Reduction of Rice Noodle Rehydration Time by High-Temperature Short-Time Treatment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Rice Noodles
2.3. Measurement of Physical Properties of Rice Noodles
2.4. Measurement of Cooking Properties
2.5. Determination of Textural Properties
2.6. Determination of Microstructure
2.7. Sensory Evaluation
2.8. Measurement of the Crystalline Structure
2.9. Determination of Supramolecular Structure
2.10. Determination of Molecular Weight
2.11. Determination of Pore Structure
2.12. Statistical Analysis
3. Results and Discussion
3.1. Physical Properties of Rice Noodles
3.2. Cooking Properties of Rice Noodles
3.3. Microstructure of Cooked Rice Noodles
3.4. Texture Properties of Cooked Rice Noodles
3.5. Sensory Evaluation
3.6. Changes in the Multiscale Structure of Starch in Rice Noodles
3.6.1. Crystal Structures
3.6.2. Supramolecular Structure
3.6.3. Molecular Weight
3.7. Changes in the Pore Structure of Rice Noodles
3.8. Possible Mechanisms
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
HTSTT | High-temperature short-time treatment |
Mn | number-average molecular weight |
Mw | weight-average molecular weight |
DMSO | dimethyl sulfoxide |
SEC | size exclusion chromatography |
References
- Li, C.; You, Y.; Chen, D.; Gu, Z.; Zhang, Y.; Holler, T.P.; Ban, X.; Hong, Y.; Cheng, L.; Li, Z. A systematic review of rice noodles: Raw material, processing method and quality improvement. Trends Food Sci. Technol. 2021, 107, 389–400. [Google Scholar] [CrossRef]
- Gao, L.; Xu, Z.; Zhang, R.; Qin, Y.; Ji, N.; Wang, Y.; Xiong, L.; Sun, Q. Effects of erythritol on rheological properties of rice flour and structural characteristics of extruded dried rice noodles with rapid rehydration behaviors. Food Hydrocoll. 2023, 144, 109007. [Google Scholar] [CrossRef]
- Zhang, J.; Kong, H.; Ban, X.; Li, C.; Gu, Z.; Li, Z. Rice noodle quality is structurally driven by the synergistic effect between amylose chain length and amylopectin unit-chain ratio. Carbohydr. Polym. 2022, 295, 119834. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Kong, H.; Li, C.; Ban, X.; Gu, Z.; Li, Z. Highly branched starch accelerates the restoration of edible quality of dried rice noodles during rehydration. Carbohydr. Polym. 2022, 292, 119612. [Google Scholar] [CrossRef]
- Li, J.; Rashed, M.M.; Deng, L.; Jin, Z.; Jiao, A. Thermostable and mesophilic α-amylase: Effects on wheat starch physicochemical properties and their applications in extruded noodles. J. Cereal Sci. 2019, 87, 248–257. [Google Scholar] [CrossRef]
- Li, J.; Jiao, A.; Deng, L.; Rashed, M.M.A.; Jin, Z. Porous-structured extruded instant noodles induced by the medium temperature α-amylase and its effect on selected cooking properties and sensory characteristics. Int. J. Food Sci. Technol. 2018, 53, 2265–2272. [Google Scholar] [CrossRef]
- Liu, J.; Qi, Y.; Hamadou, A.H.; Ahmed, Z.; Guo, Q.; Zhang, J.; Xu, B. Effect of high-temperature drying at different moisture levels on texture of dried noodles: Insights into gluten aggregation and pore distribution. J. Cereal Sci. 2024, 115, 103817. [Google Scholar] [CrossRef]
- Zhang, J.; Zhao, F.; Li, C.; Ban, X.; Gu, Z.; Li, Z. Acceleration mechanism of the rehydration process of dried rice noodles by the porous structure. Food Chem. 2023, 431, 137050. [Google Scholar] [CrossRef]
