Bridging the Quality-Price Gap: Unlocking Consumer Premiums for High-Quality Rice in China
Abstract
:1. Introduction
2. Conceptual Framework and Research Hypotheses
2.1. Research Hypothesis
2.2. Research Design
3. Materials and Methods
3.1. Data Collection
3.2. Descriptive Statistics
3.3. Variable Design and Measurement
3.3.1. Dependent Variables
3.3.2. Independent Variables
3.4. Methods
3.4.1. Model for Estimating the Consumption Decision-Making Process
3.4.2. Model for Estimating the Characteristic Price
4. Results
4.1. Factors Influencing the Consumer Decision-Making Process
4.1.1. Baseline Regression Results of the First Stage
4.1.2. Robustness Test of the First Stage
4.2. Characteristic Price Estimation
4.2.1. Baseline Regression Results of the Second Stage
4.2.2. Robustness Test of the Second Stage
5. Discussion
5.1. Key Findings
5.1.1. Product Characteristics as Primary Drivers
5.1.2. Cognitive Perception and Purchasing Experience
5.1.3. Demographic Heterogeneity
5.2. Primary Contribution
6. Conclusions
6.1. Conclusions and Implication
6.1.1. Policy Implications
6.1.2. Supply Chain Implications: Prioritizing Attributes with High Premium Potential
6.1.3. Marketing Implications
6.2. Limitations and Future Directions
6.2.1. Geographical Representativeness
6.2.2. Temporal and Contextual Limitations
6.2.3. Innovative Research Methods
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
WTP | Willingness to Pay |
PCA | Principal Component Analysis |
References
- Candemir, A.; Duvaleix, S.; Latruffe, L. Agricultural Cooperatives and Farm Sustainability—A Literature Review. J. Econ. Surv. 2021, 35, 1118–1144. [Google Scholar] [CrossRef]
- Hu, S.; Lu, J.; Jin, Y. Can Price Still Be an Honest Signal of Products’ Quality?—A Perspective of Blockchain Adoption. Comput. Ind. Eng. 2024, 189, 109945. [Google Scholar]
- Li, F.; Ma, S.; Liu, X. Changing Multi-Scale Spatiotemporal Patterns in Food Security Risk in China. J. Clean. Prod. 2023, 384, 135618. [Google Scholar] [CrossRef]
- Barrett, C.B.; Reardon, T.; Swinnen, J.; Zilberman, D. Agri-Food Value Chain Revolutions in Low- and Middle-Income Countries. J. Econ. Lit. 2022, 60, 1316–1377. [Google Scholar] [CrossRef]
- Lin, L.; Gu, T.; Shi, Y. The Influence of New Quality Productive Forces on High-Quality Agricultural Development in China: Mechanisms and Empirical Testing. Agriculture 2024, 14, 1022. [Google Scholar] [CrossRef]
- Alestig, M. Price Interventions as a Part of Living Income Strategies: Lessons Learned from Piloting a Price Premium Mechanism for Basmati Rice Farmers in Pakistan; Oxfam: Oxford, UK, 2023. [Google Scholar]
- Hoffmann, V.; Kariuki, S.; Pieters, J.; Treurniet, M. Upside Risk, Consumption Value, and Market Returns to Food Safety. Am. J. Agric. Econ. 2022, 105, 914–939. [Google Scholar] [CrossRef]
- Liu, Y.; Chen, R.; Chen, Y.; Yu, T.; Fu, X. Impact of the Degree of Agricultural Green Production Technology Adoption on Income: Evidence from Sichuan Citrus Growers. Humanit. Soc. Sci. Commun. 2024, 11, 1160. [Google Scholar] [CrossRef]
- Kc, D.; Roberts, R.E.; Quach, S. Factors Affecting the Smallholder Farmers’ Participation in the Emerging Modern Supply Chain in Developing Countries. Asia Pac. J. Mark. Logist. 2022, 35, 266–289. [Google Scholar] [CrossRef]
- Quan, T.; Jia, W.; Quan, T.; Xu, Y. Impact of Farmers’ Participation in the Transformation of the Farmland Transfer Market on the Adoption of Agricultural Green Production Technologies. Agriculture 2024, 14, 1677. [Google Scholar] [CrossRef]
- Truelove, R.N.; Lellyett, S.C.; Issaka, A.I.; Huda, S. Agricultural Value Chains in Developing Economies: A Theoretical Framework. In Sustainable Food Value Chain Development: Perspectives from Developing and Emerging Economies; Springer Nature: Singapore, 2023; pp. 107–152. [Google Scholar]
