for Forecasting Monthly Japanese Yen Exchange Rates. Financ. Eng. Jpn. Mark. 1996, 3, 59–75. [Google Scholar] [CrossRef]
- Jia, Z.; Lin, Z.; Luo, Y.; Cardoso, Z.A.; Wang, D.; Flock, G.H.; Thompson-Witrick, K.A.; Yu, H.; Zhang, B. Enhancing Pathogen Identification in Cheese with High Background Microflora Using an Artificial Neural Network-Enabled Paper Chromogenic Array Sensor Approach. Sens. Actuators B Chem. 2024, 410, 135675. [Google Scholar] [CrossRef]
- Jia, Z.; Luo, Y.; Wang, D.; Holliday, E.; Sharma, A.; Green, M.M.; Roche, M.R.; Thompson-Witrick, K.; Flock, G.; Pearlstein, A.J.; et al. Surveillance of Pathogenic Bacteria on a Food Matrix Using Machine-Learning-Enabled Paper Chromogenic Arrays. Biosens. Bioelectron. 2024, 248, 115999. [Google Scholar] [CrossRef]
- Dragone, R.; Grasso, G.; Licciardi, G.; Di Stefano, D.; Frazzoli, C. Sensors Driven System Coupled with Artificial Intelligence for Quality Monitoring and HACCP in Dairy Production. Sens. Bio-Sens. Res. 2024, 45, 100683. [Google Scholar] [CrossRef]
- Cui, F.; Zheng, S.; Wang, D.; Ren, L.; Meng, Y.; Ma, R.; Wang, S.; Li, X.; Li, T.; Li, J. Development of Machine Learning-Based Shelf-Life Prediction Models for Multiple Marine Fish Species and Construction of a Real-Time Prediction Platform. Food Chem. 2024, 450, 139230. [Google Scholar] [CrossRef] [PubMed]
- Büyükarıkan, B. ConvColor DL: Concatenated Convolutional and Handcrafted Color Features Fusion for Beef Quality Identification. Food Chem. 2024, 460, 140795. [Google Scholar] [CrossRef]
- Jo, E.; Lee, Y.; Lee, Y.; Baek, J.; Kim, J.G. Rapid Identification of Counterfeited Beef Using Deep Learning-Aided Spectroscopy: Detecting Colourant and Curing Agent Adulteration. Food Chem. Toxicol. 2023, 181, 114088. [Google Scholar] [CrossRef] [PubMed]
- Hojjati, H.; Ho, T.K.K.; Armanfard, N. Self-Supervised Anomaly Detection in Computer Vision and beyond: A Survey and Outlook. Neural Netw. 2024, 172, 106106. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.-M.; Chen, T.-Y.; Li, J.-S. A Machine Learning-Based Anomaly Detection Method and Blockchain-Based Secure Protection Technology in Collaborative Food Supply Chain. Int. J. E-Collab. 2023, 19, 1–24. [Google Scholar] [CrossRef]
- Heaton, J. Ian Goodfellow, Yoshua Bengio, and Aaron Courville: Deep Learning. Genet. Program. Evolvable Mach. 2018, 19, 305–307. [Google Scholar] [CrossRef]
- Cebollada, S.; Payá, L.; Flores, M.; Peidró, A.; Reinoso, O. A State-of-the-Art Review on Mobile Robotics Tasks Using Artificial Intelligence and Visual Data. Expert Syst. Appl. 2021, 167, 114195. [Google Scholar] [CrossRef]
- Godefroy, S.; Alarfaj, R.; Tabarani, A.; Mansour, H. Investments in Food Safety Risk Assessment and Risk Analysis as a Requirement for Robust Food Control Systems: Calling for Regional Centres of Expertise. Food Drug Regul. Sci. J. 2019, 2, 1. [Google Scholar] [CrossRef]
- GEMS/Food—Home. Available online: https://extranet.who.int/gemsfood/ (accessed on 7 December 2024).
- RASFF Window—Search. Available online: https://webgate.ec.europa.eu/rasff-window/screen/search (accessed on 7 December 2024).
- Liu, N.; Bouzembrak, Y.; van den Bulk, L.M.; Gavai, A.; van den Heuvel, L.J.; Marvin, H.J.P. Automated Food Safety Early Warning System in the Dairy Supply Chain Using Machine Learning. Food Control 2022, 136, 108872. [Google Scholar] [CrossRef]
- KAP: Quality Programme for Agricultural Products|RIVM. Available online: https://www.rivm.nl/en/chemkap (accessed on 7 December 2024).