- Xu, X.; Gao, C.; Xu, J.; Meng, L.; Wang, Z.; Yang, Y.; Shen, X.; Tang, X. Hydration and plasticization effects of maltodextrin on the structure and cooking quality of extruded whole buckwheat noodles. Food Chem. 2022, 374, 131613. [Google Scholar] [CrossRef]
- Hu, W.; Zhang, W.; Zhang, Z.; Shen, S.; Lu, G.; Wu, W. Effect of Maltodextrin on the Physicochemical Properties and Cooking Performance of Sweet Potato Starch Noodles. Foods 2022, 11, 4082. [Google Scholar] [CrossRef]
- Sun, Y.; Liu, B.; Snetselaar, L.G.; Robinson, J.G.; Wallace, R.B.; Peterson, L.L.; Bao, W. Association of fried food consumption with all cause, cardiovascular, and cancer mortality: Prospective cohort study. BMJ 2019, 364, k5420. [Google Scholar] [CrossRef] [PubMed]
- Bhatta, S.; Janezic, T.S.; Ratti, C. Freeze-Drying of Plant-Based Foods. Foods 2020, 9, 87. [Google Scholar] [CrossRef]
- Pongpichaiudom, A.; Songsermpong, S. Characterization of frying, microwave-drying, infrared-drying, and hot-air drying on protein-enriched, instant noodle microstructure, and qualities. J. Food Process. Preserv. 2018, 42, e13560. [Google Scholar] [CrossRef]
- Ismail, M.H.; Alam Khan, K.; Ngadisih, N.; Irie, M.; Ong, S.P.; Hii, C.L.; Law, C.L. Two-step falling rate in the drying kinetics of rice noodle subjected to pre-treatment and temperature. J. Food Process. Preserv. 2020, 44, e14849. [Google Scholar] [CrossRef]
- Xiang, Z.; Ye, F.; Zhou, Y.; Wang, L.; Zhao, G. Performance and mechanism of an innovative humidity-controlled hot-air drying method for concentrated starch gels: A case of sweet potato starch noodles. Food Chem. 2018, 269, 193–201. [Google Scholar] [CrossRef]
- Yan, X.; Luo, S.; Ye, J.; Liu, C. Improvement of rice noodle quality by saturated-steam heat moisture treatment. Carbohydr. Polym. 2025, 353, 123303. [Google Scholar] [CrossRef]
- Kumar, S.R.; Tangsrianugul, N.; Sriprablom, J.; Wongsagonsup, R.; Wansuksri, R.; Suphantharika, M. Effect of heat-moisture treatment on the physicochemical properties and digestibility of proso millet flour and starch. Carbohyd. Polym. 2023, 307, 120630. [Google Scholar] [CrossRef]
- Janve, M.; Singhal, R.S. Fortification of puffed rice extrudates and rice noodles with different calcium salts: Physicochemical properties and calcium bioaccessibility. LWT 2018, 97, 67–75. [Google Scholar] [CrossRef]
- Wang, N.; Maximiuk, L.; Toews, R. Pea starch noodles: Effect of processing variables on characteristics and optimisation of twin-screw extrusion process. Food Chem. 2012, 133, 742–753. [Google Scholar] [CrossRef]
- Luo, S.; Yan, X.; Fu, Y.; Pang, M.; Chen, R.; Liu, Y.; Chen, J.; Liu, C. The quality of gluten-free bread made of brown rice flour prepared by low temperature impact mill. Food Chem. 2021, 348, 129032. [Google Scholar] [CrossRef]
- Rosciardi, V.; Baglioni, P. Role of amylose and amylopectin in PVA-starch hybrid cryo-gels networks formation from liquid-liquid phase separation. J. Colloid Interface Sci. 2022, 630, 415–425. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Li, X.; Liu, J.; Xie, F.; Chen, L. Supramolecular structure of A- and B-type granules of wheat starch. Food Hydrocoll. 2013, 31, 68–73. [Google Scholar] [CrossRef]
- Yan, X.; Luo, S.; Ye, J.; Liu, C. Effect of starch degradation induced by extruded pregelatinization treatment on the quality of gluten-free brown rice bread. Int. J. Biol. Macromol. 2024, 272, 132764. [Google Scholar] [CrossRef] [PubMed]
