Effect of Aloe vera Gel as a Natural Antioxidant on the Quality of Cold-Stored Sea Bass (Dicentrarchus labrax)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Aloe vera Gel
2.3. Fish Preparation and Coating with AVG
2.4. Determination of DPPH Radical Scavenging Activity
2.5. Chemical Analysis of AVG-Treated Sea Bass Slices
2.6. Texture Profile Analysis (TPA)
2.7. Color Measurement
2.8. Sensory Analysis
2.9. Statistical Analysis
3. Results and Discussion
3.1. DPPH Radical Scavenging Activity
3.2. Chemical Analysis
3.3. Texture Measurements
3.4. Color Analysis
3.5. Sensory Analysis
3.6. Correlation Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Secci, G.; Parisi, G. From Farm to Fork: Lipid Oxidation in Fish Products. A Review. Ital. J. Anim. Sci. 2016, 15, 124–136. [Google Scholar] [CrossRef]
- Mokrani, D.; Oumouna, M.; Cuesta, A. Fish Farming Conditions Affect to European Sea Bass (Dicentrarchus labrax L.) Quality and Shelf Life during Storage in Ice. Aquaculture 2018, 490, 120–124. [Google Scholar] [CrossRef]
- Türkkan, A.U.; Cakli, S.; Kilinc, B. Effects of Cooking Methods on the Proximate Composition and Fatty Acid Composition of Seabass (Dicentrarchus labrax, Linnaeus, 1758). Food Bioprod. Process. 2008, 86, 163–166. [Google Scholar] [CrossRef]
- Masniyom, P.; Benjakul, S.; Visessanguan, W. Shelf-Life Extension of Refrigerated Seabass Slices under Modified Atmosphere Packaging. J. Sci. Food Agric. 2002, 82, 873–880. [Google Scholar] [CrossRef]
- Shao, Q.; Wang, Z.; Yi, S. Application of Composite Soaking Solution in Fillet Storage and Caco-2 Cell Antioxidant Repair. Foods 2025, 14, 442. [Google Scholar] [CrossRef] [PubMed]
- Maqsood, S.; Benjakul, S.; Abushelaibi, A.; Alam, A. Phenolic Compounds and Plant Phenolic Extracts as Natural Antioxidants in Prevention of Lipid Oxidation in Seafood: A Detailed Review. Compr. Rev. Food Sci. Food Saf. 2014, 13, 1125–1140. [Google Scholar] [CrossRef]
- Xu, X.; Liu, A.; Hu, S.; Ares, I.; Martínez-Larrañaga, M.R.; Wang, X.; Martínez, M.; Anadón, A.; Martínez, M.A. Synthetic Phenolic Antioxidants: Metabolism, Hazards and Mechanism of Action. Food Chem. 2021, 353, 129488. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Xiong, P.; Zhang, H.; Zhu, Q.; Liao, C.; Jiang, G. Analysis, Occurrence, Toxicity and Environmental Health Risks of Synthetic Phenolic Antioxidants: A Review. Environ. Res. 2021, 201, 111531. [Google Scholar] [CrossRef] [PubMed]
- Lundebyea, A.K.; Hovea, H.; Mågea, A.; Bohneb, V.J.B.; Hamrea, K. Levels of Synthetic Antioxidants (Ethoxyquin, Butylated Hydroxytoluene and Butylated Hydroxyanisole) in Fish Feed and Commercially Farmed Fish. Food Addit. Contam. Part A 2010, 27, 1652–1657. [Google Scholar] [CrossRef]
