Analysis of the Physicochemical and Structural Properties of Chestnut Starch After Thermal Processing
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Sample Preparation
2.3. Color Characteristics
2.4. Amylose Content
2.5. Solubility and Swelling Power Messurement
2.6. Transmittance
2.7. Water and Oil Absorption Capacity
2.8. Retrogradation Property Messurement
2.9. Digestive Properties Messurement
2.10. Thermal Property Messurement
2.11. Scanning Electron Microscope (SEM)
2.12. Fourier Transform Infrared Spectroscopy (FT-IR)
2.13. X-Ray Diffraction
2.14. Statistical Analysis
3. Results and Discussion
3.1. Color Difference Analysis
3.2. Amylose Content and Transmittance
3.3. Solubility and Swelling Power
3.4. Water and Oil Absorption Capacities
3.5. Retrogradation Property
3.6. Digestive Properties
3.7. Thermal Property
3.8. Scanning Electron Microscopy (SEM) Analysis
3.9. Fourier Transform Infrared (FT-IR) Spectra Analysis
3.10. Crystal Structure
3.11. Correlation Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Peng, F.; Yu, Z.; Niu, K.; Du, B.; Wang, S.; Yang, Y. In vivo absorption, in vitro digestion, and fecal fermentation properties of non-starch polysaccharides from Chinese chestnut kernels and their effects on human gut microbiota. Food Chem. X 2024, 24, 101829. [Google Scholar] [PubMed]
- Liu, C.; Liu, S.; Li, R.; Zhang, X.; Chang, X. A mechanistic study of chestnut starch retrogradation and its effects on in vitro starch digestion. Int. J. Biol. Macromol. 2024, 276, 133803. [Google Scholar]
- Wen, A.; Zhu, Y.; Geng, Y.; Qin, L. Physiological response of chestnuts (Castanea mollissima Blume) infected by pathogenic fungi and their correlation with fruit decay. Food Chem. X 2024, 22, 101450. [Google Scholar]
- Li, R.; Sharma, A.K.; Zhu, J.; Zheng, B.; Xiao, G.; Chen, L. Nutritional biology of chestnuts: A perspective review. Food Chem. 2022, 395, 133575. [Google Scholar] [PubMed]
- Wang, Y.; Ou, X.; Al-Maqtari, Q.A.; He, H.-J.; Othman, N. Evaluation of amylose content: Structural and functional properties, analytical techniques, and future prospects. Food Chem. X 2024, 24, 101830. [Google Scholar]
- Englyst, H.N.; Kingman, S.M.; Cummings, J.H. Classification and measurement of nutritionally important starch fractions. Eur. J. Clin. Nutr. 1992, 46 (Suppl. S2), S33–S50. [Google Scholar] [PubMed]
- Zheng, Y.; Chen, S.; Hu, Y.; Ye, X.; Wang, S.; Tian, J. The cooperation of maize starch and ferulic acid under different treatments and its effect on postprandial blood glucose level. Food Hydrocoll. 2024, 157, 110361. [Google Scholar]
- Cai, M.; Zhang, Y.; Cao, H.; Li, S.; Zhang, Y.; Huang, K.; Song, H.; Guan, X. Exploring the remarkable effects of microwave treatment on starch modification: From structural evolution to changed physicochemical and digestive properties. Carbohydr. Polym. 2024, 343, 122412. [Google Scholar]
- Bharati, K.; Nandan, S. Comprehensive review on single and dual modification of starch: Methods, properties and applications. Int. J. Biol. Macromol. 2023, 253, 126952. [Google Scholar]
- La Fuente, C.I.; Siqueira, L.D.V.; Augusto, P.E.D.; Tadini, C.C. Casting and extrusion processes to produce bio-based plastics using cassava starch modified by the dry heat treatment (DHT). Innov. Food Sci. Emerg. Technol. 2022, 75, 102906. [Google Scholar]
- Zhang, Q.; Duan, H.; Zhou, Y.; Zhou, S.; Ge, X.; Shen, H.; Li, W.; Yan, W. Effect of dry heat treatment on multi-structure, physicochemical properties, and in vitro digestibility of potato starch with controlled surface-removed levels. Food Hydrocoll. 2023, 134, 108062. [Google Scholar]