- Luo, L.; Xiong, G.; Wang, Q.; Xiang, X.; Long, Z.; Huang, Z.; Ding, Y.; Liu, C. Enhancing cooking and eating quality of semi-dried brown rice noodles through Lactobacillus fermentation and moderate lysine addition. Food Chem. X 2025, 26, 102327. [Google Scholar] [CrossRef]
- Liu, Y.; Luo, Q.; Chen, J.; Zhao, G.; Ye, F. Physicochemical quality improvement of dried rice noodles by direct heat-moisture treatment during the drying process. J. Cereal Sci. 2024, 118, 103986. [Google Scholar] [CrossRef]
- Yu, J.H.; Xu, S.L.; Goksen, G.; Yi, C.F.; Shao, P. Chitosan films plasticized with choline-based deep eutectic solvents: UV shielding, antioxidant, and antibacterial properties. Food Hydrocoll. 2023, 135, 108196. [Google Scholar] [CrossRef]
- Ji, S.; Yang, Y.; Li, H.; Li, Z.; Suo, B.; Fan, M.; Ai, Z. Enhancement of the quality and in vitro starch digestibility of fried-free instant noodles with rapid rehydration using sourdough fermented with exopolysaccharide-producing Weissella confusa. Food Chem. 2025, 464, 141778. [Google Scholar] [CrossRef]
- Li, Y.; Wang, Z.; Qin, Y.; Ji, N.; Xiong, L.; Sun, Q. Preparation of porous-structured flat potato starch noodles with gelatin for shortening cooking time. Food Hydrocoll. 2024, 149, 109573. [Google Scholar] [CrossRef]
- Luo, S.; Zhou, B.; Cheng, L.; Huang, J.; Zou, P.; Zeng, Y.; Huang, S.; Chen, T.; Liu, C.; Wu, J. Pre-fermentation of rice flour for improving the cooking quality of extruded instant rice. Food Chem. 2022, 386, 132757. [Google Scholar] [CrossRef]
- Zhang, Q.; Chen, M.; Li, W.; Liang, C.; Huang, X.; Hu, H.; Huang, Z.; Gan, T.; Zhang, Y. Effects of the addition of cassava starch and the size of water clusters on physicochemical and cooking properties of rice noodles. Food Chem. 2025, 470, 142665. [Google Scholar] [CrossRef]
- Zhang, S.; Sun, X.; Xu, X.; Feng, X.; Wang, Z.; Meng, L.; Wu, D.; Tang, X. Effects of soaking conditions on the quality and in vitro starch digestibility of extruded whole buckwheat noodles. J. Cereal Sci. 2022, 108, 103584. [Google Scholar] [CrossRef]
- Liao, L.; Liu, H.; Gan, Z.; Wu, W. Structural properties of sweet potato starch and its vermicelli quality as affected by heat-moisture treatment. Int. J. Food Prop. 2019, 22, 1122–1133. [Google Scholar] [CrossRef]
- Tan, H.-Z.; Li, Z.-G.; Tan, B. Starch noodles: History, classification, materials, processing, structure, nutrition, quality evaluating and improving. Food Res. Int. 2009, 42, 551–576. [Google Scholar] [CrossRef]
- Hager, A.-S.; Arendt, E.K. Influence of hydroxypropylmethylcellulose (HPMC), xanthan gum and their combination on loaf specific volume, crumb hardness and crumb grain characteristics of gluten-free breads based on rice, maize, teff and buckwheat. Food Hydrocoll. 2013, 32, 195–203. [Google Scholar] [CrossRef]
- Zhang, J.; You, Y.; Li, C.; Ban, X.; Gu, Z.; Li, Z. The modulatory roles and regulatory strategy of starch in the textural and rehydration attributes of dried noodle products. Crit. Rev. Food Sci. Nutr. 2022, 64, 5551–5567. [Google Scholar] [CrossRef]
- Li, Q.; Li, C.; Li, E.; Gilbert, R.G.; Xu, B. A molecular explanation of wheat starch physicochemical properties related to noodle eating quality. Food Hydrocoll. 2020, 108, 106035. [Google Scholar] [CrossRef]