- Song, Y.; Wu, W.; Miocevic, D. Farmers’ Choice between Endogenous vs. Exogenous e-Commerce: Alignment with Resources and Performance Goals. Br. Food J. 2022, 124, 61–77. [Google Scholar] [CrossRef]
- Vroegindewey, R.; Richardson, R.B.; Ortega, D.L.; Theriault, V. Consumer and Retailer Preferences for Local Ingredients in Processed Foods: Evidence from a Stacked Choice Experiment in an African Urban Dairy Market. Food Policy 2021, 103, 102106. [Google Scholar] [CrossRef]
- Lan, C.; Lan, Y.; Liu, S. Pricing Strategy of Traceable Agricultural Supply Chain Decisions Considering Retailer’s Overconfidence with Government Subsidy. Alex. Eng. J. 2025, 112, 487–495. [Google Scholar] [CrossRef]
- Zhan, Y.; Ren, Y.; Xu, J. Willingness to Pay a Premium for Eco-Label Products in China: A Mediation Model Based on Quality Value. Sci. Rep. 2025, 15, 1783. [Google Scholar] [CrossRef] [PubMed]
- Campi, M.; Dueñas, M.; Fagiolo, G. Specialization in Food Production Affects Global Food Security and Food Systems Sustainability. World Dev. 2021, 141, 105411. [Google Scholar] [CrossRef]
- Chandio, A.A.; Jiang, Y.; Ahmad, F.; Adhikari, S.; Ain, Q.U. Assessing the Impacts of Climatic and Technological Factors on Rice Production: Empirical Evidence from Nepal. Technol. Soc. 2021, 66, 101607. [Google Scholar] [CrossRef]
- Abate, G.T.; Bernard, T.; de Janvry, A.; Sadoulet, E.; Trachtman, C. Introducing Quality Certification in Staple Food Markets in Sub-Saharan Africa: Four Conditions for Successful Implementation. Food Policy 2021, 105, 102173. [Google Scholar] [CrossRef]
- State Administration for Market Regulation (SAMR); Standardization Administration of China (SAC). Milled Rice; Standardization Administration of China (SAC): Beijing, China, 2018; Available online: http://down.foodmate.net/standard/yulan.php?itemid=53673 (accessed on 23 February 2025).
- Ye, G.; Guan, L.; Zhang, M.; Li, S.; Mi, Y. Study on the Correlation between Aroma Compounds and Texture of Cooked Rice: A Case Study of 15 Japonica Rice Species from Northeast China. Cereal Chem. 2025, 102, 167–180. [Google Scholar]
- Xu, Z.; Yang, L.; Xiao, X.; Cui, B.; Zhou, J.; Peng, Q.; Song, S.; Pei, H.; Zhang, Y. Impact of Rice Friction Milling on the Bran Layer and on Kernel Structure. J. Cereal Sci. 2024, 118, 103936. [Google Scholar] [CrossRef]
- Nie, W.; Abler, D.; Li, T. Grading Attribute Selection of China’s Grading System for Agricultural Products: What Attributes Benefit Consumers More? J. Behav. Exp. Econ. 2021, 93, 101707. [Google Scholar] [CrossRef]
- Sundar, A.; Cao, E.; Wu, R.; Kardes, F.R. Is Unnatural Unhealthy? Think about It: Overcoming Negative Halo Effects from Food Labels. Psychol. Mark. 2021, 38, 1280–1292. [Google Scholar] [CrossRef]
- Yadav, V.S.; Singh, A.R.; Gunasekaran, A.; Raut, R.D.; Narkhede, B.E. A Systematic Literature Review of the Agro-Food Supply Chain: Challenges, Network Design, and Performance Measurement Perspectives. Sustain. Prod. Consum. 2022, 29, 685–704. [Google Scholar] [CrossRef]
- Bone, S.A.; Christensen, G.L.; Williams, J.D.; Cross, S.N.N.; Dellande, S. Moving beyond Perceptions: Examining Service Disparities among Consumers. J. Assoc. Consum. Res. 2023, 8, 107–119. [Google Scholar] [CrossRef]
- Thøgersen, J. Consumer Behavior and Climate Change: Consumers Need Considerable Assistance. Curr. Opin. Behav. Sci. 2021, 42, 9–14. [Google Scholar] [CrossRef]
- Shao, A.; Li, H. How Do Utilitarian versus Hedonic Products Influence Choice Preferences: Mediating Effect of Social Comparison. Psychol. Mark. 2021, 38, 1250–1261. [Google Scholar] [CrossRef]
- Alsubhi, M.; Blake, M.; Nguyen, T.; Majmudar, I.; Moodie, M.; Ananthapavan, J. Consumer Willingness to Pay for Healthier Food Products: A Systematic Review. Obes. Rev. 2023, 24, e13525. [Google Scholar] [CrossRef]