- Lombardo, A.; Boselli, C.; Amatiste, S.; Ninci, S.; Frazzoli, C.; Dragone, R.; De Rossi, A.; Grasso, G.; Mantovani, A.; Brajon, G. From Invention to Innovation: Risk Analysis to Integrate One Health Technology in the Dairy Farm. Front. Public Health 2017, 5, 302. [Google Scholar] [CrossRef]
- Murphy, S.I.; Reichler, S.J.; Martin, N.H.; Boor, K.J.; Wiedmann, M. Machine Learning and Advanced Statistical Modeling Can Identify Key Quality Management Practices That Affect Postpasteurization Contamination of Fluid Milk. J. Food Prot. 2021, 84, 1496–1511. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez, A.; Sacristán, C.; Iglesias, I.; de la Torre, A. Salmonella Assessment along the Spanish Food Chain: Likelihood of Salmonella Occurrence in Poultry and Pig Products Is Maintained across the Food Chain Stages. Zoonoses Public Health 2023, 70, 665–673. [Google Scholar] [CrossRef] [PubMed]
- Sacristán, C.; Rodríguez, A.; Iglesias, I.; de la Torre, A. Campylobacter Assessment along the Spanish Food Chain: Identification of Key Points. Zoonoses Public Health 2024, 71, 755–762. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Zhu, J.; Liu, R.; Jiang, F.; Chen, M.; Kutsanedzie, F.Y.H.; Jiao, T.; Wei, J.; Chen, X.; Chen, Q. Nanogap-Assisted SERS/PCR Biosensor Coupled Machine Learning for the Direct Sensing of Staphylococcus Aureus in Food. J. Agric. Food Chem. 2025, 73, 1589–1597. [Google Scholar] [CrossRef]
- Aggarwal, M.; Sahoo, P.; Saha, S.; Das, P. Machine Learning-Mediated Ultrasensitive Detection of Citrinin and Associated Mycotoxins in Real Food Samples Discerned from a Photoluminescent Carbon Dot Barcode Array. J. Agric. Food Chem. 2023, 71, 12849–12858. [Google Scholar] [CrossRef]
- Zhou, C.; Huang, C.; Zhang, H.; Yang, W.; Jiang, F.; Chen, G.; Liu, S.; Chen, Y. Machine-Learning-Driven Optical Immunosensor Based on Microspheres-Encoded Signal Transduction for the Rapid and Multiplexed Detection of Antibiotics in Milk. Food Chem. 2024, 437, 137740. [Google Scholar] [CrossRef]
- Liu, X.; Zhao, B.; Liu, X.; Cheng, Z.; Yang, X.; Zhang, X.; Feng, X. A Simply Designed Quasi-Ratiometric Fluorescence Probe for the Visual and on-Site Detection of Levofloxacin (LVF) Residues in Milk and Fish Sample. Talanta 2025, 285, 127391. [Google Scholar] [CrossRef]
- Liu, X.; Xu, Z.; Fang, G.; Li, N.; Hasi, W. SERS Combined with Self-Optimizing Machine Learning Algorithm for Quantitative Detection of Norfloxacin and Ciprofloxacin in Milk. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2025, 329, 125641. [Google Scholar] [CrossRef]
- Chung, T.; Tam, I.Y.S.; Lam, N.Y.Y.; Yang, Y.; Liu, B.; He, B.; Li, W.; Xu, J.; Yang, Z.; Zhang, L.; et al. Non-Targeted Detection of Food Adulteration Using an Ensemble Machine-Learning Model. Sci. Rep. 2022, 12, 20956. [Google Scholar] [CrossRef]
- Aqeel, M.; Sohaib, A.; Iqbal, M.; Ullah, S.S. Milk Adulteration Identification Using Hyperspectral Imaging and Machine Learning. J. Dairy Sci. 2025, 108, 1301–1314. [Google Scholar] [CrossRef]
- Tao, D.; Zhang, D.; Hu, R.; Rundensteiner, E.; Feng, H. Crowdsourcing and Machine Learning Approaches for Extracting Entities Indicating Potential Foodborne Outbreaks from Social Media. Sci. Rep. 2021, 11, 21678. [Google Scholar] [CrossRef]
- Burden of Foodborne Illness: Overview|Estimates of Foodborne Illness|CDC. Available online: https://www.cdc.gov/foodborneburden/estimates-overview.html (accessed on 7 December 2024).
