Effect of Linseed Feeding on Carcass and Meat Quality and Intramuscular Fatty Acid Profile of Simmental Bulls Slaughtered at Different Ages
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animals, Study Design, and Diets
2.2. Measurements and Sample Collection
2.3. Chemical Analysis
2.4. Statistical Analysis
3. Results and Discussion
3.1. Slaughter Performance Traits
3.2. pH Value and Colour Parameters
3.3. Chemical Analyses
3.4. The Intramuscular Fatty Acid Composition
3.5. Nutritional Indices
3.6. Oxidative Stability
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liu, J.; Ellies-Oury, M.-P.; Stoyanchev, T.; Hocquette, J.-F. Consumer Perception of Beef Quality and How to Control, Improve and Predict It? Focus on Eating Quality. Foods 2022, 11, 1732. [Google Scholar] [CrossRef]
- De Araújo, P.D.; Araújo, W.M.C.; Patarata, L.; Fraqueza, M.J. Understanding the Main Factors That Influence Consumer Quality Perception and Attitude towards Meat and Processed Meat Products. Meat Sci. 2022, 193, 108952. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, S.S.Q.; Leite, A.; Vasconcelos, L.; Teixeira, A. Exploring the Nexus of Feeding and Processing: Implications for Meat Quality and Sensory Perception. Foods 2024, 13, 3642. [Google Scholar] [CrossRef] [PubMed]
- Song, Z.; Hwang, I. Objective Meat Quality from Quality Grade and Backfat Thickness of Hanwoo Steers. Food Sci. Anim. Resour. 2023, 43, 531–539. [Google Scholar] [CrossRef] [PubMed]
- Scollan, N.D.; Choi, N.-J.; Kurt, E.; Fisher, A.V.; Enser, M.; Wood, J.D. Manipulating the Fatty Acid Composition of Muscle and Adipose Tissue in Beef Cattle. Br. J. Nutr. 2001, 85, 115–124. [Google Scholar] [CrossRef]
- Astrup, A.; Magkos, F.; Bier, D.M.; Brenna, J.T.; de Oliveira Otto, M.C.; Hill, J.O.; King, J.C.; Mente, A.; Ordovas, J.M.; Volek, J.S.; et al. Saturated Fats and Health: A Reassessment and Proposal for Food-Based Recommendations. J. Am. Coll. Cardiol. 2020, 76, 844–857. [Google Scholar] [CrossRef]
- Al-Madhagy, S.; Ashmawy, N.S.; Mamdouh, A.; Eldahshan, O.A.; Farag, M.A. A Comprehensive Review of the Health Benefits of Flaxseed Oil in Relation to Its Chemical Composition and Comparison with Other Omega-3-Rich Oils. Eur. J. Med. Res. 2023, 28, 240. [Google Scholar] [CrossRef]
- Chen, J.; Liu, H. Nutritional Indices for Assessing Fatty Acids: A Mini-Review. Int. J. Mol. Sci. 2020, 21, 5695. [Google Scholar] [CrossRef]
- Corazzin, M.; Bovolenta, S.; Sepulcri, A.; Piasentier, E. Effect of Whole Linseed Addition on Meat Production and Quality of Italian Simmental and Holstein Young Bulls. Meat Sci. 2012, 90, 99–105. [Google Scholar] [CrossRef]
- Mialon, M.M.; Renand, G.; Ortigues-Marty, I.; Bauchart, D.; Hocquette, J.F.; Mounier, L.; Noël, T.; Micol, D.; Doreau, M. Fattening Performance, Metabolic Indicators, and Muscle Composition of Bulls Fed Fiber-Rich versus Starch-plus-Lipid-Rich Concentrate Diets1. J. Anim. Sci. 2015, 93, 319–333. [Google Scholar] [CrossRef]
- Marino, R.; Della Malva, A.; Caroprese, M.; De Palo, P.; Santillo, A.; Sevi, A.; Albenzio, M. Effects of Whole Linseed Supplementation and Treatment Duration on Fatty Acid Profile and Endogenous Bioactive Compounds of Beef Muscle. Animal 2019, 13, 444–452. [Google Scholar] [CrossRef] [PubMed]
- Bessa, R.J.B.; Alves, S.P.; Santos-Silva, J. Constraints and Potentials for the Nutritional Modulation of the Fatty Acid Composition of Ruminant Meat. Eur. J. Lipid Sci. Tech. 2015, 117, 1325–1344. [Google Scholar] [CrossRef]