- Rosen, S. Hedonic Prices and Implicit Markets: Product Differentiation in Pure Competition. J. Polit. Econ. 1974, 82, 34–55. [Google Scholar] [CrossRef]
- Hossain, A.; Badiuzzaman; Nielsen, M.; Roth, E. Consumer Willingness to Pay for Quality Attributes of Pangasius (Pangasianodoan hypophthalmus) in Bangladesh: A Hedonic Price Analysis. Aquaculture 2022, 555, 738205. [Google Scholar] [CrossRef]
- Gorton, M.; Tocco, B.; Yeh, C.-H.; Hartmann, M. What Determines Consumers’ Use of Eco-Labels? Taking a Close Look at Label Trust. Ecol. Econ. 2021, 189, 107173. [Google Scholar] [CrossRef]
- Britwum, K.; Demont, M. Staging an Experience of Cultural Heritage Preservation: Consumers’ Willingness to Pay for Heirloom Rice in the Philippines. Agribusiness 2025, in press. [Google Scholar]
- Lee, D.; Hosanagar, K. How Do Product Attributes and Reviews Moderate the Impact of Recommender Systems through Purchase Stages? Manag. Sci. 2021, 67, 524–546. [Google Scholar] [CrossRef]
- Wang, C.; Wang, Y.; Wang, J.; Xiao, J.; Liu, J. Factors Influencing Consumers’ Purchase Decision-Making in O2O Business Model: Evidence from Consumers’ Overall Evaluation. J. Retail. Consum. Serv. 2021, 61, 102565. [Google Scholar] [CrossRef]
- Singh, B. Understanding the Role of Image, Quality and Price for Developing Prestigious Mass Brands. Asia Pac. J. Mark. Logist. 2023, 35, 533–559. [Google Scholar] [CrossRef]
- Sadiq, M.A.; Rajeswari, B.; Ansari, L.; Kirmani, M.D. The Role of Food Eating Values and Exploratory Behaviour Traits in Predicting Intention to Consume Organic Foods: An Extended Planned Behaviour Approach. J. Retail. Consum. Serv. 2021, 59, 102352. [Google Scholar] [CrossRef]
- Tran, N.; Shikuku, K.M.; Hoffmann, V.; Lagerkvist, C.J.; Pincus, L.; Akintola, S.L.; Fakoya, K.A.; Olagunju, O.F.; Bailey, C. Are Consumers in Developing Countries Willing to Pay for Aquaculture Food Safety Certification? Evidence from a Field Experiment in Nigeria. Aquaculture 2022, 550, 737829. [Google Scholar] [CrossRef]
- Malekpour, M.; Yazdani, M.; Rezvani, H. Investigating the Relationship between Intrinsic and Extrinsic Product Attributes with Customer Satisfaction: Implications for Food Products. Br. Food J. 2022, 124, 578–598. [Google Scholar] [CrossRef]
- Alzayat, A.; Lee, S.H.M. Virtual Products as an Extension of My Body: Exploring Hedonic and Utilitarian Shopping Value in a Virtual Reality Retail Environment. J. Bus. Res. 2021, 130, 348–363. [Google Scholar] [CrossRef]
- Tang, S.; Wang, P.; Xing, H.; Huang, Z.; Liu, P.; Li, T.; Huang, J. Consumer Preferences and Willingness to Pay for High-Quality Vegetable Oils: A Cross-Sectional Analysis of Chinese Residents. Foods 2024, 13, 1168. [Google Scholar] [CrossRef]
- Pfiffelmann, J.; Untilov, O.; Thøgersen, J.; Franck, R. Conflicting Consumer Beliefs Influencing Eco-innovation Adoption: Motives and Barriers for Accepting the Laser Marking of Organic Products. Psychol. Mark. 2025, 42, 866–891. [Google Scholar] [CrossRef]
- Santos, S.; Gonçalves, H.M. The Consumer Decision Journey: A Literature Review of the Foundational Models and Theories and a Future Perspective. Technol. Forecast. Soc. Change 2021, 173, 121117. [Google Scholar] [CrossRef]
- Hassan, M.M.; Ahmad, N.; Hashim, A.H. The Conceptual Framework of Housing Purchase Decision-Making Process. Int. J. Acad. Res. Bus. Soc. Sci. 2021, 11, 1672–1690. [Google Scholar] [CrossRef]
- Purbaningsih, Y.; Helviani, H.; Nursalam, N.; Hasbiadi, H.; Masitah, M.; Mardiana, A. The Decision Making For Rice Consumer Purchase The Decision-Making By The Customer In Purchasing Of Rice. Int. J. Multidiscip. Res. Lit. 2023, 2, 566–575. [Google Scholar] [CrossRef]
- Ajzen, I. The Theory of Planned Behavior. Organ. Behav. Hum. Decis. Process. 1991, 50, 179–211. [Google Scholar] [CrossRef]
