Health Benefits of Traditional Sage and Peppermint Juices: Simple Solutions for Antioxidant and Antidiabetic Support
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material Collection and Traditional Juice Preparation
2.2. Liquid Chromatography–Mass Spectrometry (LC-MS/MS) Analysis
2.3. Animal Treatment—Experimental Protocol
2.4. Antidiabetic Activity
2.4.1. Oral Glucose Tolerance Test (OGTT)
2.4.2. Streptozotocin-Induced Diabetes
2.5. Hepatoprotective Enzyme Activity
Aspartate and Alanine Aminotransferase Assays
2.6. Ex Vivo Antioxidant Enzyme Activity and Lipid Peroxidation in the Liver
Paracetamol-Induced Oxidative Stress
2.7. Statistical Analysis
3. Results and Discussion
3.1. LC-MS/MS Profiling of Traditionally Prepared Sage and Peppermint Juices
3.2. Antidiabetic Effects
3.3. Effect on Liver Function Biochemical Parameters
3.4. Antioxidant Enzyme Activity
3.5. Limitations of the Study
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
SJ | Sage juice |
PJ | Peppermint juice |
BW | Body weight |
STZ | Streptozocin |
LOD | Limit of detection |
LOQ | Limit of quantification |
LC-MS/MS | Liquid chromatography–mass spectrometry |
OGTT | Oral glucose tolerance test |
References
- Francik, S.; Francik, R.; Sadowska, U.; Bystrowska, B.; Zawiślak, A.; Knapczyk, A.; Nzeyimana, A. Identification of phenolic compounds and determination of antioxidant activity in extracts and infusions of Salvia leaves. Materials 2020, 13, 5811. [Google Scholar] [CrossRef] [PubMed]
- Abd Rashed, A.; Rathi, D.N.G.; Ahmad Nasir, N.A.H.; Abd Rahman, A.Z. Antifungal properties of essential oils and their compounds for application in skin fungal infections: Conventional and nonconventional approaches. Molecules 2021, 26, 1093. [Google Scholar] [CrossRef] [PubMed]
- Saqib, S.; Ullah, F.; Naeem, M.; Younas, M.; Ayaz, A.; Ali, S.; Zaman, W. Mentha: Nutritional and health attributes to treat various ailments including cardiovascular diseases. Molecules 2022, 27, 6728. [Google Scholar] [CrossRef]
- Russo, A.; Formisano, C.; Rigano, D.; Senatore, F.; Delfine, S.; Cardile, V.; Bruno, M. Chemical composition and anticancer activity of essential oils of Mediterranean sage (Salvia officinalis L.) grown in different environmental conditions. Food Chem. Toxicol. 2013, 55, 42–47. [Google Scholar] [CrossRef] [PubMed]
- Mahendran, G.; Rahman, L.U. Ethnomedicinal, phytochemical and pharmacological updates on peppermint (Mentha × piperita L.)—A review. Phytother. Res. 2020, 34, 2088–2139. [Google Scholar] [CrossRef]
- Bouteldja, R.; Doucene, R.; Aggad, H.; Abdi, F.Z.; Belkhodja, H.; Abdali, M.; Zidane, K.; Abaid, S. Phytochemical characterization, antioxidant and antibacterial activity of Salvia officinalis (L.) extracts from the Tiaret region. Eur. J. Biol. Res. 2021, 11, 356–366. [Google Scholar] [CrossRef]