- Davis, H.; Magistrali, A.; Butler, G.; Stergiadis, S. Nutritional Benefits from Fatty Acids in Organic and Grass-Fed Beef. Foods 2022, 11, 646. [Google Scholar] [CrossRef]
- Barahona, M.; Olleta, J.L.; Sañudo, C.; Albertí, P.; Panea, B.; Pérez-Juan, M.; Realini, C.E.; Campo, M.M. Effects of Whole Linseed and Rumen-Protected Conjugated Linoleic Acid Enriched Diets on Beef Quality. Animal 2016, 10, 709–717. [Google Scholar] [CrossRef]
- Albertí, P.; Beriain, M.J.; Ripoll, G.; Sarriés, V.; Panea, B.; Mendizabal, J.A.; Purroy, A.; Olleta, J.L.; Sañudo, C. Effect of Including Linseed in a Concentrate Fed to Young Bulls on Intramuscular Fatty Acids and Beef Color. Meat Sci. 2014, 96, 1258–1265. [Google Scholar] [CrossRef]
- Bartkovský, M.; Sopková, D.; Andrejčáková, Z.; Vlčková, R.; Semjon, B.; Marcinčák, S.; Bujňák, L.; Pospiech, M.; Nagy, J.; Popelka, P.; et al. Effect of Concentration of Flaxseed (Linum usitatissimum) and Duration of Administration on Fatty Acid Profile, and Oxidative Stability of Pork Meat. Animals 2022, 12, 1087. [Google Scholar] [CrossRef]
- Hou, Y.; Liu, C.; Su, L.; Zhao, L.; Yang, Z.; Bai, Y.; Dou, L.; Yao, D.; Jin, Y. Dietary Linseed Supplementation Improves Meat Quality and Flavor of Sheep by Altering Muscle Fiber Characteristics and Antioxidant Capacity. J. Anim. Sci. 2023, 94, e13801. [Google Scholar] [CrossRef]
- Wood, J.D.; Enser, M. Manipulating the Fatty Acid Composition of Meat to Improve Nutritional Value and Meat Quality. In New Aspects of Meat Quality; Elsevier: Amsterdam, The Netherlands, 2017; pp. 501–535. ISBN 978-0-08-100593-4. [Google Scholar]
- Amaral, A.B.; Silva, M.V.D.; Lannes, S.C.D.S. Lipid Oxidation in Meat: Mechanisms and Protective Factors—A Review. Food Sci. Technol. 2018, 38, 1–15. [Google Scholar] [CrossRef]
- Shimizu, H.; Iwamoto, S. Problems of Lipid Oxidation in Minced Meat Products for a Ready-Made Meal during Cooking, Processing, and Storage. Rev. Agric. Sci. 2022, 10, 24–35. [Google Scholar] [CrossRef]
- Geng, L.; Liu, K.; Zhang, H. Lipid Oxidation in Foods and Its Implications on Proteins. Front. Nutr. 2023, 10, 1192199. [Google Scholar] [CrossRef]
- Doreau, M.; Ferlay, A. Linseed: A Valuable Feedstuff for Ruminants. OCL 2015, 22, D611. [Google Scholar] [CrossRef]
- Kauser, S.; Hussain, A.; Ashraf, S.; Fatima, G.; Javaria, S.; Abideen, Z.U.; Kabir, K.; Yaqub, S.; Akram, S.; Shehzad, A.; et al. Flaxseed (Linum usitatissimum); Phytochemistry, Pharmacological Characteristics and Functional Food Applications. Food Chem. Adv. 2024, 4, 100573. [Google Scholar] [CrossRef]
- Morittu, V.M.; Spina, A.A.; Iommelli, P.; Poerio, A.; Oliverio, F.V.; Britti, D.; Tudisco, R. Effect of Integration of Linseed and Vitamin E in Charolaise × Podolica Bulls’ Diet on Fatty Acids Profile, Beef Color and Lipid Stability. Agriculture 2021, 11, 1032. [Google Scholar] [CrossRef]
- Hubbart, J.A.; Blake, N.; Holásková, I.; Mata Padrino, D.; Walker, M.; Wilson, M. Challenges in Sustainable Beef Cattle Production: A Subset of Needed Advancements. Challenges 2023, 14, 14. [Google Scholar] [CrossRef]
- Xu, L.; Wei, Z.; Guo, B.; Bai, R.; Liu, J.; Li, Y.; Sun, W.; Jiang, X.; Li, X.; Pi, Y. Flaxseed Meal and Its Application in Animal Husbandry: A Review. Agriculture 2022, 12, 2027. [Google Scholar] [CrossRef]
- Commission Delegated Regulation (EU) 2017/1182 of 20 April 2017 Supplementing Regulation (EU) No 1308/2013 of the European Parliament and of the Council as Regards the Union Scales for the Classification of Beef, Pig and Sheep Carcasses and as Regards the Reporting of Market Prices of Certain Categories of Carcasses and Live Animals. Off. J. Eur. Union 2017, L 171/74, 74–99.