- Parashar, S.; Singh, S.; Sood, G. Examining the Role of Health Consciousness, Environmental Awareness and Intention on Purchase of Organic Food: A Moderated Model of Attitude. J. Clean. Prod. 2023, 386, 135553. [Google Scholar] [CrossRef]
- Wang, M.; Ge, J.; Fan, X.; Hu, W. Price Premiums for Geographical Indication under the Coexistence of Self-claims and Certification. Aust. J. Agric. Resour. Econ. 2025, in press. [Google Scholar] [CrossRef]
- Levrini, G.R.D.; Jeffman Dos Santos, M. The Influence of Price on Purchase Intentions: Comparative Study between Cognitive, Sensory, and Neurophysiological Experiments. Behav. Sci. 2021, 11, 16. [Google Scholar] [CrossRef]
- Sun, Z.Q.; Yoon, S.J. What Makes People Pay Premium Price for Eco-Friendly Products? The Effects of Ethical Consumption Consciousness, CSR, and Product Quality. Sustainability 2022, 14, 15513. [Google Scholar] [CrossRef]
- Hunt, S.D.; Pappas, J.L. A Crucial Test for the Howard-Sheth Model of Buyer Behavior. J. Mark. Res. 1972, 9, 346–348. [Google Scholar] [CrossRef]
- Erasmus, A.C.; Boshoff, E.; Rousseau, G.G. Consumer Decision-Making Models within the Discipline of Consumer Science: A Critical Approach. J. Diet. Home Econ. 2001, 29, 82–90. [Google Scholar] [CrossRef]
- Salimi, S.; Hajiha, A.; Saeednia, H.; Heidarzadeh, K. Designing a Post-Purchase Regret Model and Determining Online Business Strategies. J. Ind. Eng. Manag. Stud. 2022, 9, 109–119. [Google Scholar]
- Shapiro, B.P. Price Reliance: Existence and Sources. J. Mark. Res. 1973, 10, 286–294. [Google Scholar]
- Zhang, X.Y.; Chao, C.T.; Chiu, Y.T.; Chen, H.-S. Study of the Correlation between Streaming Video Platform Content on Food Production Processes and the Behavioral Intentions of Generation Z. Foods 2024, 13, 1537. [Google Scholar] [CrossRef]
- Wu, W.; Zhang, A.; van Klinken, R.D.; Schrobback, P.; Muller, J.M. Consumer Trust in Food and the Food System: A Critical Review. Foods 2021, 10, 2490. [Google Scholar] [CrossRef]
- Truong, V.A.; Conroy, D.M.; Lang, B. The Trust Paradox in Food Labelling: An Exploration of Consumers’ Perceptions of Certified Vegetables. Food Qual. Prefer. 2021, 93, 104280. [Google Scholar] [CrossRef]
- Akwaowo, C.D.; Umoh, I.; Motilewa, O.; Akpan, B.; Umoh, E.; Frank, E.; Nna, E.; Okeke, U.; Onwujekwe, O.E. Willingness to Pay for a Contributory Social Health Insurance Scheme: A Survey of Rural Residents in Akwa Ibom State, Nigeria. Front. Public Health 2021, 9, 654362. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Wang, X.; Shi, Y. The Types, Regional Distribution, and Consumption Trend of Chinese Traditional Wheat-Based Foods. J. Food Qual. 2022, 2022, 9986119. [Google Scholar] [CrossRef]
- Statistical Bureau of the People’s Republic of China. China Statistical Yearbook; China Statistics Press: Beijing, China, 2022. [Google Scholar]
- Department of Rural Socioeconomic Survey, National Bureau of Statistics of China. China Rural Statistical Yearbook; China Statistics Press: Beijing, China, 2022. [Google Scholar]
- Beijing Municipal Bureau of Statistics; Survey Office of the National Bureau of Statistics in Beijing. Beijing Statistical Yearbook; China Statistics Press: Beijing, China, 2022. [Google Scholar]
- Henan Provincial Bureau of Statistics; Survey Office of the National Bureau of Statistics in Henan. Henan Statistical Yearbook; China Statistics Press: Beijing, China, 2022. [Google Scholar]
- Hubei Provincial Bureau of Statistics; Survey Office of the National Bureau of Statistics in Hubei. Hubei Statistical Yearbook; China Statistics Press: Beijing, China, 2022. [Google Scholar]
- Guangdong Provincial Bureau of Statistics; Survey Office of the National Bureau of Statistics in Guangdong. Guangdong Statistical Yearbook; China Statistics Press: Beijing, China, 2022. [Google Scholar]