- Negi, P.S. Plant Extracts for the Control of Bacterial Growth: Efficacy, Stability and Safety Issues for Food Application. Int. J. Food Microbiol. 2012, 156, 7–17. [Google Scholar] [CrossRef]
- Maan, A.A.; Reiad Ahmed, Z.F.; Iqbal Khan, M.K.; Riaz, A.; Nazir, A. Aloe vera Gel, an Excellent Base Material for Edible Films and Coatings. Trends Food Sci. Technol. 2021, 116, 329–341. [Google Scholar] [CrossRef]
- Hęś, M.; Dziedzic, K.; Górecka, D.; Jędrusek-Golińska, A.; Gujska, E. Aloe vera (L.) Webb.: Natural Sources of Antioxidants—A Review. Plant Foods Hum. Nutr. 2019, 74, 255–265. [Google Scholar] [CrossRef]
- Mohd Nizam, N.H.; Mohammad Rawi, N.F.; Mhd Ramle, S.F.; Abd Aziz, A.; Abdullah, C.K.; Rashedi, A.; Mohamad Kassim, M.H. Physical, Thermal, Mechanical, Antimicrobial and Physicochemical Properties of Starch Based Film Containing Aloe vera: A Review. J. Mater. Res. Technol. 2021, 15, 1572–1589. [Google Scholar] [CrossRef]
- Kumar, S.; Kalita, S.; Basumatary, I.B.; Kumar, S.; Ray, S.; Mukherjee, A. Recent Advances in Therapeutic and Biological Activities of Aloe vera. Biocatal. Agric. Biotechnol. 2024, 57, 103084. [Google Scholar] [CrossRef]
- Martínez-Burgos, W.J.; Serra, J.L.; MarsigliaF, R.M.; Montoya, P.; Sarmiento-Vásquez, Z.; Marin, O.; Gallego-Cartagena, E.; Paternina-Arboleda, C.D. Aloe vera: From Ancient Knowledge to the Patent and Innovation Landscape—A review. S. Afr. J. Bot. 2022, 147, 993–1006. [Google Scholar] [CrossRef]
- Danish, P.; Ali, Q.; Hafeez, M.; Malik, A. Antifungal and Antibacterial Activity of Aloe vera Plant Extract. Biol. Clin. Sci. Res. J. 2020, 4, 1–8. [Google Scholar] [CrossRef]
- Bakhshizadeh, M.; Ayaseh, A.; Hamishehkar, H.; Samadi Kafil, H.; Niknazar Moghaddam, T.; Baghban Haghi, P.; Tavassoli, M.; Amjadi, S.; Lorenzo, J.M. Multifunctional Performance of Packaging System Based on Gelatin/Alove vera gel Film Containing of Rosemary Essential Oil and Common Poppy Anthocyanins. Food Control 2023, 154, 110017. [Google Scholar] [CrossRef]
- Soltanizadeh, N.; Mousavinejad, M.S. The Effects of Aloe vera (Aloe barbadensis) Coating on the Quality of Shrimp during Cold Storage. J. Food Sci. Technol. 2015, 52, 6647–6654. [Google Scholar] [CrossRef]
- Tri Winarni, A.; Eko, S.; Ismail, M.A.; Mohammad Shafiur, R. Effect of Alloe vera (Alloe vera) and Crown of God Fruit (Phaleria macrocarpa) on Sensory, Chemical, and Microbiological Attributes of Indian Mackerel (Restrelliger neglectus) during Ice Storage. Int. Food Res. J. 2012, 19, 119–125. [Google Scholar]