- Hudz, N.; Kobylinska, L.; Pokajewicz, K.; Horčinová Sedláčková, V.; Fedin, R.; Voloshyn, M.; Myskiv, I.; Brindza, J.; Wieczorek, P.P.; Lipok, J. Mentha piperita: Essential oil and extracts, their biological activities, and perspectives on the development of new medicinal and cosmetic products. Molecules 2023, 28, 7444. [Google Scholar] [CrossRef]
- Mimica-Dukic, N.; Bozin, B.; Soković, M.; Mihajlović, B.; Matavulj, M. Antimicrobial and antioxidant activities of three Mentha species essential oils. Planta Med. 2003, 69, 413–419. [Google Scholar] [CrossRef]
- Dent, M.; Fuchs-Godec, R.; Pedisić, S.; Grbin, D.; Dragović-Uzelac, V.; Ježek, D.; Bosiljkov, T. Polyphenols from sage leaves (Salvia officinalis L.): Environmentally friendly extraction under high hydrostatic pressure and application as a corrosion inhibitor for tinplate. Separations 2024, 11, 158. [Google Scholar] [CrossRef]
- Jasicka-Misiak, I.; Poliwoda, A.; Petecka, M.; Buslovych, O.; Shlyapnikov, V.A.; Wieczorek, P.P. Antioxidant phenolic compounds in Salvia officinalis L. and Salvia sclarea L. Ecol. Chem. Eng. S 2018, 25, 133–142. [Google Scholar] [CrossRef]
- Mokhtari, R.; Kazemi Fard, M.; Rezaei, M.; Moftakharzadeh, S.A.; Mohseni, A. Antioxidant, antimicrobial activities, and characterization of phenolic compounds of thyme (Thymus vulgaris L.), sage (Salvia officinalis L.), and thyme–sage mixture extracts. J. Food Qual. 2023, 2023, 2602454. [Google Scholar] [CrossRef]
- Silva, B.N.; Cadavez, V.; Caleja, C.; Pereira, E.; Calhelha, R.C.; Añibarro-Ortega, M.; Finimundy, T.; Kostić, M.; Soković, M.; Teixeira, J.A.; et al. Phytochemical composition and bioactive potential of Melissa officinalis L., Salvia officinalis L. and Mentha spicata L. Extracts. Foods 2023, 12, 947. [Google Scholar] [CrossRef] [PubMed]
- Mohamed, A.S.; Mohamed, T.S.; Aboushousha, T.; Esmat, M.; El-Wakil, E.S. Chemical characterization and investigation of the antioxidant capacity and the possible therapeutic potential of Salvia officinalis extract against murine toxoplasmosis. Afr. J. Bio. Sci. 2024, 6, 4260–4275. [Google Scholar] [CrossRef]
- Lima, C.F.; Azevedo, M.F.; Araujo, R.; Fernandes-Ferreir, M.; Pereira-Wilson, C. Metformin-like effect of Salvia officinalis (common sage): Is it useful in diabetes prevention? Br. J. Nutr. 2006, 96, 326–333. [Google Scholar] [CrossRef]
- Ben Farhat, M.; Landoulsi, A.; Chaouch-Hamada, R.; Sotomayor, J.A.; Jordán, M.J. Characterization and quantification of phenolic compounds and antioxidant properties of Salvia species growing in different habitats. Ind. Crops Prod. 2013, 49, 904–914. [Google Scholar] [CrossRef]
- Ghorbani, A.; Esmaeilizadeh, M. Pharmacological properties of Salvia officinalis and its components. J. Tradit. Complement. Med. 2017, 7, 433–440. [Google Scholar] [CrossRef]