- ISO Standard No 937; Anonymus Meat and Meat Products Group—Determination of Nitrogen Content. ISO: London, UK, 1978.
- ISO Standard No 936; Anonymus Meat and Meat Products Group—Determination of Total Ash. ISO: London, UK, 1998.
- ISO Standard No 1442; Anonymus Meat and Meat Products Group—Determination of Moisture Content. ISO: London, UK, 1997.
- ISO Standard No 1443; Anonymus Meat and Meat Products Group—Determination of Total Fat Content. ISO: London, UK, 2001.
- Park, P.W.; Goins, R.E. In Situ Preparation of Fatty Acid Methyl Esters for Analysis of Fatty Acid Composition in Foods. J. Food Sci. 1994, 59, 1262–1266. [Google Scholar] [CrossRef]
- Botsoglou, N.A.; Fletouris, D.J.; Papageorgiou, G.E.; Vassilopoulos, V.N.; Mantis, A.J.; Trakatellis, A.G. Rapid, Sensitive, and Specific Thiobarbituric Acid Method for Measuring Lipid Peroxidation in Animal Tissue, Food, and Feedstuff Samples. J. Agric. Food Chem. 1994, 42, 1931–1937. [Google Scholar] [CrossRef]
- Díez, J.; Albertí, P.; Ripoll, G.; Lahoz, F.; Fernández, I.; Olleta, J.L.; Panea, B.; Sañudo, C.; Bahamonde, A.; Goyache, F. Using Machine Learning Procedures to Ascertain the Influence of Beef Carcass Profiles on Carcass Conformation Scores. Meat Sci. 2006, 73, 109–115. [Google Scholar] [CrossRef]
- Marino, R.; Caroprese, M.; Della Malva, A.; Santillo, A.; Sevi, A.; Albenzio, M. Role of Whole Linseed and Sunflower Seed on the Nutritional and Organoleptic Properties of Podolian × Limousine Meat. Ital. J. Anim. Sci. 2024, 23, 868–879. [Google Scholar] [CrossRef]
- Conte, G.; Serra, A.; Casarosa, L.; Ciucci, F.; Cappucci, A.; Bulleri, E.; Corrales-Retana, L.; Buccioni, A.; Mele, M. Effect of Linseed Supplementation on Total Longissimus Muscle Lipid Composition and Shelf-Life of Beef From Young Maremmana Bulls. Front. Vet. Sci. 2019, 5, 326. [Google Scholar] [CrossRef] [PubMed]
- Marenčić, D.; Ivanković, A.; Pintić, V.; Kelava Ugarković, N. Effect of Slaughter Age on Meat Quality of Simmental Bulls and Heifers. In Proceedings of the 47th Croatian and 7th International Symposium on Agriculture, Opatija, Croatia, 13 February 2012. [Google Scholar]
- Ardicli, S.; Dincel, D.; Balci, F. Beef Colour Defined Based on pH in Holstein Bull Carcasses. Indian. J. Anim. Res. 2019, 53, 1533–1537. [Google Scholar]
- Van Rooyen, L.A.; Allen, P.; Crawley, S.M.; O’Connor, D.I. The Effect of Carbon Monoxide Pretreatment Exposure Time on the Colour Stability and Quality Attributes of Vacuum Packaged Beef Steaks. Meat Sci. 2017, 129, 74–80. [Google Scholar] [CrossRef] [PubMed]
- Abril, M.; Campo, M.M.; Önenç, A.; Sañudo, C.; Albertí, P.; Negueruela, A.I. Beef Colour Evolution as a Function of Ultimate pH. Meat Sci. 2001, 58, 69–78. [Google Scholar] [CrossRef]