- Saulat Jahan Epidemiology of Foodborne Illness. In Scientific, Health and Social Aspects of the Food Industry; Valdez, B., Ed.; IntechOpen: Rijeka, Croatia, 2012; Chapter 16; pp. 321–342. [Google Scholar]
- Hamsar, M.N.; Sazili, A.Q.; Md Tohid, S.F. Chemical Probe as Specific Detector of Porcine Protein or Peptide in Meat and Meat-Based Products: Potential Applications, Challenges, and the Way Forward. J. Agric. Food Res. 2024, 15, 101026. [Google Scholar] [CrossRef]
- Hou, S.; Wang, S.; Zhao, X.; Li, W.; Gao, J.; Wang, Y.; Zhang, R.; Gong, L.; Jiang, S.; Zhu, Y. Establishment of Indirect ELISA Method for Salmonella Antibody Detection from Ducks Based on PagN Protein. BMC Vet. Res. 2022, 18, 424. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Castro, M.; Feller, J.-F. Review on Sensor Array-Based Analytical Technologies for Quality Control of Food and Beverages. Sensors 2023, 23, 4017. [Google Scholar] [CrossRef]
- Bai, H.; Lu, H.; Fu, X.; Zhang, E.; Lv, F.; Liu, L.; Wang, S. Supramolecular Strategy Based on Conjugated Polymers for Discrimination of Virus and Pathogens. Biomacromolecules 2018, 19, 2117–2122. [Google Scholar] [CrossRef] [PubMed]
- Qi, P.; Chen, X.; Sun, Y.; Zhang, D. Multivalent Glycosylated Cu:CdS Quantum Dots as a Platform for Rapid Bacterial Discrimination and Detection. Sens. Actuators B Chem. 2018, 254, 431–436. [Google Scholar] [CrossRef]
- Fu, S.; Yang, X.; Pang, L.; Cheng, S.; Song, D.; Qin, X.; Man, C.; Jiang, Y. A Novel Fluorescence Aptasensor Based on Magnetic Beads/Gold Nanoparticles/DNA-Stabilized Silver Nanoclusters for Detection of Salmonella Typhimurium. Foods 2022, 11, 595. [Google Scholar] [CrossRef]
- Nandu, N.; Smith, C.W.; Uyar, T.B.; Chen, Y.-S.; Kachwala, M.J.; He, M.; Yigit, M.V. Machine-Learning Single-Stranded DNA Nanoparticles for Bacterial Analysis. ACS Appl. Nano Mater. 2020, 3, 11709–11714. [Google Scholar] [CrossRef]
- Yang, M.; Luo, Y.; Sharma, A.; Jia, Z.; Wang, S.; Wang, D.; Lin, S.; Perreault, W.; Purohit, S.; Gu, T.; et al. Nondestructive and Multiplex Differentiation of Pathogenic Microorganisms from Spoilage Microflora on Seafood Using Paper Chromogenic Array and Neural Network. Food Res. Int. 2022, 162, 112052. [Google Scholar] [CrossRef]
- Rabehi, A.; Helal, H.; Zappa, D.; Comini, E. Advancements and Prospects of Electronic Nose in Various Applications: A Comprehensive Review. Appl. Sci. 2024, 14, 4506. [Google Scholar] [CrossRef]
- Kadian, S.; Kumari, P.; Sahoo, S.S.; Shukla, S.; Narayan, R.J. Machine Learning Enabled Microneedle-Based Colorimetric pH Sensing Patch for Wound Health Monitoring and Meat Spoilage Detection. Microchem. J. 2024, 200, 110350. [Google Scholar] [CrossRef]
- Chen, H.; He, C.; Jiang, M.; Liu, X. Egg Crack Detection Based on Support Vector Machine. In Proceedings of the 2020 International Conference on Intelligent Computing and Human-Computer Interaction (ICHCI), Sanya, China, 4–6 December 2020; pp. 80–83. [Google Scholar]
- Turkoglu, M. Defective Egg Detection Based on Deep Features and Bidirectional Long-Short-Term-Memory. Comput. Electron. Agric. 2021, 185, 106152. [Google Scholar] [CrossRef]
- European Food Safety Authority; European Centre for Disease Prevention and Control The European Union One Health 2020 Zoonoses Report. EFSA J. 2021, 19, e06971. [CrossRef]