- Ravanfar, R.; Niakousari, M.; Maftoonazad, N. Postharvest Sour Cherry Quality and Safety Maintenance by Exposure to Hot-Water or Treatment with Fresh Aloe vera Gel. J. Food Sci. Technol. 2014, 51, 2872–2876. [Google Scholar] [CrossRef]
- Hazrati, S.; Beyraghdar Kashkooli, A.; Habibzadeh, F.; Tahmasebi-Sarvestani, Z.; Sadeghi, A.R. Beurteilung von Aloe-vera-Gel Als Alternative Essbare Beschichtung Für Pfirsichfrüchte Während Der Kalten Lagerphase. Gesunde Pflanz. 2017, 69, 131–137. [Google Scholar] [CrossRef]
- Ergun, M.; Satici, F. Use of Aloe vera Gel as Biopreservative for “Granny Smith” and “Red Chief” Apples. J. Anim. Plant Sci. 2012, 22, 363–368. [Google Scholar]
- Hu, Y.; Xu, J.; Hu, Q. Evaluation of Antioxidant Potential of Aloe vera (Aloe barbadensis Miller) Extracts. J. Agric. Food Chem. 2003, 51, 7788–7791. [Google Scholar] [CrossRef]
- Rafieian, S.; Mahdavi, H.; Masoumi, M.E. Improved Mechanical, Physical and Biological Properties of Chitosan Films Using Aloe vera and Electrospun PVA Nanofibers for Wound Dressing Applications. J. Ind. Text. 2021, 50, 1456–1474. [Google Scholar] [CrossRef]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a Free Radical Method to Evaluate Antioxidant Activity. LWT-Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Horwitz, W. Official Methods of Analysis of AOAC International, 18th ed.; Latimer, G.W., Horwitz, W., Eds.; AOAC International: Rockville, MD, USA, 2005. [Google Scholar]
- Abelti, A.L. Microbiological and Chemical Changes of Nile Tilapia (Oreochromis niloticus L.) Fillet during Ice Storage: Effect of Age and Sex. Adv. J. Food Sci. Technol. 2013, 5, 1260–1265. [Google Scholar] [CrossRef]
- Woyewoda, A.D.; Shaw, S.J.; Ke, P.J.; Burns, B.G. Recommended Laboratory Methods for Assessment of Fish Quality. Halifax Can. 1986, 1448, 1–143. [Google Scholar]
- Yagiz, Y.; Kristinsson, H.G.; Balaban, M.O.; Welt, B.A.; Ralat, M.; Marshall, M.R. Effect of High Pressure Processing and Cooking Treatment on the Quality of Atlantic Salmon. Food Chem. 2009, 116, 828–835. [Google Scholar] [CrossRef]
- Raghavan, S.; Kristinsson, H.G. Antioxidative Efficacy of Alkali-Treated Tilapia Protein Hydrolysates: A Comparative Study of Five Enzymes. J. Agric. Food Chem. 2008, 56, 1434–1441. [Google Scholar] [CrossRef]
- Casas, C.; Martinez, O.; Guillen, M.D.; Pin, C.; Salmeron, J. Textural Properties of Raw Atlantic Salmon (Salmo salar) at Three Points along the Fillet, Determined by Different Methods. Food Control 2006, 17, 511–515. [Google Scholar] [CrossRef]
- Pilavtepe-Celik, M.; Yagiz, Y.; Marshall, M.R.; Balaban, M.O. Correlation of Mullet (Mugil cephalus) Fillet Color Changes with Chemical and Sensory Attributes during Storage at 0 °C. J. Aquat. Food Prod. Technol. 2021, 30, 439–450. [Google Scholar] [CrossRef]