- Holman, B.W.B.; van de Ven, R.J.; Mao, Y.; Coombs, C.E.O.; Hopkins, D.L. Using Instrumental (CIE and Reflectance) Measures to Predict Consumers’ Acceptance of Beef Colour. Meat Sci. 2017, 127, 57–62. [Google Scholar] [CrossRef]
- Sánchez, C.N.; Orvañanos-Guerrero, M.T.; Domínguez-Soberanes, J.; Álvarez-Cisneros, Y.M. Analysis of Beef Quality According to Color Changes Using Computer Vision and White-Box Machine Learning Techniques. Heliyon 2023, 9, e17976. [Google Scholar] [CrossRef]
- Bureš, D.; Bartoň, L. Growth Performance, Carcass Traits and Meat Quality of Bulls and Heifers Slaughtered at Different Ages. Czech J. Anim. Sci. 2012, 57, 34–43. [Google Scholar] [CrossRef]
- Sargentini, C.; Bozzi, R.; Lorenzini, G.; Degl’Innocenti, P.; Martini, A.; Giorgetti, A. Productive Performances of Maremmana Young Bulls Reared Following Organic Rules and Slaughtered at 18 and 24 Months of Age. Ital. J. Anim. Sci. 2010, 9, e31. [Google Scholar] [CrossRef]
- Kopuzlu, S.; Esenbuga, N.; Onenc, A.; Macit, M.; Yanar, M.; Yuksel, S.; Ozluturk, A.; Unlu, N. Effects of Slaughter Age and Muscle Type on Meat Quality Characteristics of Eastern Anatolian Red Bulls. Arch. Anim. Breed. 2018, 61, 497. [Google Scholar] [CrossRef]
- Mach, N.; Devant, M.; Díaz, I.; Font-Furnols, M.; Oliver, M.A.; García, J.A.; Bach, A. Increasing the Amount of N-3 Fatty Acid in Meat from Young Holstein Bulls through Nutrition1. J. Anim. Sci. 2006, 84, 3039–3048. [Google Scholar] [CrossRef]
- Tarricone, S.; Colonna, M.A.; Giannico, F.; Facciolongo, A.M.; Caputi Jambrenghi, A.; Ragni, M. Effects of Dietary Extruded Linseed (Linum usitatissimum L.) on Performance and Meat Quality in Podolian Young Bulls. S. Afr. J. An. Sci. 2019, 49, 781. [Google Scholar] [CrossRef]
- Nogalski, Z.; Wielgosz-Groth, Z.; Purwin, C.; Sobczuk-Szul, M.; Mochol, M.; Pogorzelska-Przybytek, P.; Winarski, R. Effect of Slaughter Weight on the Carcass Value of Young Crossbred (“Polish Holstein Friesian” × ’Limousin’) Steers and Bulls. Chil. J. Agric. Res. 2014, 74, 59–66. [Google Scholar] [CrossRef]
- Park, S.J.; Beak, S.H.; Jung, D.J.S.; Kim, S.Y.; Jeong, I.H.; Piao, M.Y.; Kang, H.J.; Fassah, D.M.; Na, S.W.; Yoo, S.P.; et al. Genetic, Management, and Nutritional Factors Affecting Intramuscular Fat Deposition in Beef Cattle—A Review. Asian-Australas. J. Anim. Sci. 2018, 31, 1043–1061. [Google Scholar] [CrossRef] [PubMed]
- Ulbricht, T.L.V.; Southgate, D.A.T. Coronary Heart Disease: Seven Dietary Factors. Lancet 1991, 338, 985–992. [Google Scholar] [CrossRef]
- Muchenje, V.; Dzama, K.; Chimonyo, M.; Strydom, P.E.; Hugo, A.; Raats, J.G. Some Biochemical Aspects Pertaining to Beef Eating Quality and Consumer Health: A Review. Food Chem. 2009, 112, 279–289. [Google Scholar] [CrossRef]