- Ben Khedher, M.R.; Hammami, M.; Arch, J.R.S.; Hislop, C.; Eze, D.; Wargent, E.T.; Kępczyńska, M.A.; Zaibi, M.S. Preventive effects of Salvia officinalis leaf extract on insulin resistance and inflammation in a model of high fat diet-induced obesity in mice that responds to rosiglitazone. PeerJ 2018, 6, e4166. [Google Scholar] [CrossRef] [PubMed]
- Kubatka, P.; Mazurakova, A.; Koklesova, L.; Kuruc, T.; Samec, M.; Kajo, K.; Kotorova, K.; Adamkov, M.; Smejkal, K.; Svajdlenka, E.; et al. Salvia officinalis L. exerts oncostatic effects in rodent and in vitro models of breast carcinoma. Front. Pharmacol. 2024, 15, 1216199. [Google Scholar] [CrossRef]
- Zimmermannm, B.F.; Walch, S.G.; Ngaba Tinzoh, L.; Stühlinger, W.; Lachenmeier, D.W. Rapid UHPLC determination of polyphenols in aqueous infusions of Salvia officinalis L. (sage tea). J. Chromatogr. B 2011, 879, 2459–2464. [Google Scholar] [CrossRef]
- Miser Salihoğlu, E.; Şimşek, B.; Çayir, E.; Akaydın, S. Comparison of the phenolic content and antioxidant activity in peppermint plant according to the drying method. Ankara Ecz. Fak. Derg. 2022, 46, 418–431. [Google Scholar] [CrossRef]
- Cirlini, M.; Mena, P.; Tassotti, M.; Herrlinger, K.A.; Nieman, K.M.; Dall’Asta, C.; Del Rio, D. Phenolic and volatile composition of a dry spearmint (Mentha spicata L.) extract. Molecules 2016, 21, 1007. [Google Scholar] [CrossRef] [PubMed]
- Begas, E.; Tsioutsiouliti, A.; Kouvaras, E.; Haroutounian, S.A.; Kasiotis, K.M.; Kouretas, D.; Asprodini, E. Effects of peppermint tea consumption on the activities of CYP1A2, glucuronosyltransferases-1A1/1A6 in healthy volunteers. Food Chem. Toxicol. 2017, 100, 80–89. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Liu, Y.; Ma, A.; Bao, Y.; Wang, M.; Sun, Z. In vitro antiviral, anti-inflammatory, and antioxidant activities of the ethanol extract of Mentha piperita L. Food Sci. Biotechnol. 2017, 26, 1675–1683. [Google Scholar] [CrossRef]
- Bodalska, A.; Kowalczyk, A.; Włodarczyk, M.; Fecka, I. Analysis of polyphenolic composition of a herbal medicinal product—Peppermint tincture. Molecules 2019, 25, 69. [Google Scholar] [CrossRef] [PubMed]
- Ćavar Zeljković, S.; Šišková, J.; Komzáková, K.; De Diego, N.; Kaffková, K.; Tarkowski, P. Phenolic compounds and biological activity of selected Mentha species. Plants 2021, 10, 550. [Google Scholar] [CrossRef]
- Al-Mijalli, S.H.; Mrabti, N.N.; Ouassou, H.; Sheikh, R.A.; Abdallah, E.M.; Assaggaf, H.M.; Bakrim, S.; Alshahrani, M.M.; Awadh, A.A.; Qasem, A.H.; et al. Phytochemical variability, in vitro and in vivo biological investigations, and in silico antibacterial mechanisms of Mentha piperita essential oils collected from two different regions in Morocco. Foods 2022, 11, 3466. [Google Scholar] [CrossRef]