- Ghimpețeanu, O.M.; Pogurschi, E.N.; Popa, D.C.; Dragomir, N.; Drăgotoiu, T.; Mihai, O.D.; Petcu, C.D. Antibiotic Use in Livestock and Residues in Food—A Public Health Threat: A Review. Foods 2022, 11, 1430. [Google Scholar] [CrossRef]
- Bacanlı, M.G. The Two Faces of Antibiotics: An Overview of the Effects of Antibiotic Residues in Foodstuffs. Arch. Toxicol. 2024, 98, 1717–1725. [Google Scholar] [CrossRef] [PubMed]
- Zhang, K.; Gan, N.; Shen, Z.; Cao, J.; Hu, F.; Li, T. Microchip Electrophoresis Based Aptasensor for Multiplexed Detection of Antibiotics in Foods via a Stir-Bar Assisted Multi-Arm Junctions Recycling for Signal Amplification. Biosens. Bioelectron. 2019, 130, 139–146. [Google Scholar] [CrossRef] [PubMed]
- Tumini, M.; Nagel, O.G.; Althaus, R.L. Five-Assay Microbiological System for the Screening of Antibiotic Residues. Rev. Argent. Microbiol. 2019, 51, 345–353. [Google Scholar] [CrossRef]
- Guliy, O.I.; Zaitsev, B.D.; Semyonov, A.P.; Alsowaidi, A.K.M.; Teplykh, A.A.; Karavaeva, O.A.; Borodina, I.A. Microbial Acoustic Sensor Test-System Based on a Piezoelectric Resonator with a Lateral Electric Field for Kanamycin Detection in Liquid. Ultrasonics 2022, 120, 106651. [Google Scholar] [CrossRef]
- Guo, Y.; Sang, P.; Lu, G.; Yang, X.; Xie, Y.; Hu, Z.; Qian, H.; Yao, W. RNA-Cleaving Deoxyribozyme-Linked Immunosorbent Assay for the Ultrasensitive Detection of Chloramphenicol in Milk. Food Chem. 2023, 408, 135174. [Google Scholar] [CrossRef]
- Zergiebel, S.; Ueberschaar, N.; Seeling, A. Development and Optimization of an Ultra-Fast Microextraction Followed by HPLC-UV of Tetracycline Residues in Milk Products. Food Chem. 2023, 402, 134270. [Google Scholar] [CrossRef]
- Singh, A.K.; Mittal, S.; Das, M.; Saharia, A.; Tiwari, M. Optical Biosensors: A Decade in Review. Alex. Eng. J. 2023, 67, 673–691. [Google Scholar] [CrossRef]
- Khan, R.; Anwar, F.; Ghazali, F.M. A Comprehensive Review of Mycotoxins: Toxicology, Detection, and Effective Mitigation Approaches. Heliyon 2024, 10, e28361. [Google Scholar] [CrossRef] [PubMed]
- Shahidi, F.; Pegg, R. Processing of Nitrite-Free Cured Meats. In Advanced Technologies for Meat Processing; CRC Press: Boca Raton, FL, USA, 2006; pp. 309–327. ISBN 978-1-57444-587-9. [Google Scholar]
- Harish, S.; Somesh, K.; Venkatesan, M.; Prabhavathy, P. FinSecure: Utilizing IoT Sensors for Formaldehyde Detection and Fish Freshness Detection for Enhancing Safety in Fish Consumption Using Machine Learning and Deep Learning. In Proceedings of the 2024 International Conference on Signal Processing, Computation, Electronics, Power and Telecommunication (IConSCEPT), Karaikal, India, 4–5 July 2024; pp. 1–8. [Google Scholar]
- Joy, P.; Metilda, M.; Johnraja, I. Identification of Chemicalsin Fish Using Machine Learning and IoT. SN Comput. Sci. 2024, 5, 616. [Google Scholar] [CrossRef]
- Zhang, T.; Mi, H.; Wei, S.; Xu, Y.; Yang, Z.; Liang, S.; Ding, X. Automated LA-DBD-TLC-MS Device for Accurate Detection of Biogenic Amines in Fishery Products Coupled with Machine Learning Algorithms. Food Chem. 2025, 470, 142651. [Google Scholar] [CrossRef]
- Jayasundara, J.M.V.D.B.; Ramanayake, R.M.L.S.; Senarath, H.M.N.B.; Herath, H.M.S.L.; Godaliyadda, G.M.R.I.; Ekanayake, M.P.B.; Herath, H.M.V.R.; Ariyawansa, S. Deep Learning for Automated Fish Grading. J. Agric. Food Res. 2023, 14, 100711. [Google Scholar] [CrossRef]