- Moreno, T.; Keane, M.G.; Noci, F.; Moloney, A.P. Fatty Acid Composition of M. Longissimus Dorsi from Holstein–Friesian Steers of New Zealand and European/American Descent and from Belgian Blue × Holstein–Friesian Steers, Slaughtered at Two Weights/Ages. Meat Sci. 2008, 78, 157–169. [Google Scholar] [CrossRef]
- De La Torre, A.; Gruffat, D.; Durand, D.; Micol, D.; Peyron, A.; Scislowski, V.; Bauchart, D. Factors Influencing Proportion and Composition of CLA in Beef. Meat Sci. 2006, 73, 258–268. [Google Scholar] [CrossRef]
- Scollan, N.; Hocquette, J.-F.; Nuernberg, K.; Dannenberger, D.; Richardson, I.; Moloney, A. Innovations in Beef Production Systems That Enhance the Nutritional and Health Value of Beef Lipids and Their Relationship with Meat Quality. Meat Sci. 2006, 74, 17–33. [Google Scholar] [CrossRef]
- Holló, G.; Ender, K.; Lóki, K.; Seregi, J.; Holló, I.; Nuernberg, K. Carcass Characteristics and Meat Quality of Hungarian Simmental Young Bulls Fed Different Forage to Concentrate Ratios with or without Linseed Supplementation. Arch. Anim. Breed. 2008, 51, 517–530. [Google Scholar] [CrossRef]
- Smith, S.B.; Gill, C.A.; Lunt, D.K.; Brooks, M.A. Regulation of Fat and Fatty Acid Composition in Beef Cattle. Asian Australas. J. Anim. Sci. 2009, 22, 1225–1233. [Google Scholar] [CrossRef]
- Harfoot, C.G.; Hazlewood, G.P. Lipid Metabolism in the Rumen. In The Rumen Microbial Ecosystem; Hobson, P.N., Ed.; Elselvier: Amsterdam, The Netherlands, 1988. [Google Scholar]
- Chilliard, Y.; Glasser, F.; Ferlay, A.; Bernard, L.; Rouel, J.; Doreau, M. Diet, Rumen Biohydrogenation and Nutritional Quality of Cow and Goat Milk Fat. Eur. J. Lipid Sci. Tech. 2007, 109, 828–855. [Google Scholar] [CrossRef]
- Vahmani, P.; Mapiye, C.; Prieto, N.; Rolland, D.C.; McAllister, T.A.; Aalhus, J.L.; Dugan, M.E.R. The Scope for Manipulating the Polyunsaturated Fatty Acid Content of Beef: A Review. J. Anim. Sci. Biotechnol. 2015, 6, 29. [Google Scholar] [CrossRef]
- Raes, K.; De Smet, S.; Demeyer, D. Effect of Dietary Fatty Acids on Incorporation of Long Chain Polyunsaturated Fatty Acids and Conjugated Linoleic Acid in Lamb, Beef and Pork Meat: A Review. Anim. Feed Sci. Technol. 2004, 113, 199–221. [Google Scholar] [CrossRef]
- Lichtenstein, A.H. Thematic Review Series: Patient-Oriented Research. Dietary Fat, Carbohydrate, and Protein: Effects on Plasma Lipoprotein Patterns. J. Lipid Res. 2006, 47, 1661–1667. [Google Scholar] [CrossRef]
- Higgs, J. The Nutritional Quality of Meat. In Meat Processing—Improving Quality; Kerry, J.P., Kerry, J.F., Ledward, D., Eds.; Woodhead Publishing Ltd.: Cambridge, UK, 2002. [Google Scholar]
- De Smet, S.; Raes, K.; Demeyer, D. Meat Fatty Acid Composition as Affected by Fatness and Genetic Factors: A Review. Anim. Res. 2004, 53, 81–98. [Google Scholar] [CrossRef]