- De Sousa Barros, A.; De Morais, S.M.; Ferreira, P.A.T.; Vieira, Í.G.P.; Craveiro, A.A.; Dos Santos Fontenelle, R.O.; De Menzes, J.E.S.A.; Da Silva, F.W.F.; De Sousa, H.A. Chemical composition and functional properties of essential oils from Mentha species. Ind. Crops Prod. 2015, 76, 557–564. [Google Scholar] [CrossRef]
- Jakovljević, M.; Jokić, S.; Molnar, M.; Jašić, M.; Babić, J.; Jukić, H.; Banjari, I. Bioactive profile of various Salvia officinalis L. preparations. Plants 2019, 8, 55. [Google Scholar] [CrossRef]
- Alum, E.U. Climate change and its impact on the bioactive compound profile of medicinal plants: Implications for global health. Plant Signal Behav. 2024, 19, 2419683. [Google Scholar] [CrossRef]
- Irakli, M.; Bouloumpasi, E.; Christaki, S.; Skendi, A.; Chatzopoulou, P. Modeling and optimization of phenolic compounds from sage (Salvia fruticosa L.) post-distillation residues: Ultrasound-versus microwave-assisted extraction. Antioxidants 2023, 12, 549. [Google Scholar] [CrossRef]
- Bibow, A.; Oleszek, W. Essential oils as potential natural antioxidants, antimicrobial, and antifungal agents in active food packaging. Antibiotics 2024, 13, 1168. [Google Scholar] [CrossRef] [PubMed]
- Tafrihi, M.; Imran, M.; Tufail, T.; Gondal, T.A.; Caruso, G.; Sharma, S.; Sharma, R.; Atanassova, M.; Atanassov, L.; Valere Tsouh Fokou, P.; et al. The wonderful activities of the genus Mentha: Not only antioxidant properties. Molecules 2021, 26, 1118. [Google Scholar] [CrossRef]
- Shaik, M.I.; Hamdi, I.H.; Sarbon, N.M. A comprehensive review on traditional herbal drinks: Physicochemical, phytochemicals and pharmacology properties. Food Chem. Adv. 2023, 3, 100460. [Google Scholar] [CrossRef]
- Shekarchi, M.; Hajimehdipoor, H.; Saeidnia, S.; Gohari, A.R.; Hamedani, M.P. Comparative study of rosmarinic acid content in some plants of Labiatae family. Pharmacogn. Mag. 2012, 8, 37–41. [Google Scholar] [CrossRef]
- Ansari, P.; Khan, J.T.; Chowdhury, S.; Reberio, A.D.; Kumar, S.; Seidel, V.; Abdel-Wahab, Y.H.A.; Flatt, P.R. Plant-based diets and phytochemicals in the management of diabetes mellitus and prevention of its complications: A review. Nutrients 2024, 16, 3709. [Google Scholar] [CrossRef] [PubMed]
- Mohammed, H.A.; Eldeeb, H.M.; Khan, R.A.; Al-Omar, M.S.; Mohammed, S.A.A.; Sajid, M.S.M.; Aly, M.S.A.; Ahmad, A.M.; Abdellatif, A.A.H.; Eid, S.Y.; et al. Sage, Salvia officinalis L., constituents, hepatoprotective activity, and cytotoxicity evaluations of the essential oils obtained from fresh and differently timed dried herbs: A comparative analysis. Molecules 2021, 26, 5757. [Google Scholar] [CrossRef] [PubMed]