- Alçiçek, Z.; Balaban, M.Ö. Development and Application of “the Two Image” Method for Accurate Object Recognition and Color Analysis. J. Food Eng. 2012, 111, 46–51. [Google Scholar] [CrossRef]
- Fan, W.; Chi, Y.; Zhang, S. The Use of a Tea Polyphenol Dip to Extend the Shelf Life of Silver Carp (Hypophthalmicthys molitrix) during Storage in Ice. Food Chem. 2008, 108, 148–153. [Google Scholar] [CrossRef]
- Alasalvar, C.; Taylor, K.D.A.; Zubcov, E.; Shahidi, F.; Alexis, M. Differentiation of Cultured and Wild Sea Bass (Dicentrarchus labrax): Total Lipid Content, Fatty Acid and Trace Mineral Composition. Food Chem. 2002, 79, 145–150. [Google Scholar] [CrossRef]
- Fuentes, A.; Fernández-Segovia, I.; Serra, J.A.; Barat, J.M. Comparison of Wild and Cultured Sea Bass (Dicentrarchus labrax) Quality. Food Chem. 2010, 119, 1514–1518. [Google Scholar] [CrossRef]
- Stansby, M.E. Chemical Characteristics of Fish Caught in the Northeast Pacific Ocean. Mar. Fish. Rev. 1976, 38, 1–11. [Google Scholar]
- Periago, M.J.; Ayala, M.D.; López-Albors, O.; Abdel, I.; Martínez, C.; García-Alcázar, A.; Ros, G.; Gil, F. Muscle Cellularity and Flesh Quality of Wild and Farmed Sea Bass, Dicentrarchus labrax L. Aquaculture 2005, 249, 175–188. [Google Scholar] [CrossRef]
- Cakli, S.; Kilinc, B.; Cadun, A.; Dincer, T.; Tolasa, S. Effect of Ungutting on Microbiological, Chemical and Sensory Properties of Aquacultured Sea Bream (Sparus aurata) and Sea Bass (Dicentrarchus labrax) Stored in Ice. Eur. Food Res. Technol. 2006, 222, 719–726. [Google Scholar] [CrossRef]
- Huss, H.H. Fresh Fish—Quality and Quality Changes: A Training Manual Prepared for the FAO/DANIDA Training Programme on Fish Technology and Quality Control; Food & Agriculture Org.: Rome, Italy, 1988. [Google Scholar]
- Martínez-Romero, D.; Castillo, S.; Guillén, F.; Díaz-Mula, H.M.; Zapata, P.J.; Valero, D.; Serrano, M. Aloe vera Gel Coating Maintains Quality and Safety of Ready-to-Eat Pomegranate Arils. Postharvest Biol. Technol. 2013, 86, 107–112. [Google Scholar] [CrossRef]
- Taliadourou, D.; Papadopoulos, V.; Domvridou, E.; Savvaidis, I.N.; Kontominas, M.G. Microbiological, Chemical and Sensory Changes of Whole and Filleted Mediterranean Aquacultured Sea Bass (Dicentrarchus labrax) Stored in Ice. J. Sci. Food Agric. 2003, 83, 1373–1379. [Google Scholar] [CrossRef]
- Ocaño-Higuera, V.M.; Marquez-Ríos, E.; Canizales-Dávila, M.; Castillo-Yáñez, F.J.; Pacheco-Aguilar, R.; Lugo-Sánchez, M.E.; García-Orozco, K.D.; Graciano-Verdugo, A.Z. Postmortem Changes in Cazon Fish Muscle Stored on Ice. Food Chem. 2009, 116, 933–938. [Google Scholar] [CrossRef]