- Simopoulos, A. Omega-3 Fatty Acids in Health and Disease and in Growth and Development. Am. J. Clin. Nutr. 1991, 54, 438–463. [Google Scholar] [CrossRef]
- Campo, M.M.; Nute, G.R.; Hughes, S.I.; Enser, M.; Wood, J.D.; Richardson, R.I. Flavour Perception of Oxidation in Beef. Meat Sci. 2006, 72, 303–311. [Google Scholar] [CrossRef]
- Domínguez, R.; Pateiro, M.; Gagaoua, M.; Barba, F.J.; Zhang, W.; Lorenzo, J.M. A Comprehensive Review on Lipid Oxidation in Meat and Meat Products. Antioxidants 2019, 8, 429. [Google Scholar] [CrossRef]
- Fan, W.J.; Zhang, Y.K.; Chen, Y.C.; Sun, J.X.; Yi, Y.W. TBARS Predictive Models of Pork Sausages Stored at Different Temperatures. Meat Sci. 2014, 96, 1–4. [Google Scholar] [CrossRef]
- Łopacka, J.; Półtorak, A.; Wierzbicka, A. Effect of Reduction of Oxygen Concentration in Modified Atmosphere Packaging on Bovine M. longissimus lumborum and M. gluteus medius Quality Traits. Meat Sci. 2017, 124, 1–8. [Google Scholar] [CrossRef]
- Wood, J.D.; Enser, M.; Fisher, A.V.; Nute, G.R.; Sheard, P.R.; Richardson, R.I.; Hughes, S.I.; Whittington, F.M. Fat Deposition, Fatty Acid Composition and Meat Quality: A Review. Meat Sci. 2008, 78, 343–358. [Google Scholar] [CrossRef] [PubMed]
- Mezgebo, G.B.; Monahan, F.J.; McGee, M.; O’Riordan, E.G.; Picard, B.; Richardson, R.I.; Moloney, A.P. Biochemical and Organoleptic Characteristics of Muscle from Early and Late Maturing Bulls in Different Production Systems. Animal 2017, 11, 1636–1644. [Google Scholar] [CrossRef] [PubMed]
- Kurek, M.A.; Atanasov, A.G.; Brnčić, M.; Rimac Brnčić, S.; Horbańczuk, O.K. The Effect of Natural Antioxidants on Quality and Shelf Life of Beef and Beef Products. Food Technol. Biotechnol. 2019, 57, 439–447. [Google Scholar] [CrossRef]
- Gruffat, D.; Bauchart, D.; Thomas, A.; Parafita, E.; Durand, D. Fatty Acid Composition and Oxidation in Beef Muscles as Affected by Ageing Times and Cooking Methods. Food Chem. 2021, 343, 128476. [Google Scholar] [CrossRef]
Up to 13 Months | After 13 Months | |||
---|---|---|---|---|
Control Diet | Linseed Diet | Control Diet | Linseed Diet | |
Ingredients (kg per head daily): | ||||
High-moisture maize | 6.4 | 6.2 | 7.7 | 7.5 |
Maize silage | 8.1 | 7.9 | 9.0 | 8.8 |
Protein-rich feed (34%) a | 1.4 | 1.4 | 1.5 | 1.4 |
Hay | 0.23 | 0.23 | 0.23 | 0.23 |
Whole linseed grain | - | 0.13 | - | 0.16 |
Chemical composition (g/kg DM): | ||||
Dry matter (DM) | 589 | 565 | 609 | 605 |
Crude protein | 129 | 127 | 127 | 126 |
Ether extract | 38 | 43 | 35 | 39 |
Neutral detergent fibre | 162 | 170 | 169 | 179 |
Acid detergent fibre | 72 | 77 | 75 | 81 |
Ash | 46 | 45 | 39 | 43 |
pH value | 4.45 | 4.35 | 4.28 | 4.26 |