- Orčić, D.; Francišković, M.; Bekvalac, K.; Svirčev, E.; Beara, I.; Lesjak, M.; Mimica-Dukić, N. Quantitative determination of plant phenolics in Urtica dioica extracts by high-performance liquid chromatography coupled with tandem mass-spectrometric detection. Food Chem. 2014, 143, 48–620. [Google Scholar] [CrossRef]
- Rašeta, M.; Popović, M.; Čapo, I.; Stilinović, N.; Vukmirović, S.; Milošević, B.; Karaman, M. Antidiabetic effect of two different Ganoderma species tested in alloxan diabetic rats. RSC Adv. 2020, 606, 10382–10393. [Google Scholar] [CrossRef]
- Gericke, S.; Lu, T.; Wolf, D.; Kaiser, M.; Hannig, C.; Speer, K. Identification of new compounds from sage flowers (Salvia officinalis L.) as markers for quality control and the influence of the manufacturing technology on the chemical composition and antibacterial activity of sage flower extracts. J. Agric. Food Chem. 2018, 66, 1843–1853. [Google Scholar] [CrossRef]
- Esmaeili, F.; Rahimi, Z.; Yousefian, S.; Farhadpour, M.; Lohrasebi, T. Comparative phenolic profile and antioxidant potential of mentha hairy roots and aerial parts. Biocat. Agric. Biotechnol. 2025, 63, 103469. [Google Scholar] [CrossRef]
- Elansary, H.O.; Szopa, A.; Kubica, P.; Ekiert, H.; Klimek-Szczykutowicz, M.; El-Ansary, D.O.; Mahmoud, E.A. Polyphenol profile and antimicrobial and cytotoxic activities of natural Mentha × piperita and Mentha longifolia populations in Northern Saudi Arabia. Processes 2020, 8, 479. [Google Scholar] [CrossRef]
- Brown, N.; John, J.A.; Shahidi, F. Polyphenol composition and antioxidant potential of mint leaves. Food Prod. Process. Nutr. 2019, 1, 1. [Google Scholar] [CrossRef]
- Moutinho, C.; Matos, C.M.; Neves, J.M.; Martins Teixeira, D. Antispasmodic activity of aqueous extracts from Mentha x piperita native from Trás-os Montes region (Portugal). Int. J. Indig. Med. Plants 2013, 29, 1167–1174. [Google Scholar]
- Roby, M.H.H.; Sarhan, M.A.; Selim, K.A.H.; Khalel, K.I. Evaluation of antioxidant activity, total phenols and phenolic compounds in thyme (Thymus vulgaris L.), sage (Salvia officinalis L.), and marjoram (Origanum majorana L.) extracts. Ind. Crops Prod. 2013, 43, 827–831. [Google Scholar] [CrossRef]
- Aboulaghras, S.; Sahib, N.; Bakrim, S.; Benali, T.; Charfi, S.; Guaouguaou, F.E.; Omari, N.E.; Gallo, M.; Montesano, D.; Zengin, G.; et al. Health benefits and pharmacological aspects of chrysoeriol. Pharmaceuticals 2022, 15, 973. [Google Scholar] [CrossRef] [PubMed]
- Zang, Y.; Igarashi, K.; Li, Y. Anti-diabetic effects of luteolin and luteolin-7-O-glucoside on KK-Ay mice. Biosci. Biotechnol. Biochem. 2016, 80, 1580–1586. [Google Scholar] [CrossRef]
- Uribe, E.; Marín, D.; Vega-Gálvez, A.; Quispe-Fuentes, I. Assessment of vacuum-dried peppermint (Mentha piperita L.) as a source of natural antioxidants. Food Chem. 2015, 190, 559–565. [Google Scholar] [CrossRef]