- Faisal, M.; Gani, A.; Muzaifa, M.; Heriansyah, M.B.; Desvita, H.; Kamaruzzaman, S.; Sauqi, A.; Ardiansa, D. Edible Coating Combining Liquid Smoke from Oil Palm Empty Fruit Bunches and Turmeric Extract to Prolong the Shelf Life of Mackerel. Foods 2025, 14, 139. [Google Scholar] [CrossRef] [PubMed]
- Lan, W.; Zhou, M.; Zhang, B.; Liu, S.; Yan, P.; Xie, J. Effects of Chitosan-Gentianic Acid Derivatives on the Quality and Shelf Life of Seabass (Lateolabrax maculatus) during Refrigerated Storage. Int. J. Biol. Macromol. 2024, 274, 133276. [Google Scholar] [CrossRef]
- Kong, F.; Singh, R.P. 8—Advances in Instrumental Methods for Shelf Life Evaluation. In The Stability and Shelf Life of Food, 2nd ed.; Subramaniam, P., Ed.; Woodhead Publishing Series in Food Science, Technology and Nutrition; Woodhead Publishing: Sawston, UK, 2016; pp. 229–251. [Google Scholar] [CrossRef]
- Bahmani, Z.A.; Rezai, M.; Hosseini, S.V.; Regenstein, J.M.; Böhme, K.; Alishahi, A.; Yadollahi, F. Chilled Storage of Golden Gray Mullet (Liza aurata). LWT 2011, 44, 1894–1900. [Google Scholar] [CrossRef]
- Cakli, S.; Kilinc, B.; Cadun, A.; Dincer, T.; Tolasa, S. Quality Differences of Whole Ungutted Sea Bream (Sparus aurata) and Sea Bass (Dicentrarchus labrax) While Stored in Ice. Food Control 2007, 18, 391–397. [Google Scholar] [CrossRef]
- Hernández, M.D.; López, M.B.; Álvarez, A.; Ferrandini, E.; García García, B.; Garrido, M.D. Sensory, Physical, Chemical and Microbiological Changes in Aquacultured Meagre (Argyrosomus regius) Fillets during Ice Storage. Food Chem. 2009, 114, 237–245. [Google Scholar] [CrossRef]
- Vu, T.P.; He, L.; McClements, D.J.; Decker, E.A. Effects of Water Activity, Sugars, and Proteins on Lipid Oxidative Stability of Low Moisture Model Crackers. Food Res. Int. 2020, 130, 108844. [Google Scholar] [CrossRef]
- Barden, L.; Decker, E.A. Lipid Oxidation in Low-Moisture Food: A Review. Crit. Rev. Food Sci. Nutr. 2013, 56, 2467–2482. [Google Scholar] [CrossRef]
- Labuza, T.P.; Dugan, L.R. Kinetics of Lipid Oxidation in Foods. CRC Crit. Rev. Food Technol. 1971, 2, 355–405. [Google Scholar] [CrossRef]
- Di Scala, K.; Vega-Gálvez, A.; Ah-Hen, K.; Nuñez-Mancilla, Y.; Tabilo-Munizaga, G.; Pérez-Won, M.; Giovagnoli, C. Chemical and Physical Properties of Aloe vera (Aloe barbadensis Miller) Gel Stored after High Hydrostatic Pressure Processing. Food Sci. Technol. 2013, 33, 52–59. [Google Scholar] [CrossRef]