Fatty acid composition (%) b: | ||||
C12:0 | 0.10 | 0.09 | 0.08 | 0.08 |
C12:1 | 0.34 | 0.38 | 0.27 | 0.30 |
C14:0 | 0.17 | 0.15 | 0.16 | 0.16 |
C16:0 | 12.76 | 11.40 | 12.95 | 11.32 |
C16:1 | 0.30 | 0.22 | 0.32 | 0.24 |
C18:0 | 3.48 | 3.35 | 2.59 | 2.65 |
C18:1 | 26.57 | 25.01 | 26.91 | 24.40 |
C18:2n-6 | 50.49 | 45.63 | 51.92 | 44.42 |
C18:3n-3 | 3.22 | 11.52 | 2.57 | 14.37 |
C20:0 | 0.46 | 0.40 | 0.36 | 0.31 |
Total SFA | 18.20 | 16.55 | 17.42 | 15.37 |
Total MUFA | 27.96 | 26.19 | 27.97 | 25.37 |
Total PUFA | 53.84 | 57.26 | 54.61 | 59.27 |
Traits | 13 Months | 17 Months | RMSE | Significance a | ||||
---|---|---|---|---|---|---|---|---|
Control (C13) | Linseed (L13) | Control C17) | Linseed (L17) | SA | D | SA × D | ||
n | 20 | 20 | 20 | 20 | ||||
Final weight (kg) | 552.5 | 556.5 | 632.1 | 626.7 | 40.7 | *** | ns | ns |
Average daily gain (kg) | 1.5 | 1.5 | 1.2 | 1.2 | 0.2 | *** | ns | ns |
Hot carcass weight (kg) | 317.3 | 327.7 | 374.8 | 376.1 | 25.6 | *** | ns | ns |
Dressing percentage (%) | 57.4 | 58.9 | 59.3 | 60.0 | 1.4 | *** | ** | ns |
Trimmed fat b (kg) | 5.3 | 5.1 | 7.2 | 7.5 | 2.8 | *** | ns | ns |
EUROP score c | 3.9 b | 4.4 a | 4.7 a | 4.7 a | 0.6 | *** | * | * |
Fatness score d | 3.0 | 2.9 | 3.1 | 3.1 | 0.3 | * | ns | ns |
M. longissimus thoracis | ||||||||
pH1 | 6.49 | 6.32 | 6.62 | 6.43 | 0.38 | ns | * | ns |
pH2 | 5.73 | 5.70 | 5.68 | 5.77 | 0.34 | ns | ns | ns |
CIE L* (lightness) | 41.20 | 41.45 | 39.22 | 38.67 | 2.43 | *** | ns | ns |
CIE a* (redness) | 23.48 | 23.50 | 23.65 | 23.23 | 1.31 | ns | ns | ns |
CIE b* (yellowness) | 8.64 | 8.88 | 8.44 | 7.78 | 1.16 | * | ns | ns |
Moisture (g/kg) | 747.8 | 746.9 | 743.8 | 742.7 | 11.34 | ns | ns | ns |
Protein (g/kg) | 221.8 | 225.6 | 222.6 | 223.3 | 5.05 | ns | * | ns |
Intramuscular fat (g/kg) | 23.4 | 20.4 | 28.0 | 28.3 | 9.47 | ** | ns | ns |
Ash (g/kg) | 10.5 | 10.6 | 10.4 | 10.5 | 0.20 | * | * | ns |
13 Months | 17 Months | RMSE | Significance a | |||||
---|---|---|---|---|---|---|---|---|
Control C13) | Linseed (L13) | Control (C17) | Linseed (L17) | SA | D | SA × D | ||
C12:1 | 0.67 | 0.55 | 0.59 | 0.57 | 0.27 | ns | ns | ns |
C14:0 | 2.94 a | 2.52 b | 2.89 ab | 2.93 a | 0.50 | ns | ns | * |
C14:1 | 0.45 | 0.39 | 0.41 | 0.41 | 0.17 | ns | ns | ns |
C15:0 | 0.43 | 0.36 | 0.36 | 0.39 | 0.08 | ns | ns | * |
C16:0 | 23.72 | 22.63 | 24.22 | 23.78 | 2.00 | ns | ns | ns |
C16:1 | 2.85 | 3.01 | 2.84 | 2.82 | 0.54 | ns | ns | ns |
C17:0 | 1.11 | 0.99 | 0.95 | 0.99 | 0.20 | ns | ns | ns |
C17:1 | 1.00 | 0.92 | 0.85 | 0.88 | 0.18 | * | ns | ns |
C18:0 | 17.46 | 16.64 | 16.87 | 16.72 | 1.60 | ns | ns | ns |
C18:1 | 37.55 | 37.28 | 37.76 | 38.46 | 3.36 | ns | ns | ns |
C18:2n-6 LA | 7.05 | 8.63 | 8.07 | 7.76 | 2.99 | ns | ns | ns |