- Hostetler, G.L.; Ralston, R.A.; Schwartz, S.J. Flavones: Food sources, bioavailability, metabolism and bioactivity. Adv. Nutr. 2017, 8, 423–435. [Google Scholar] [CrossRef]
- Xiong, H.H.; Lin, S.Y.; Chen, L.L.; Ouyang, K.H.; Wang, W.J. The interaction between flavonoids and intestinal microbes: A review. Foods 2023, 12, 320. [Google Scholar] [CrossRef]
- Rodríguez-Daza, M.; Pulido-Mateos, E.C.; Lupien-Meilleur, J.; Guyonnet, D.; Desjardins, Y.; Roy, D. Polyphenol-Mediated Gut Microbiota Modulation: Toward Prebiotics and Further. Front. Nutr. 2021, 8, 689456. [Google Scholar] [CrossRef]
- Rašeta, M.; Mišković, J.; Berežni, S.; Kostić, S.; Kebert, M.; Matavulj, M.; Karaman, M. Antioxidant proficiency in Serbian mushrooms: A comparative study on Hydnum repandum L. 1753 from mycorrhizal and edible niches. Nat. Prod. Res, 2024; 1–8, Online ahead of print. [Google Scholar] [CrossRef]
- Bayani, M.; Ahmadi-Hamedani, M.; Jebelli, A. Study of hypoglycemic, hypocholesterolemic and antioxidant activities of Iranian Mentha spicata leaves aqueous extract in diabetic rats. Iran. J. Pharm. Res. 2017, 16, 75–82. [Google Scholar]
- Abd Rashed, A.; Rathi, D.G. Bioactive components of Salvia and their potential antidiabetic properties: A review. Molecules 2021, 26, 3042. [Google Scholar] [CrossRef] [PubMed]
- Bungau, S.G.; Vesa, C.M.; Bustea, C.; Purza, A.L.; Tit, D.M.; Brisc, M.C.; Radu, A.F. Antioxidant and hypoglycemic potential of essential oils in diabetes mellitus and its complications. Int. J. Mol. Sci. 2023, 24, 16501. [Google Scholar] [CrossRef]
- Khattab, H.A.H.; Mohamed, R.A.; Hasemi, J.M. Evaluation of hypoglycemic activity of Salvia officinalis L. (Sage) infusion on streptozocin-induced diabetic rats. J. Am. Sci. 2012, 8, 411–416. [Google Scholar]
- Oalđe Pavlović, M.; Lunić, T.; Graovac, S.; Mandić, M.; Repac, J.; Gašić, U.M.; Nedeljković, B.B.; Bozic, B. Extracts of selected Lamiaceae species as promising antidiabetics: Chemical profiling, in vitro and in silico approach combined with dynamical modeling. Ind. Crops Prod. 2022, 186, 115200. [Google Scholar] [CrossRef]
- Sun, W.; Shahrajabian, M.H. Therapeutic potential of phenolic compounds in medicinal plants—Natural health products for human health. Molecules 2023, 28, 1845. [Google Scholar] [CrossRef]
- Giannini, E.G.; Testa, R.; Savarino, V. Liver enzyme alteration: A guide for clinicians. CMAJ 2005, 172, 367–379. [Google Scholar] [CrossRef]
- Akdogan, M.; Ozguner, M.; Aydin, G.; Gokalp, O. Investigation of biochemical and histopathological effects of Mentha piperita Labiatae and Mentha spicata Labiatae on liver tissue in rats. Hum. Exp. Toxicol. 2004, 23, 21–28. [Google Scholar] [CrossRef]
- Shahrzad, K.; Mahya, N.; Fatemeh, T.B.; Maryam, K.; Mohammadreza, F.B.; Jahromy, M.H. Hepatoprotective and antioxidant effects of Salvia officinalis L. hydroalcoholic extract in male rats. Chin. Med. 2014, 5, 130–136. [Google Scholar] [CrossRef]