- Shrestha, N. Factor Analysis as a Tool for Survey Analysis. Am. J. Appl. Math. Stat. 2021, 9, 4–11. [Google Scholar] [CrossRef]
- Hadi, N.U.; Abdullah, N.; Sentosa, I. An Easy Approach to Exploratory Factor Analysis: Marketing Perspective. J. Educ. Soc. Res. 2016, 6, 215–223. [Google Scholar]
- Hill, B.D. The Sequential Kaiser-Meyer-Olkin Procedure as an Alternative for Determining the Number of Factors in Common-Factor Analysis: A Monte Carlo Simulation. Ph.D. Thesis, Oklahoma State University, Stillwater, OK, USA, 2011. [Google Scholar]
- Christensen, R. Log-Linear Models and Logistic Regression, 2nd ed.; Springer: New York, NY, USA, 2013; ISBN 9780387982472. [Google Scholar]
- Dobson, A.J.; Barnett, A.G. An Introduction to Generalized Linear Models, 4th ed.; CRC Press: London, UK, 2018; ISBN 9781315182780. [Google Scholar]
- Williams, R. Understanding and Interpreting Generalized Ordered Logit Models. J. Math. Sociol. 2016, 40, 7–20. [Google Scholar]
- Ye, F.; Lord, D. Comparing Three Commonly Used Crash Severity Models on Sample Size Requirements: Multinomial Logit, Ordered Probit and Mixed Logit Models. Anal. Methods Accid. Res. 2014, 1, 72–85. [Google Scholar]
- Mccullagh, P. Regression Models for Ordinal Data. J. R. Stat. Soc. Ser. B (Methodol.) 1980, 42, 109–127. [Google Scholar]
- Lancaster, K.J. A New Approach to Consumer Theory. In Lecture Notes in Economics and Mathematical Systems; Springer: Berlin/Heidelberg, Germany, 1976; pp. 106–107. ISBN 9783540078692. [Google Scholar]
- Ballco, P.; Jaafer, F.; de Magistris, T. Investigating the Price Effects of Honey Quality Attributes in a European Country: Evidence from a Hedonic Price Approach. Agribusiness 2022, 38, 885–904. [Google Scholar] [CrossRef]
- Katrutsa, A.; Strijov, V. Comprehensive Study of Feature Selection Methods to Solve Multicollinearity Problem According to Evaluation Criteria. Expert Syst. Appl. 2017, 76, 1–11. [Google Scholar] [CrossRef]
- Chan, J.Y.-L.; Leow, S.M.H.; Bea, K.T.; Cheng, W.K.; Phoong, S.W.; Hong, Z.-W.; Chen, Y.-L. Mitigating the Multicollinearity Problem and Its Machine Learning Approach: A Review. Mathematics 2022, 10, 1283. [Google Scholar] [CrossRef]
- Hao, L.; Naiman, D.Q. Quantile Regression; SAGE Publications: Thousand Oaks, CA, USA, 2007; ISBN 9781412926287. [Google Scholar]
- García-Salirrosas, E.E.; Escobar-Farfán, M.; Esponda-Perez, J.A.; Villar-Guevara, M.; Rondon-Eusebio, R.F.; Ezcurra-Zavaleta, G.; Urraca-Vergara, E.M.; Guerra-Velásquez, M. Healthy Lifestyle Motivators of Willingness to Consume Healthy Food Brands: An Integrative Model. Foods 2025, 14, 125. [Google Scholar] [CrossRef] [PubMed]
- Majer, J.M.; Henscher, H.A.; Reuber, P.; Fischer-Kreer, D.; Fischer, D. The Effects of Visual Sustainability Labels on Consumer Perception and Behavior: A Systematic Review of the Empirical Literature. Sustain. Prod. Consum. 2022, 33, 1–14. [Google Scholar] [CrossRef]
- Cavusgil, S.T.; Deligonul, S.; Kardes, I.; Cavusgil, E. Middle-Class Consumers in Emerging Markets: Conceptualization, Propositions, and Implications for International Marketers. J. Int. Mark. 2018, 26, 94–108. [Google Scholar] [CrossRef]
- Alhammadi, K.; Santos-Roldán, L.; Cabeza-Ramírez, L.J. A Theoretical Framework on the Determinants of Food Purchasing Behavior of the Elderly: A Bibliometric Review with Scientific Mapping in Web of Science. Foods 2021, 10, 688. [Google Scholar] [CrossRef]
- Lee, H.-J.; Yun, Z.-S. Consumers’ Perceptions of Organic Food Attributes and Cognitive and Affective Attitudes as Determinants of Their Purchase Intentions toward Organic Food. Food Qual. Prefer. 2015, 39, 259–267. [Google Scholar] [CrossRef]