C18:3n-3 ALA | 0.28 b | 0.56 a | 0.31 bc | 0.44 a | 0.14 | ns | *** | * |
C18:2 (c + t) CLA | 0.21 | 0.22 | 0.29 | 0.33 | 0.07 | *** | ns | ns |
C20:0 | 0.11 | 0.09 | 0.10 | 0.10 | 0.01 | ns | ** | ns |
C20:1 | 0.26 | 0.25 | 0.27 | 0.27 | 0.04 | ns | ns | ns |
C20:2n-6 | 0.17 | 0.13 | 0.17 | 0.13 | 0.08 | ns | ns | ns |
C20:3n-6 | 0.44 | 0.51 | 0.44 | 0.39 | 0.20 | ns | ns | ns |
C20:4n-6 AA | 2.18 | 2.70 | 2.11 | 1.93 | 1.01 | ns | ns | ns |
C20:5n-3 EPA | 0.10 | 0.17 | 0.06 | 0.09 | 0.08 | ** | * | ns |
C22:4n-6 | 0.40 | 0.45 | 0.38 | 0.31 | 0.14 | ** | ns | ns |
C22:5n-3 | 0.25 b | 0.48 a | 0.21 b | 0.29 b | 0.15 | *** | *** | * |
ΣSFA | 45.87 | 43.42 | 45.44 | 44.95 | 2.33 | ns | ** | ns |
ΣMUFA | 42.89 | 42.55 | 42.51 | 43.41 | 3.62 | ns | ns | ns |
ΣPUFA | 11.24 | 14.03 | 12.05 | 11.64 | 4.61 | ns | ns | ns |
Σn-6 | 10.36 | 12.54 | 11.20 | 10.51 | 4.35 | ns | ns | ns |
Σn-3 | 0.67 b | 1.27 a | 0.56 b | 0.80 b | 0.33 | *** | *** | * |
n-6/n-3 | 15.64 | 9.80 | 20.96 | 13.02 | 3.01 | *** | *** | ns |
P/S | 0.25 | 0.33 | 0.27 | 0.26 | 0.12 | ns | ns | ns |
AI | 0.66 | 0.57 | 0.66 | 0.65 | 0.09 | ns | * | ns |
TBARS | 13 Months | 17 Months | RMSE | Significance a | ||||
---|---|---|---|---|---|---|---|---|
Control (C13) | Linseed (L13) | Control (C17) | Linseed (L17) | SA | D | SA × D | ||
Day 0 | 0.24 | 0.35 | 0.06 | 0.12 | 0.10 | *** | ** | ns |
Day 3 | 0.74 | 1.18 | 0.13 | 0.36 | 0.55 | *** | * | ns |
Day 6 | 1.04 | 1.68 | 0.22 | 0.52 | 0.73 | *** | * | ns |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kaić, A.; Škorput, D.; Luković, Z.; Salajpal, K.; Kljak, K.; Radovčić, N.M.; Karolyi, D. Effect of Linseed Feeding on Carcass and Meat Quality and Intramuscular Fatty Acid Profile of Simmental Bulls Slaughtered at Different Ages. Foods 2025, 14, 1098. https://doi.org/10.3390/foods14071098
Kaić A, Škorput D, Luković Z, Salajpal K, Kljak K, Radovčić NM, Karolyi D. Effect of Linseed Feeding on Carcass and Meat Quality and Intramuscular Fatty Acid Profile of Simmental Bulls Slaughtered at Different Ages. Foods. 2025; 14(7):1098. https://doi.org/10.3390/foods14071098
Chicago/Turabian StyleKaić, Ana, Dubravko Škorput, Zoran Luković, Krešimir Salajpal, Kristina Kljak, Nives Marušić Radovčić, and Danijel Karolyi. 2025. "Effect of Linseed Feeding on Carcass and Meat Quality and Intramuscular Fatty Acid Profile of Simmental Bulls Slaughtered at Different Ages" Foods 14, no. 7: 1098. https://doi.org/10.3390/foods14071098
APA StyleKaić, A., Škorput, D., Luković, Z., Salajpal, K., Kljak, K., Radovčić, N. M., & Karolyi, D. (2025). Effect of Linseed Feeding on Carcass and Meat Quality and Intramuscular Fatty Acid Profile of Simmental Bulls Slaughtered at Different Ages. Foods, 14(7), 1098. https://doi.org/10.3390/foods14071098