- Everstine, K.; Sklare, S.A. Food Fraud: A Global Threat with Public Health and Economic Consequences; Hellberg, R.S., Everstine, K., Sklare, S.A., Eds.; Academic Press: London, UK, 2021; ISBN 0-12-817243-6. [Google Scholar]
- Guan, N.; Fan, Q.; Ding, J.; Zhao, Y.; Lu, J.; Ai, Y.; Xu, G.; Zhu, S.; Yao, C.; Jiang, L.; et al. Melamine-Contaminated Powdered Formula and Urolithiasis in Young Children. N. Engl. J. Med. 2009, 360, 1067–1074. [Google Scholar] [CrossRef]
- Ho, S.S.Y.; Chu, W.C.W.; Wong, K.T.; Li, C.K.; Wong, W.; Ng, P.C.; Ahuja, A.T. Ultrasonographic Evaluation of Melamine-Exposed Children in Hong Kong. N. Engl. J. Med. 2009, 360, 1156–1157. [Google Scholar] [CrossRef]
- Langman, C.B. Melamine, Powdered Milk, and Nephrolithiasis in Chinese Infants. N. Engl. J. Med. 2009, 360, 1139–1141. [Google Scholar] [CrossRef]
- Aline, M.; Olivier, F.; Frédéric, D.; Julie, H.; Gilbert, B. The Horse Meat Scandal—The European Analytical Response. In DNA Techniques to Verify Food Authenticity: Applications in Food Fraud; Burns, M., Foster, L., Walker, M., Eds.; The Royal Society of Chemistry: London, UK, 2019; pp. 177–188. ISBN 978-1-78801-178-5. [Google Scholar]
- Li, D.; Wu, G.; Liu, H.; Yang, M.; Xing, K. Recent Progress in Evaluation of Red Meat Quality Using Hyperspectral Imaging Technology. Meat Res 2018, 32, 59–63. [Google Scholar]
- Andersen, P.V.; Wold, J.P.; Gjerlaug-Enger, E.; Veiseth-Kent, E. Predicting Post-Mortem Meat Quality in Porcine Longissimus Lumborum Using Raman, near Infrared and Fluorescence Spectroscopy. Meat Sci. 2018, 145, 94–100. [Google Scholar] [CrossRef]
- Kamruzzaman, M.; Makino, Y.; Oshita, S. Non-Invasive Analytical Technology for the Detection of Contamination, Adulteration, and Authenticity of Meat, Poultry, and Fish: A Review. Anal. Chim. Acta 2015, 853, 19–29. [Google Scholar] [CrossRef] [PubMed]
- Deng, X.; Cao, S.; Horn, A.L. Emerging Applications of Machine Learning in Food Safety. Annu. Rev. Food Sci. Technol. 2021, 12, 513–538. [Google Scholar] [CrossRef] [PubMed]
- Chhetri, K.B. Applications of Artificial Intelligence and Machine Learning in Food Quality Control and Safety Assessment. Food Eng. Rev. 2024, 16, 1–21. [Google Scholar] [CrossRef]
- Harper, W. The Strengths and Weaknesses of the Electronic Nose. Adv. Exp. Med. Biol. 2001, 488, 59–71. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Revelou, P.-K.; Tsakali, E.; Batrinou, A.; Strati, I.F. Applications of Machine Learning in Food Safety and HACCP Monitoring of Animal-Source Foods. Foods 2025, 14, 922. https://doi.org/10.3390/foods14060922
Revelou P-K, Tsakali E, Batrinou A, Strati IF. Applications of Machine Learning in Food Safety and HACCP Monitoring of Animal-Source Foods. Foods. 2025; 14(6):922. https://doi.org/10.3390/foods14060922
Chicago/Turabian StyleRevelou, Panagiota-Kyriaki, Efstathia Tsakali, Anthimia Batrinou, and Irini F. Strati. 2025. "Applications of Machine Learning in Food Safety and HACCP Monitoring of Animal-Source Foods" Foods 14, no. 6: 922. https://doi.org/10.3390/foods14060922
APA StyleRevelou, P.-K., Tsakali, E., Batrinou, A., & Strati, I. F. (2025). Applications of Machine Learning in Food Safety and HACCP Monitoring of Animal-Source Foods. Foods, 14(6), 922. https://doi.org/10.3390/foods14060922