- Chenarides, L.; Manfredo, M.; Richards, T.J. COVID-19 and Food Supply Chains. Appl. Econ. Perspect. Policy 2021, 43, 270–279. [Google Scholar] [CrossRef]
- Richards, T.J.; Rickard, B. COVID-19 Impact on Fruit and Vegetable Markets. Can. J. Agric. Econ. 2020, 68, 189–194. [Google Scholar] [CrossRef]
- Murphy, J.J.; Allen, P.G.; Stevens, T.H.; Weatherhead, D. A Meta-Analysis of Hypothetical Bias in Stated Preference Valuation. Environ. Resour. Econ. 2005, 30, 313–325. [Google Scholar] [CrossRef]
City | Region | Population Size (million) | GDP (¥/capita) | Engel’s Coefficient for Urban Residents (%) | Grain Food Consumption of Urban Residents (kg/capita) |
---|---|---|---|---|---|
Beijing | North | 2189.0 | 183,980.0 | 21.0 | 106.0 |
Luoyang | Central | 752.5 | 76,219.0 | 26.4 | 133.9 |
Wuhan | Central-south | 1364.9 | 135,251.0 | 29.9 | 116.6 |
Shenzhen | South | 627.9 | 174,542.0 | 31.7 | 94.5 |
China | Total | 141,260.0 | 83,111.0 | 28.6 | 124.8 |
Project | Class | Samples | Percentage |
---|---|---|---|
Gender | Male | 637 | 37.16% |
Female | 1077 | 62.84% | |
Age | Under 18 | 15 | 0.88% |
18~29 | 624 | 36.41% | |
30~45 | 690 | 40.26% | |
46~65 | 308 | 17.97% | |
Above 65 | 77 | 4.49% | |
Education | Junior high school or below | 120 | 7.00% |
High school (including secondary school) | 301 | 17.56% | |
Undergraduate (including college) | 1074 | 62.66% | |
Postgraduate or above | 219 | 12.78% | |
Location | Beijing | 506 | 29.52% |
Luoyang | 329 | 19.19% | |
Wuhan | 406 | 23.69% | |
Shenzhen | 473 | 27.60% | |
Marriage | Single | 606 | 35.36% |
Married (including divorced or widowed) | 1108 | 64.64% | |
Household size | ≤1 person | 61 | 3.57% |
2~4 people | 1216 | 71.07% | |
More than four people | 434 | 25.37% | |
Whether there are pregnant women/children/elders at home | Yes | 958 | 55.89% |
No | 756 | 44.11% | |
Whether there are chronic patients at home | Yes | 636 | 37.11% |
No | 1078 | 62.89% | |
Monthly personal income | Less than 2000 yuan | 68 | 3.97% |
2000~5000 yuan | 439 | 25.61% | |
5000~10,000 yuan | 572 | 33.37% | |
10,000~15,000 yuan | 319 | 18.61% | |
15,000~20,000 yuan | 175 | 10.21% | |
More than 20,000 yuan | 141 | 8.23% | |
Sample size | 1714 |
Variable Classification | Variable Name | Coefficient of Load | Charact-Eristic Root | Variance Cumulative Explanation Rate (%) |
---|---|---|---|---|
Product preferences | Appearance | 0.669 | 4.729 | 59.113 |
Origin | 0.745 | |||
Breed | 0.811 | |||
Brand | 0.786 | |||
Taste | 0.734 | |||
Nutrition | 0.771 | |||
Certification | 0.817 | |||
Quality grade | 0.805 | |||
Cognitive perception | Attention to nutrition fact | 0.869 | 1.964 | 65.465 |
Attention to quality grade | 0.876 | |||
Knowledge of certification | 0.664 | |||
Purchasing experience | The perception of the relationship between quality and price | 0.744 | 1.840 | 61.320 |
Trust to quality and food safety | 0.831 | |||
The convenience of identifying quality | 0.772 |
Variable Name | Option | Frequency | Percentage | Mode | Median | Mean | Standard Error |
---|---|---|---|---|---|---|---|
Willingness to pay premium | Very Unwilling = 1 | 86 | 5.02% | 4 | 4 | 3.51 | 1.03 |
Unwilling = 2 | 138 | 8.05% | |||||
Neutral = 3 | 436 | 25.44% | |||||
Willing = 4 | 879 | 51.28% | |||||
Very Willing = 5 | 175 | 10.21% | |||||
Total | 1714 | 100.00% |
Variable Name | Regression Coefficient (z-Value) | Standard Error | Waldχ2 | p-Value | OR Price | OR Value 95%CI |
---|---|---|---|---|---|---|
Product preference | 0.443 *** (7.059) | 0.063 | 49.829 | 0.000 | 1.557 | 1.377~1.760 |
Cognitive perception factors | 0.286 *** (5.119) | 0.056 | 26.201 | 0.000 | 1.331 | 1.193~1.484 |
Purchasing experience factors | 0.959 *** (15.226) | 0.063 | 231.827 | 0.000 | 2.608 | 2.305~2.950 |
Gender | −0.057 (−0.574) | 0.100 | 0.329 | 0.566 | 0.944 | 0.777~1.148 |
Age | −0.101 (−1.318) | 0.077 | 1.736 | 0.188 | 0.904 | 0.778~1.050 |