- Rohit, K.; Dipan, R.; Damodharan, N.; John, F.K.; Kumar, K.J. Effect of dry heat and its combination with vacuum heat on physicochemical, rheological and release characteristics of Alocasia macrorrhizos retrograded starches. Int. J. Biol. Macromol. 2024, 264, 130733. [Google Scholar]
- Banerjee, R.; Kumar, K.J. Evaluating the effects of time-dependent drying and pressure heat treatments on the variation of physicochemical and rheological properties of suran starch. Int. J. Biol. Macromol. 2024, 263, 130071. [Google Scholar]
- Zheng, B.; Qiu, Z.; Liu, Z.; Chen, L. Pre-dry heat treatment alters the structure and ultimate in vitro digestibility of wheat starch-lipids complex in hot-extrusion 3D printing. Carbohydr. Polym. 2024, 334, 122026. [Google Scholar] [PubMed]
- Zhang, R.; Yu, J.; Zhang, S.; Hu, Y.; Liu, H.; Liu, S.; Wu, Y.; Gao, S.; Pei, J. Effects of repeated and continuous dry heat treatments on the physicochemical, structural, and in vitro digestion properties of chickpea starch. Int. J. Biol. Macromol. 2024, 271, 132485. [Google Scholar]
- Maior, L.d.O.; Bach, D.; Demiate, I.M.; Lacerda, L.G. Impact of cyclic and continuous dry heat modification on the structural, thermal, technological, and in vitro digestibility properties of potato starch (Solanum tuberosum L.): A comparative study. Int. J. Biol. Macromol. 2024, 263, 130370. [Google Scholar]
- Zhu, P.; Du, X.; Liu, C.; Zhao, G.; Wang, M. Effects of pH during dry-heat preparation on the physicochemical and emulsifying properties of rice starch and whey protein isolate mixtures. Food Hydrocoll. 2023, 140, 108614. [Google Scholar]
- Guedes, J.S.; Bitencourt, B.S.; Augusto, P.E.D. Modification of maize starch by dry heating treatment (DHT) and its use as gelling ingredients in fruit-based 3D-printed food for dysphagic people. Food Biosci. 2023, 56, 103310. [Google Scholar]
- Ren, L.; Zheng, Z.; Fu, H.; Yang, P.; Xu, J.; Yang, D. Hot air -assisted radio frequency drying of corn kernels: The effect on structure and functionality properties of corn starch. Int. J. Biol. Macromol. 2024, 267, 131470. [Google Scholar]
- Chandanasree, D.; Gul, K.; Riar, C.S. Effect of hydrocolloids and dry heat modification on physicochemical, thermal, pasting and morphological characteristics of cassava (Manihot esculenta) starch. Food Hydrocoll. 2016, 52, 175–182. [Google Scholar]
- Liu, K.; Hao, Y.; Chen, Y.; Gao, Q. Effects of dry heat treatment on the structure and physicochemical properties of waxy potato starch. Int. J. Biol. Macromol. 2019, 132, 1044–1050. [Google Scholar] [PubMed]
- Zhang, H.; He, F.; Wang, T.; Chen, G. Thermal, pasting, and rheological properties of potato starch dual-treated with CaCl2 and dry heat. LWT 2021, 146, 111467. [Google Scholar]
- Gou, M.; Wu, H.; Saleh, A.S.M.; Jing, L.; Liu, Y.; Zhao, K.; Su, C.; Zhang, B.; Jiang, H.; Li, W. Effects of repeated and continuous dry heat treatments on properties of sweet potato starch. Int. J. Biol. Macromol. 2019, 129, 869–877. [Google Scholar]
- Yu, Z.; Deng, J.; Ma, N.; Sun, Y.; Wang, J.; Liu, J.-M.; Zhang, Y.; Lu, Y.; Wang, S. Comparative analysis of quality, structural, and flavor alterations in chestnuts (Castanea mollissima Blume) subjected to different thermal processing techniques. Food Chem. 2025, 474, 143149. [Google Scholar]