- Horváthová, E.; Srančikova, A.; Regendová-Sedláčkova, E.; Melušová, V.; Meluš, V.; Netriová, J.; Krajčovičová, Z.; Slameňová, D.; Pastorek, M.; Kozics, K. Enriching the drinking water of rats with extracts of Salvia officinalis and Thymus vulgaris increases their resistance to oxidative stress. Mutagenesis 2015, 31, 51–59. [Google Scholar] [CrossRef]
- Ilić, V.; Vukmirović, S.; Stilinović, N.; Čapo, I.; Arsenović, M.; Milijašević, B. Insight into anti-diabetic effect of low dose of stevioside. Biomed. Pharmacother. 2017, 90, 216–221. [Google Scholar] [CrossRef] [PubMed]
Class | Compound | Sage Juice (SJ) | Peppermint Juice (PJ) |
---|---|---|---|
µg/g d.w. | |||
Hydroxycinnamic acid | Caffeic acid | 154.98 ± 0.01 | 16.96 ± 0.12 |
Cyclohexanecarboxylic acid | Quinic acid | 2571.86 ± 1.15 | 184.27 ± 0.45 |
Flavonols | Luteolin-7-O-glucoside | 110.72 ± 0.02 | <LoQ |
Quercetin-3-O-galactoside | 40.68 ± 0.25 | <LoQ | |
Flavones | Apigenin | 16.40 ± 1.01 | <LoQ |
Apigenin-7-O-glucoside | 324.36 ± 1.15 | <LoQ | |
Chrysoeriol | 3.29 ± 0.13 | <LoQ |
BGL 0 Before | BGL 0 After | Δ BGL 0 | BGL After 5-Day Treatment Before | BGL After 5-Day Treatment After | Δ BGL 5 | BGL After 10-Day Treatment Before | BGL After 10-Day Treatment After | Δ BGL 10 | |
---|---|---|---|---|---|---|---|---|---|
C1 (saline) | 4.30 ± 0.42 | 7.55 ± 1.14 | 3.25 ± 0.83 | 6.60 ± 1.07 | 8.75 ± 1.39 | 2.15 ± 1.45 | 7.72 ± 0.74 | 9.55 ± 1.83 | 1.83 ± 1.45 |
SJ-20a | 4.62 ± 0.68 | 7.57 ± 1.55 | 2.95 ± 1.38 | 6.18 ± 1.05 | 9.75 ± 2.57 | 3.57 ± 1.62 | 7.50 ± 1.60 | 8.15 ± 1.40 | 0.65 ± 0.68 |
SJ-40a | 4.58 ± 0.51 | 8.58 ± 1.15 | 4.00 ± 1.23 | 6.67 ± 0.86 | 8.98 ± 1.35 | 2.32 ± 0.75 | 8.60 ± 1.12 | 9.97 ± 1.09 | 1.37 ± 0.38 |
SJ-80a | 4.63 ± 0.92 | 8.40 ± 1.81 | 3.77 ± 1.52 | 6.55 ± 0.66 | 9.03 ± 1.03 | 2.48 ± 0.80 | 8.58 ± 0.91 | 9.88 ± 1.39 | 1.30 ± 0.64 |
PJ-20a | 4.50 ± 0.80 | 7.73 ± 1.26 | 3.23 ± 0.68 | 6.25 ± 1.18 | 9.10 ± 2.03 | 2.85 ± 0.91 | 8.08 ± 1.42 | 9.40 ± 2.00 | 1.32 ± 1.25 |
PJ-40a | 4.17 ± 0.79 | 7.63 ± 0.23 | 3.47 ± 0.80 | 6.50 ± 0.78 | 9.90 ± 1.36 | 3.40 ± 1.00 | 7.85 ± 0.78 | 8.83 ± 1.61 | 0.98 ± 0.99 |
PJ-80a | 4.00 ± 0.33 | 6.53 ± 1.13 | 2.53 ± 1.11 | 6.02 ± 0.91 | 8.17 ± 1.49 | 2.15 ± 0.86 | 7.78 ± 1.86 | 9.17 ± 1.63 | 1.38 ± 1.32 |
BGL Start | BGL 72 h After STZ Administration | BGL After 5-Day Treatment | BGL After 10-Day Treatment | Δ BGL 10–72 h | |
---|---|---|---|---|---|
C2 (saline) | 6.92 ± 0.80 | 15.89 ± 3.45 | 22.42 ± 7.66 | 29.54 ± 8.94 | 13.65 ± 7.74 |
SJ-20b | 6.31 ± 1.15 | 16.25 ± 7.33 | 20.89 ± 10.19 | 21.50 ± 10.38 | 5.25 ± 5.56 |
SJ-40b | 6.19 ± 0.97 | 17.19 ± 7.24 | 25.15 ± 9.47 | 24.84 ± 7.88 | 7.65 ± 9.80 |