Education | 0.422 *** (5.312) | 0.080 | 28.220 | 0.000 | 1.526 | 1.305~1.783 |
Location | −0.149 *** (−3.365) | 0.044 | 11.320 | 0.001 | 0.862 | 0.790~0.940 |
Marriage | −0.199 (−1.418) | 0.140 | 2.012 | 0.156 | 0.819 | 0.622~1.079 |
Household size | 0.006 (0.192) | 0.031 | 0.037 | 0.848 | 1.006 | 0.946~1.070 |
Whether there are pregnant women/children/elders at home | −0.135 (−1.230) | 0.110 | 1.514 | 0.219 | 0.873 | 0.704~1.084 |
Whether there are chronic patients at home | −0.096 (−0.933) | 0.103 | 0.870 | 0.351 | 0.908 | 0.742~1.112 |
Monthly personal income | 0.232 *** (5.636) | 0.041 | 31.767 | 0.000 | 1.261 | 1.164~1.368 |
McFadden R2: 0.165 |
Variable | Original Model | Stepwise Regression Model |
---|---|---|
Product preference | 0.443 *** (7.059) | 0.199 *** (8.366) |
Cognitive perception factors | 0.286 *** (5.119) | 0.107 *** (4.820) |
Purchasing factors | 0.959 *** (15.226) | 0.391 *** (16.937) |
Age | −0.101 (−1.318) | −0.074 *** (−3.083) |
Education | 0.422 *** (5.312) | 0.181 *** (5.858) |
Location | −0.149 *** (−3.365) | −0.059 *** (−3.414) |
Monthly personal income | 0.232 *** (5.636) | 0.070 *** (4.395) |
Adjusted R−squared | 0.165 | 0.401 |
Primary Indicators | Variable Name | Variable Assignment | Mode | Median | Mean | Standard Deviation | Expected Direction |
---|---|---|---|---|---|---|---|
Product preferences | Appearance | Very unimportant = 1 Unimportant = 2 Neutral = 3 Important = 4 Very important = 5 | 4 | 4 | 3.398 | 1.090 | + |
Taste | 5 | 5 | 4.435 | 0.913 | + | ||
Nutrition | 5 | 5 | 4.264 | 1.006 | + | ||
Origin | 3 | 3 | 3.272 | 1.184 | + | ||
Breed | 4 | 4 | 3.465 | 1.137 | + | ||
Brand | 3 | 3 | 3.373 | 1.115 | + | ||
Certification | 5 | 4 | 3.975 | 1.061 | + | ||
Quality grade | 5 | 5 | 4.258 | 0.955 | + | ||
Cognitive perception | Attention to nutrition fact | Never = 1 Rarely = 2 Occasionally = 3 Often = 4 Always = 5 | 3 | 3 | 2.694 | 1.122 | + |
Attention to quality grade | 3 | 3 | 2.954 | 1.171 | + | ||
Knowledge of certification | The actual number of identifiers recognized | 2 | 2 | 2.047 | 1.219 | + | |
Purchasing experience | The perception of the relationship between quality and price | Completely disagree = 1 Disagree = 2 Neutral = 3 Agree = 4 Completely agree = 5 | 4 | 2 | 3.459 | 1.008 | + |
Trust to quality and food safety | Strongly distrust = 1 Distrust = 2 Neutral = 3 Trust = 4 Strongly trust = 5 | 4 | 4 | 3.547 | 0.961 | + | |
The convenience of identifying quality | Very inconvenient = 1. Inconvenient = 2. Neutral = 3; Convenient = 4; Very convenient = 5 | 3 | 3 | 2.917 | 1.008 | + |
Variable Name | Regression Coefficient | |
---|---|---|
Dependent variable | Y | Ln_Y |
Constant | 0.651 (1.299) | 0.685 *** (5.303) |
Appearance | 0.026 (0.774) | −0.005 (−0.628) |
Origin | 0.066 ** (2.225) | 0.016 ** (2.295) |
Breed | 0.064 ** (2.164) | 0.015 ** (2.070) |
Brand | 0.098 *** (3.191) | 0.029 *** (3.943) |
Taste | 0.028 (0.779) | −0.001 (−0.102) |
Nutrition | 0.105 *** (3.144) | 0.027 *** (2.911) |
Certification | 0.052 * (1.652) | 0.011 (1.372) |
Quality grade | 0.095 *** (2.780) | 0.013 (1.316) |
Attention to nutrition fact | 0.171 *** (5.191) | 0.037 *** (4.854) |
Attention to quality grade | 0.040 (1.290) | 0.008 (1.042) |
Knowledge of certification | 0.106 *** (3.313) | 0.022 *** (3.145) |
The perception of the relationship between quality and price | 0.086 ** (2.228) | 0.012 (1.195) |
Trust to quality and food safety | 0.040 (1.003) | −0.012 (−1.186) |
The convenience of identifying quality | 0.034 (0.878) | 0.005 (0.517) |
Gender | 0.038 (0.460) | 0.005 (0.264) |
Age | −0.104 ** (−2.465) | −0.025 *** (−2.724) |
Education | 0.115 ** (2.258) | 0.016 (1.472) |
Location | 0.121 *** (3.683) | 0.031 *** (4.424) |
Marriage | −0.125 (−1.634) | −0.014 (−0.837) |