- Vega-Gálvez, A.; Miranda, M.; Aranda, M.; Henriquez, K.; Vergara, J.; Tabilo-Munizaga, G.; Pérez-Won, M. Effect of High Hydrostatic Pressure on Functional Properties and Quality Characteristics of Aloe vera Gel (Aloe barbadensis Miller). Food Chem. 2011, 129, 1060–1065. [Google Scholar] [CrossRef] [PubMed]
- Sharifimehr, S.; Soltanizadeh, N.; Goli, S.A.H. Physicochemical Properties of Fried Shrimp Coated with Bio-Nano-Coating Containing Eugenol and Aloe vera. LWT 2019, 109, 33–39. [Google Scholar] [CrossRef]
- Bai, H.; Li, L.; Wu, Y.; Chen, S.; Zhao, Y.; Cai, Q.; Wang, Y. Ultrasound Improves the Low-Sodium Salt Curing of Sea Bass: Insights into the Effects of Ultrasound on Texture, Microstructure, and Flavor Characteristics. Ultrason. Sonochem. 2023, 100, 106597. [Google Scholar] [CrossRef] [PubMed]
Chemical Parameters | Days | Control | 100% AVG | 75% AVG |
---|---|---|---|---|
pH | 0 | 6.82 ± 0.04 Aa * | 6.87 ± 0.09 Aa | 6.87 ± 0.02 Aa |
3 | 6.93 ± 0.09 Aa | 6.74 ± 0.39 Aa | 6.98 ± 0.09 Aa | |
6 | 6.99 ± 0.06 Aa | 7.02 ± 0.06 Aa | 7.06 ± 0.11 Aa | |
8 | 7.21 ± 0.24 Ab | 7.03 ± 0.21 Aa | 7.01 ± 0.02 Aa | |
10 | 7.32 ± 0.09 Ab | 7.45 ± 0.05 Ab | 7.28 ± 0.18 Ab | |
13 | 7.54 ± 0.06 Ac | 7.60 ± 0.18 Ab | 7.85 ± 0.12 Bc | |
TVB-N (mg N/100 g fish) | 0 | 24.02 ± 0.38 Aa * | 23.60 ± 0.87 Aa | 23.80 ± 1.21 Aa |
3 | 24.63 ± 0.41 Aa | 22.12 ± 0.81 Ba | 23.05 ± 0.65 Aba | |
6 | 35.00 ± 1.39 Ab | 31.35 ± 0.95 Bb | 25.18 ± 0.64 Ca | |
8 | 46.53 ± 0.68 Ac | 38.55 ± 3.36 Bc | 31.38 ± 1.01 Cb | |
10 | 59.36 ± 0.53 Ad | 48.50 ± 0.18 Bd | 44.22 ± 0.86 Cc | |
13 | 69.26 ± 0.23 Ae | 49.23 ± 0.20 Bd | 70.05 ± 0.18 Cd | |
PV (mmol CPO/kg fish) | 0 | 0.030 ± 0.018 Aa * | 0.031 ± 0.020 Aa | 0.029 ± 0.016 Aab |
3 | 0.084 ± 0.016 Ab | 0.075 ± 0.011 Ab | 0.044 ± 0.006 Bab | |
6 | 0.193 ± 0.009 Ac | 0.171 ± 0.030 Ac | 0.093 ± 0.027 Bc | |
8 | 0.193 ± 0.016 Ac | 0.078 ± 0.037 Bb | 0.042 ± 0.012 Bab | |
10 | 0.219 ± 0.011 Ac | 0.067 ± 0.001 Bab | 0.026 ± 0.009 Cb | |
13 | 0.199 ± 0.036 Ac | 0.061 ± 0.018 Bab | 0.055 ± 0.011 Ba | |
TBARS (mg MDA/kg fish) | 0 | 0.348 ± 0.012 Aa * | 0.348 ± 0.017 Aa | 0.195 ± 0.047 Ba |
3 | 0.491 ± 0.040 Ac | 0.447 ± 0.005 Aab | 0.371 ± 0.053 Bb | |
6 | 0.409 ± 0.021 Ab | 0.490 ± 0.050 Abc | 0.446 ± 0.126 Ab | |
8 | 0.449 ± 0.046 Abc | 0.525 ± 0.100 Abc | 0.319 ± 0.081 Bab | |
10 | 0.451 ± 0.012 Abc | 0.585 ± 0.074 Bcd | 0.315 ± 0.085 Cab | |
13 | 0.678 ± 0.021 Ad | 0.648 ± 0.082 Ad | 0.343 ± 0.056 Bb |
Texture Parameters | Days | Control | 100% AVG | 75% AVG |
---|---|---|---|---|
Hardness (N) | 0 | 13.82 ± 2.39 Aa * | 11.82 ± 2.42 Aba | 5.62 ± 3.24 Ba |
3 | 13.16 ± 2.00 Aa | 11.60 ± 2.20 Aa | 8.50 ± 2.00 Aab | |
6 | 15.25 ± 3.86 Aa | 12.51 ± 1.85 Aa | 10.11 ± 1.20 Aab | |