SJ-80b | 5.54 ± 1.54 | 23.01 ± 7.46 | 28.10 ± 6.80 | 29.96 ± 5.28 | 6.95 ± 6.45 |
PJ-20b | 5.48 ± 1.33 | 15.14 ± 4.80 | 21.46 ± 9.59 | 20.60 ± 7.75 | 5.46 ± 8.64 |
PJ-40b | 5.95 ± 1.30 | 16.29 ± 5.13 | 20.19 ± 8.33 | 22.82 ± 7.28 | 6.54 ± 4.53 |
PJ-80b | 5.65 ± 0.87 | 21.61 ± 7.68 | 28.02 ± 6.94 | 27.38 ± 6.80 | 5.76 ± 5.05 |
AST | ALT | |
---|---|---|
C1 (saline) | 7025.8 ± 1038.8 | 10679 ± 1409.2 |
SJ-20a | 2782 ± 426.9 | 5336.5 ± 801.5 |
SJ-40a | 4784.3 ± 893.3 | 7707.2 ± 725.6 |
SJ-80a | 5835.3 ± 1055.1 | 8481 ± 933.4 |
PJ-20a | 5113.3 ± 932.7 | 8112.8 ± 1079.3 |
PJ-40a | 8410 ± 1988.3 | 12,904 ± 2365.4 |
PJ-80a | 6920.8 ± 1326.1 | 10,010 ± 1665.8 |
SOD U/mg of Proteins | CAT U/mg of Proteins | GPx nmol NADPH/min/mg Proteins | GR nmol NADPH/min/mg Proteins | GST nmol of Conjugate/min/mg or Proteins | LPx nmol MDA/mg of Proteins | |
---|---|---|---|---|---|---|
C1 (saline) | 18.83 ± 2.04 | 25.00 ± 2.04 | 37.54 ± 4.91 | 5.61 ± 0.83 | 18.73 ± 8.97 | 0.066 ± 0.019 |
SJ-20a | 24.17 ± 2.86 * | 27.39 ± 1.90 | 36.66 ± 3.86 | 4.90 ± 0.44 | 33.86 ± 5.41 * | 0.048 ± 0.008 * |
SJ-40a | 19.78 ± 3.85 | 24.00 ± 4.73 | 32.94 ± 3.48 | 5.55 ± 0.99 | 23.37 ± 6.32 | 0.051 ± 0.005 * |
SJ-80a | 23.85 ± 5.54 * | 26.27 ± 6.89 | 37.34 ± 5.81 | 5.47 ± 1.02 | 23.09 ± 8.62 | 0.054 ± 0.006 |
PJ-20a | 30.15 ± 3.99 * | 30.29 ± 2.09 * | 38.39 ± 3.55 | 5.36 ± 0.65 | 29.30 ± 7.26 * | 0.078 ± 0.01 |
PJ-40a | 22.46 ± 2.52 | 25.35 ± 2.27 | 31.18 ± 2.59 * | 4.96 ± 0.67 | 18.09 ± 2.11 | 0.043 ± 0.013 * |
PJ-80a | 19.07 ± 2.44 | 22.82 ± 3.67 | 34.37 ± 3.14 | 5.41 ± 1.32 | 20.09 ± 6.01 | 0.043 ± 0.011 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Krstić, S.; Milanović, I.; Stilinović, N.; Vukmirović, S.; Pavlović, N.; Berežni, S.; Rašeta, M. Health Benefits of Traditional Sage and Peppermint Juices: Simple Solutions for Antioxidant and Antidiabetic Support. Foods 2025, 14, 1182. https://doi.org/10.3390/foods14071182
Krstić S, Milanović I, Stilinović N, Vukmirović S, Pavlović N, Berežni S, Rašeta M. Health Benefits of Traditional Sage and Peppermint Juices: Simple Solutions for Antioxidant and Antidiabetic Support. Foods. 2025; 14(7):1182. https://doi.org/10.3390/foods14071182
Chicago/Turabian StyleKrstić, Sanja, Isidora Milanović, Nebojša Stilinović, Saša Vukmirović, Nebojša Pavlović, Sanja Berežni, and Milena Rašeta. 2025. "Health Benefits of Traditional Sage and Peppermint Juices: Simple Solutions for Antioxidant and Antidiabetic Support" Foods 14, no. 7: 1182. https://doi.org/10.3390/foods14071182
APA StyleKrstić, S., Milanović, I., Stilinović, N., Vukmirović, S., Pavlović, N., Berežni, S., & Rašeta, M. (2025). Health Benefits of Traditional Sage and Peppermint Juices: Simple Solutions for Antioxidant and Antidiabetic Support. Foods, 14(7), 1182. https://doi.org/10.3390/foods14071182