Household size | 0.007 (0.283) | 0.002 (0.432) |
Whether there are pregnant women/children/elders at home | 0.119 (1.538) | 0.022 (1.344) |
Whether there are chronic patients at home | −0.128 (−1.581) | −0.029 * (−1.665) |
Monthly personal income | 0.160 *** (5.322) | 0.033 *** (5.153) |
Sample size | 1714 | 1619 |
R2 | 0.111 | 0.081 |
Adjust R2 | 0.098 | 0.067 |
F-value | F (24,1686) = 8.780, p = 0.000 | F (24,1594) = 5.862, p = 0.000 |
Variable Name | Percentile 0.25 | Percentile 0.5 | Percentile 0.75 | Original Model |
---|---|---|---|---|
Constant | 0.005 (0.006) | −0.456 (−0.540) | −0.231 (−0.226) | 0.651 (1.299) |
Appearance | −0.039 (−0.572) | −0.009 (−0.132) | −0.022 (−0.260) | 0.026 (0.774) |
Origin | 0.149 ** (1.981) | 0.089 (1.153) | 0.176 * (1.832) | 0.066 ** (2.225) |
Breed | −0.058 (−0.694) | 0.067 (0.756) | 0.026 (0.226) | 0.064 ** (2.164) |
Brand | 0.105 (1.255) | 0.114 (1.343) | 0.290 *** (2.773) | 0.098 *** (3.191) |
Taste | −0.119 (−1.172) | −0.063 (−0.625) | 0.032 (0.267) | 0.028 (0.779) |
Nutrition | 0.182 * (1.952) | 0.202 ** (2.178) | 0.220 * (1.950) | 0.105 *** (3.144) |
Certification | −0.042 (−0.449) | 0.000 (0.005) | 0.041 (0.355) | 0.052 * (1.652) |
Quality grade | 0.135 (1.338) | 0.184 * (1.767) | −0.011 (−0.086) | 0.095 *** (2.780) |
Attention to nutrition fact | 0.291 *** (3.758) | 0.350 *** (4.370) | 0.289 *** (3.037) | 0.171 *** (5.191) |
Attention to quality grade | −0.081 (−1.032) | −0.199 ** (−2.545) | 0.016 (0.167) | 0.040 (1.290) |
Knowledge of certification | 0.126 ** (2.275) | 0.128 ** (2.199) | 0.168 ** (2.348) | 0.106 *** (3.313) |
The perception of the relationship between quality and price | 0.203 *** (2.762) | 0.230 *** (3.099) | 0.181 * (1.954) | 0.086 ** (2.228) |
Trust to quality and food safety | −0.006 (−0.069) | −0.033 (−0.391) | 0.021 (0.206) | 0.040 (1.003) |
The convenience of identifying quality | 0.012 (0.169) | 0.054 (0.719) | 0.084 (0.915) | 0.034 (0.878) |
Gender | −0.006 (−0.044) | −0.067 (−0.508) | −0.082 (−0.502) | 0.038 (0.460) |
Age | −0.198 ** (−2.004) | −0.105 (−1.031) | −0.086 (−0.657) | −0.104 ** (−2.465) |
Education | 0.020 (0.191) | 0.091 (0.853) | −0.029 (−0.228) | 0.115 ** (2.258) |
Location | 0.063 (1.111) | 0.144 ** (2.465) | 0.290 *** (4.032) | −0.177 (−1.193) |
Marriage | 0.220 (1.232) | 0.037 (0.201) | −0.313 (−1.333) | −0.125 (−1.634) |
Household size | 0.021 (0.418) | 0.032 (0.789) | −0.003 (−0.069) | 0.007 (0.283) |
Whether there are pregnant/children/elders at home | 0.038 (0.268) | 0.223 (1.530) | 0.494 *** (2.755) | 0.119 (1.538) |
Whether there are chronic patients at home | −0.110 (−0.854) | −0.229 * (−1.678) | −0.275 (−1.617) | −0.128 (−1.581) |
Monthly personal income | 0.072 (1.350) | 0.158 *** (2.938) | 0.281 *** (4.348) | 0.160 *** (5.322) |
Sample size | 1714 | 1714 | 1714 | 1714 |
R2 | 0.094 | 0.083 | 0.063 | 0.111 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Miao, Y.; Sun, J.; Liu, R.; Huang, J.; Sheng, J. Bridging the Quality-Price Gap: Unlocking Consumer Premiums for High-Quality Rice in China. Foods 2025, 14, 1184. https://doi.org/10.3390/foods14071184
Miao Y, Sun J, Liu R, Huang J, Sheng J. Bridging the Quality-Price Gap: Unlocking Consumer Premiums for High-Quality Rice in China. Foods. 2025; 14(7):1184. https://doi.org/10.3390/foods14071184
Chicago/Turabian StyleMiao, Yiyuan, Junmao Sun, Rui Liu, Jiazhang Huang, and Jiping Sheng. 2025. "Bridging the Quality-Price Gap: Unlocking Consumer Premiums for High-Quality Rice in China" Foods 14, no. 7: 1184. https://doi.org/10.3390/foods14071184
APA StyleMiao, Y., Sun, J., Liu, R., Huang, J., & Sheng, J. (2025). Bridging the Quality-Price Gap: Unlocking Consumer Premiums for High-Quality Rice in China. Foods, 14(7), 1184. https://doi.org/10.3390/foods14071184