- Xu, X.; Meng, L.; Gao, C.; Cheng, W.; Yang, Y.; Shen, X.; Tang, X. Construction of starch-sodium alginate interpenetrating polymer network and its effects on structure, cooking quality and in vitro starch digestibility of extruded whole buckwheat noodles. Food Hydrocoll. 2023, 143, 108876. [Google Scholar] [CrossRef]
- Farhat, I.A.; Blanshard, J.M.V.; Mitchell, J.R. The retrogradation of waxy maize starch extrudates: Effects of storage temperature and water content. Biopolymers 2000, 53, 411–422. [Google Scholar] [CrossRef]
- Ottenhof, M.-A.; Hill, S.E.; Farhat, I.A. Comparative Study of the Retrogradation of Intermediate Water Content Waxy Maize, Wheat, and Potato Starches. J. Agric. Food Chem. 2005, 53, 631–638. [Google Scholar] [CrossRef]
- Yan, X.; Wu, J.; Zhao, C.; Luo, S.; Huang, L.; Guo, D.; Liu, C. Chinese rice noodles form the viscoelastic texture by dual high-temperature retrogradation: An insight into the mechanism. LWT 2023, 189, 115496. [Google Scholar] [CrossRef]
- Yoshida, H.; Tomiyama, Y.; Mizushina, Y. Lipid components, fatty acids and triacylglycerol molecular species of black and red rices. Food Chem. 2010, 123, 210–215. [Google Scholar] [CrossRef]
- Morrison, W.R. Lipids in cereal starches: A review. J. Cereal Sci. 1988, 8, 1–15. [Google Scholar] [CrossRef]
- Chen, J.; Cai, H.; Zhang, M.; Chen, Z. Effects of rice protein on the formation and structural properties of starch-lipid complexes in instant rice noodles incorporated with different fatty acids. Food Biosci. 2023, 54, 102851. [Google Scholar] [CrossRef]
- Chen, J.; Cai, H.; Yang, S.; Zhang, M.; Wang, J.; Chen, Z. The formation of starch-lipid complexes in instant rice noodles incorporated with different fatty acids: Effect on the structure, in vitro enzymatic digestibility and retrogradation properties during storage. Food Res. Int. 2022, 162, 111933. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Wu, J.; Luo, S.; Zou, P.; Guo, B.; Liu, Y.; Chen, J.; Liu, C. Improving instant properties of kudzu powder by extrusion treatment and its related mechanism. Food Hydrocoll. 2020, 101, 105475. [Google Scholar] [CrossRef]
- Sun, Q.; Gong, M.; Li, Y.; Xiong, L. Effect of dry heat treatment on the physicochemical properties and structure of proso millet flour and starch. Carbohydr. Polym. 2014, 110, 128–134. [Google Scholar] [CrossRef]
- Miao, W.-B.; Ma, S.-Y.; Peng, X.-G.; Qin, Z.; Liu, H.-M.; Cai, X.-S.; Wang, X.-D. Effects of various roasting temperatures on the structural and functional properties of starches isolated from tigernut tuber. LWT 2021, 151, 112149. [Google Scholar] [CrossRef]
- Wu, J.; Xu, S.; Huang, Y.; Zhang, X.; Liu, Y.; Wang, H.; Zhong, Y.; Bai, L.; Liu, C. Prevents kudzu starch from agglomeration during rapid pasting with hot water by a non-destructive superheated steam treatment. Food Chem. 2022, 386, 132819. [Google Scholar] [CrossRef]
- Yu, M.; Zhu, S.; Zhong, F.; Zhang, S.; Du, C.; Li, Y. Insight into the multi-scale structure changes and mechanism of corn starch modulated by different structural phenolic acids during retrogradation. Food Hydrocoll. 2022, 128, 107581. [Google Scholar] [CrossRef]
- Liu, J.; Zhang, R.; Pi, X.; Zhang, B. Structural features of rice starch-protein system: Influence of retrogradation time and quick-freezing temperature. Int. J. Biol. Macromol. 2024, 277, 133981. [Google Scholar] [CrossRef]
- Jiang, H.; McClements, D.J.; Dai, L.; Qin, Y.; Ji, N.; Xiong, L.; Qiu, C.; Sun, Q. Effects of moisture content and retrogradation on structure and properties of indica rice flour and starch gels. Food Hydrocoll. 2024, 150, 109657. [Google Scholar] [CrossRef]