8 | 9.96 ± 2.60 Aa | 13.06 ± 1.24 Aa | 11.39 ± 1.64 Ab | |
10 | 11.31 ± 1.50 Aa | 12.66 ± 2.69 Aa | 12.28 ± 2.24 Ab | |
13 | 9.13 ± 1.53 Aa | 12.93 ± 4.79 Aa | 7.15 ± 0.26 Aab | |
Springiness (cm) | 0 | 0.60 ± 0.03 Aa | 0.66 ± 0.10 Aa | 0.76 ± 0.07 Aa |
3 | 0.61 ± 0.02 Aa | 0.76 ± 0.22 Aa | 0.80 ± 0.07 Aa | |
6 | 0.68 ± 0.06 Aab | 0.71 ± 0.17 Aa | 0.82 ± 0.02 Aa | |
8 | 0.65 ± 0.05 Aab | 0.68 ± 0.10 Aa | 0.65 ± 0.04 Aa | |
10 | 0.72 ± 0.03 Aab | 0.74 ± 0.11 Aa | 0.70 ± 0.03 Aa | |
13 | 0.75 ± 0.08 Ab | 0.81 ± 0.20 Aa | 0.70 ± 0.10 Aa | |
Chewiness (kgf.mm) | 0 | 1.16 ± 0.11 Aa | 1.77 ± 1.68 Aa | 1.76 ± 0.38 Aa |
3 | 1.38 ± 0.19 Aa | 1.67 ± 1.43 Aa | 1.22 ± 0.60 Aa | |
6 | 1.69 ± 0.37 Aa | 1.27 ± 0.37 Aa | 1.76 ± 0.86 Aa | |
8 | 1.00 ± 0.28 Aa | 1.51 ± 0.46 Aa | 1.18 ± 0.50 Aa | |
10 | 1.47 ± 0.25 Aa | 1.72 ± 0.84 Aa | 1.27 ± 0.36 Aa | |
13 | 1.15 ± 0.40 Aa | 1.90 ± 0.83 Aa | 1.13 ± 0.85 Aa | |
Cohesiveness | 0 | 0.14 ± 0.03 Aa | 0.54 ± 0.37 Aa | 0.20 ± 0.08 Aa |
3 | 0.17 ± 0.01 Aa | 0.16 ± 0.06 Aa | 0.17 ± 0.07 Aa | |
6 | 0.16 ± 0.01 Aa | 0.14 ± 0.03 Aa | 0.20 ± 0.07 Aa | |
8 | 0.15 ± 0.03 Aa | 0.16 ± 0.02 Aa | 0.15 ± 0.04 Aa | |
10 | 0.18 ± 0.01 Aa | 0.17 ± 0.02 Aa | 0.14 ± 0.01 Aa | |
13 | 0.16 ± 0.02 Aa | 0.18 ± 0.02 Aa | 0.21 ± 0.13 Aa |
Color Parameters | Days | Control | 100% AVG | 75% AVG |
---|---|---|---|---|
L* | 0 | 68.81 ± 1.17 Aab * | 68.87 ± 0.58 Aa | 68.70 ± 1.05 Aa |
3 | 70.34 ± 1.48 Aa | 66.46 ± 2.11 Aa | 68.58 ± 2.51 Aa | |
6 | 66.88 ± 0.68 ABab | 64.82 ± 0.99 Aa | 67.14 ± 0.97 Bb | |
8 | 66.75 ± 0.85 Ab | 66.58 ± 0.68 Aab | 69.88 ± 0.87 Bb | |
10 | 65.78 ± 1.62 Ab | 67.10 ± 1.26 Aab | 69.07 ± 2.65 Aa | |
13 | 67.90 ± 1.29 Aab | 68.07 ± 1.48 Aab | 68.04 ± 0.45 Aa | |
a* | 0 | 4.68 ± 0.44 Aa | 3.70 ± 0.72 Aa | 5.05 ± 1.20 Aa |
3 | 3.49 ± 0.83 Aa | 3.39 ± 1.11 Aa | 4.51 ± 1.12 Aa | |
6 | 4.01 ± 0.42 Aab | 4.94 ± 0.78 Aa | 4.74 ± 0.78 Aa | |
8 | 4.63 ± 0.47 Aab | 4.59 ± 0.75 Aa | 3.93 ± 0.99 Aa | |
10 | 4.45 ± 0.15 Aab | 3.85 ± 0.42 Aa | 3.83 ± 0.33 Aa | |
13 | 5.14 ± 0.10 Ab | 4.55 ± 0.95 Aa | 4.53 ± 1.21 Aa | |
b* | 0 | 2.51 ± 0.83 Aa | 2.99 ± 0.91 Aa | 4.39 ± 0.97 Aa |
3 | 4.34 ± 0.95 Aa | 3.74 ± 1.04 Aa | 3.32 ± 0.73 Aa | |
6 | 2.82 ± 1.65 Aa | 4.22 ± 0.41 Aa | 4.45 ± 1.06 Aa | |
8 | 4.10 ± 1.16 Aa | 3.70 ± 1.34 Aa | 4.67 ± 0.23 Aa | |
10 | 3.48 ± 0.80 Aa | 5.37 ± 0.10 Bb | 5.17 ± 0.74 Bb | |
13 | 5.04 ± 0.85 Aa | 5.02 ± 1.72 Aa | 4.95 ± 0.52 Aa |
Sensory Parameters | Days | Control | 100% AVG | 75% AVG |
---|---|---|---|---|
Color | 0 | 7.67 ± 1.22 Aa * | 7.78 ± 1.20 Aa | 8.22 ± 0.97 Aa |
3 | 7.89 ± 0.60 Aa | 7.67 ± 0.50 Aa | 7.78 ± 0.44 Aab | |
6 | 7.78 ± 0.67 Aa | 7.56 ± 0.88 Aa | 7.78 ± 0.83 Aab | |