- Dang, Y.; Otsubo, T.; Iwamoto, S.; Katsuno, N. Unraveling the changes of physical properties and nanostructures of rice starch incorporated with pregelatinized rice starch paste during gelatinization. Food Hydrocoll. 2024, 162, 110931. [Google Scholar] [CrossRef]
- Chen, L.; Ma, R.; McClements, D.J.; Zhang, Z.; Jin, Z.; Tian, Y. Impact of granule size on microstructural changes and oil absorption of potato starch during frying. Food Hydrocoll. 2019, 94, 428–438. [Google Scholar] [CrossRef]
- Yang, Y.; Li, T.; Li, Y.; Qian, H.; Qi, X.; Zhang, H.; Wang, L. Understanding the molecular weight distribution, in vitro digestibility and rheological properties of the deep-fried wheat starch. Food Chem. 2020, 331, 127315. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Li, Y.; Wang, L.; Wang, L.; Li, Z.; Qiu, J. Multi-scale structure, rheological and digestive properties of starch isolated from highland barley kernels subjected to different thermal treatments. Food Hydrocoll. 2022, 129, 107630. [Google Scholar] [CrossRef]
- Yoora, S.; Songsermpong, S. Effects of water, guar gum, potassium chloride, and drying methods on quality and rehydration time of instant fermented rice noodles. Int. J. Food Sci. Technol. 2022, 57, 6090–6096. [Google Scholar] [CrossRef]
Samples | Control | HTSTT-120 | HTSTT-130 | HTSTT-140 |
---|---|---|---|---|
Average area (μm2) | 65.02 ± 0.74 a | 64.52 ± 1.95 a | 68.61 ± 1.36 a | 39.65 ± 1.81 b |
Thickness (μm) | 0.73 ± 0.03 c | 0.87 ± 0.03 b | 1.09 ± 0.04 a | 0.76 ± 0.05 c |
Samples | Control | HTSTT-120 | HTSTT-130 | HTSTT-140 |
---|---|---|---|---|
Relative crystallinity (%) | 28.29 ± 0.11 a | 18.66 ± 0.61 b | 17.34 ± 0.18 c | 16.88 ± 0.69 c |
A-type crystallinity (%) | 21.33 ± 0.17 a | 11.76 ± 0.15 b | 10.21 ± 0.10 bc | 9.17 ± 1.39 c |
V-type crystallinity (%) | 6.96 ± 0.27 a | 6.90 ± 0.46 a | 7.13 ± 0.27 a | 7.71 ± 0.70 a |
ξ (nm) | 10.97 ± 0.68 b | 11.37 ± 0.76 ab | 11.98 ± 0.39 ab | 12.88 ± 0.44 a |
R (nm) | 12.31 ± 0.40 a | 11.41 ± 0.51 ab | 11.98 ± 0.39 ab | 10.99 ± 0.47 b |
α | 1.65 ± 0.01 a | 1.63 ± 0.01 ab | 1.62 ± 0.01 b | 1.58 ± 0.01 c |
Mn (×106 g/mol) | 5.05 ± 0.08 a | 4.75 ± 0.10 b | 4.06 ± 0.06 c | 2.63 ± 0.08 d |
Mw (×106 g/mol) | 15.78 ± 0.08 a | 14.47 ± 0.12 b | 12.16 ± 0.12 c | 8.45 ± 0.15 d |
pore volume (×10−3 cm3/g) | 3.05 ± 0.01 d | 4.96 ± 0.87 c | 6.70 ± 0.98 b | 11.19 ± 0.04 a |
Average pore diameter (nm) | 3.06 ± 0.00 b | 3.17 ± 0.21 b | 3.41 ± 0.00 ab | 3.69 ± 0.24 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yan, X.; Xiao, H.; Ye, J.; Luo, S.; Liu, C. Reduction of Rice Noodle Rehydration Time by High-Temperature Short-Time Treatment. Foods 2025, 14, 1079. https://doi.org/10.3390/foods14071079
Yan X, Xiao H, Ye J, Luo S, Liu C. Reduction of Rice Noodle Rehydration Time by High-Temperature Short-Time Treatment. Foods. 2025; 14(7):1079. https://doi.org/10.3390/foods14071079
Chicago/Turabian StyleYan, Xudong, Hong Xiao, Jiangping Ye, Shunjing Luo, and Chengmei Liu. 2025. "Reduction of Rice Noodle Rehydration Time by High-Temperature Short-Time Treatment" Foods 14, no. 7: 1079. https://doi.org/10.3390/foods14071079
APA StyleYan, X., Xiao, H., Ye, J., Luo, S., & Liu, C. (2025). Reduction of Rice Noodle Rehydration Time by High-Temperature Short-Time Treatment. Foods, 14(7), 1079. https://doi.org/10.3390/foods14071079