8 | 5.89 ± 1.36 Ab | 5.44 ± 1.51 Abc | 6.33 ± 1.58 Abc | |
10 | 6.67 ± 0.87 Aab | 6.56 ± 1.01 Aab | 6.56 ± 0.88 Ab | |
13 | 4.33 ± 0.71 Ac | 4.56 ± 1.42 Ac | 4.89 ± 1.27 Ac | |
Odor | 0 | 7.56 ± 1.42 Aa | 7.78 ± 1.39 Aa | 7.67 ± 1.66 Aab |
3 | 8.00 ± 0.71 Aa | 7.00 ± 1.94 Aab | 7.89 ± 0.78 Aa | |
6 | 7.78 ± 0.67 Aba | 7.22 ± 0.67 Bab | 8.00 ± 0.50 Aa | |
8 | 4.44 ± 2.19 Ab | 3.89 ± 2.47 Ac | 4.00 ± 1.80 Ac | |
10 | 5.33 ± 0.71 Ab | 5.33 ± 0.71 Abc | 6.00 ± 1.00 Ab | |
13 | 2.33 ± 1.00 Ac | 3.00 ± 2.00 Ac | 3.00 ± 1.12 Ac | |
Taste | 0 | 7.89 ± 1.05 Aa | 7.33 ± 1.32 Aa | 7.67 ± 1.22 Aa |
3 | 7.67 ± 0.71 Aa | 733 ± 1.41 Aa | 7.22 ± 2.11 Aa | |
6 | 7.67 ± 0.71 Aa | 6.67 ± 1.22 Aa | 7.78 ± 0.97 Aa | |
8 | - | - | - | |
10 | - | - | - | |
13 | - | - | - | |
Texture | 0 | 7.22 ± 1.72 Aa | 7.22 ± 1.09 Aa | 7.67 ± 1.41 Aa |
3 | 7.56 ± 0.88 Aa | 7.78 ± 0.67 Aa | 7.78 ± 0.83 Aa | |
6 | 7.22 ± 1.20 Aa | 7.56 ± 1.13 Aa | 7.89 ± 0.93 Aa | |
8 | 5.89 ± 1.05 Aa | 6.11 ± 1.27 Aab | 6.44 ± 1.01 Aa | |
10 | 6.33 ± 1.00 Aa | 6.11 ± 1.62 Aab | 6.33 ± 1.32 Aa | |
13 | 3.78 ± 1.64 Ab | 4.56 ± 1.59 Ab | 4.44 ± 1.67 Ab | |
Overall Quality | 0 | 7.78 ± 1.20 Aa | 7.78 ± 0.67 Aa | 8.11 ± 0.78 Aa |
3 | 7.67 ± 0.71 Aa | 7.22 ± 1.72 Aa | 7.33 ± 1.41 Aa | |
6 | 7.78 ± 0.83 Aa | 6.89 ± 1.05 Bab | 8.00 ± 0.87 Aa | |
8 | 4.78 ± 1.99 Ab | 4.33 ± 2.24 Ac | 4.78 ± 2.05 Abc | |
10 | 5.22 ± 1.30 Ab | 4.89 ± 1.36 Abc | 5.22 ± 1.39 Ab | |
13 | 2.56 ± 1.01 Ac | 3.11 ± 1.69 Ac | 3.00 ± 1.22 Ac |
Pearson Correlation Coefficients, r Value | |||
---|---|---|---|
ODOR | |||
Chemical Parameters | Control | 100% AVG | 75% AVG |
TBARS | −0.762 | −0.853 * | 0.075 |
PV | −0.610 | 0.194 | 0.158 |
TVB-N | −0.913 * | −0.828 * | −0.806 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Waris, F.; Pilavtepe-Celik, M. Effect of Aloe vera Gel as a Natural Antioxidant on the Quality of Cold-Stored Sea Bass (Dicentrarchus labrax). Foods 2025, 14, 1185. https://doi.org/10.3390/foods14071185
Waris F, Pilavtepe-Celik M. Effect of Aloe vera Gel as a Natural Antioxidant on the Quality of Cold-Stored Sea Bass (Dicentrarchus labrax). Foods. 2025; 14(7):1185. https://doi.org/10.3390/foods14071185
Chicago/Turabian StyleWaris, Fachruqi, and Mutlu Pilavtepe-Celik. 2025. "Effect of Aloe vera Gel as a Natural Antioxidant on the Quality of Cold-Stored Sea Bass (Dicentrarchus labrax)" Foods 14, no. 7: 1185. https://doi.org/10.3390/foods14071185
APA StyleWaris, F., & Pilavtepe-Celik, M. (2025). Effect of Aloe vera Gel as a Natural Antioxidant on the Quality of Cold-Stored Sea Bass (Dicentrarchus labrax). Foods, 14(7), 1185. https://doi.org/10.3390/foods14071185