- Liu, W.; Wang, R.; Li, J.; Xiao, W.; Rong, L.; Yang, J.; Wen, H.; Xie, J. Effects of different hydrocolloids on gelatinization and gels structure of chestnut starch. Food Hydrocoll. 2021, 120, 106925. [Google Scholar]
- Liu, M.; Guo, X.; Ma, X.; Xie, Z.; Wu, Y.; Ouyang, J. Physicochemical properties of a novel chestnut porous starch nanoparticle. Int. J. Biol. Macromol. 2024, 261, 129920. [Google Scholar]
- Shi, C.; Ma, J.; Guo, Y.; Yang, H.; Fu, L.; Wang, X. The effect of hydroxypropylation on the structure and physicochemical properties of millet starch. Sci. Technol. Food Ind. 2025, 30, 235–247. [Google Scholar]
- Chandak, A.; Dhull, S.B.; Chawla, P.; Goksen, G.; Rose, P.K.; Al Obaid, S.; Ansari, M.J. Lotus (Nelumbo nucifera G.) seed starch: Understanding the impact of physical modification sequence (ultrasonication and HMT) on properties and in vitro digestibility. Int. J. Biol. Macromol. 2024, 278, 135032. [Google Scholar]
- Fasakin, O.B.; Uchenna, O.F.; Ajayi, O.M.; Onarinde, B.A.; Konar, S.; Seung, D.; Oyeyinka, S.A. Optimisation of dry heat treatment conditions for modification of faba bean (Vicia faba L.) starch. Heliyon 2024, 10, e35817. [Google Scholar]
- Hui, G.; Zhu, P.; Wang, M. Structure and functional properties of taro starch modified by dry heat treatment. Int. J. Biol. Macromol. 2024, 261, 129702. [Google Scholar]
- Yang, Z.; Hao, H.; Wu, Y.; Liu, Y.; Ouyang, J. Influence of moisture and amylose on the physicochemical properties of rice starch during heat treatment. Int. J. Biol. Macromol. 2021, 168, 656–662. [Google Scholar] [PubMed]
- Lutfi, Z.; Kalim, Q.; Shahid, A.; Nawab, A. Water chestnut, rice, corn starches and sodium alginate. A comparative study on the physicochemical, thermal and morphological characteristics of starches after dry heating. Int. J. Biol. Macromol. 2021, 184, 476–482. [Google Scholar] [PubMed]
- Gautam, N.; Garg, S.; Yadav, S. Dry Heat Treatment of Finger Millet Starch for Thin Films-Studies on Physicochemical, Mechanical, and Barrier Properties. Starch-Starke 2024, 76, 2300097. [Google Scholar]
- Ge, X.; Duan, H.; Zhou, Y.; Zhou, S.; Shen, H.; Liang, W.; Sun, Z.; Yan, W. Investigating the effects of pre- and post-electron beam treatment on the multiscale structure and physicochemical properties of dry-heated buckwheat starch. Int. J. Biol. Macromol. 2023, 227, 564–575. [Google Scholar] [PubMed]
- Liu, W.; Pan, W.; Li, J.; Chen, Y.; Yu, Q.; Rong, L.; Xiao, W.; Wen, H.; Xie, J. Dry heat treatment induced the gelatinization, rheology and gel properties changes of chestnut starch. Curr. Res. Food Sci. 2022, 5, 28–33. [Google Scholar]
- Ramirez-Brewer, D.; Quintana, S.E.; Garcia-Zapateiro, L.A. Effect of microwave treatment on technological, physicochemical, rheological and microstructural properties of mango (Mangifera indica) kernel starch variety Tommy and Sugar. LWT 2023, 187, 115311. [Google Scholar]
- Liu, H.; Wang, L.; Shen, M.; Guo, X.; Lv, M.; Wang, M. Changes in physicochemical properties and in vitro digestibility of tartary buckwheat and sorghum starches induced by annealing. Starch-Starke 2016, 68, 709–718. [Google Scholar]
- Liu, S.; Liu, H.; Gao, S.; Guo, S.; Zhang, C. Dry heating affects the multi-structures, physicochemical properties, and in vitro digestibility of blue highland barley starch. Front. Nutr. 2023, 10, 1191391. [Google Scholar]
- He, M.; Chen, J.; Liu, W.; Lin, J. Solvent-free synthesis of starch citrate via dry heat reaction: An in-depth analysis on structural and physicochemical properties. LWT 2024, 208, 116634. [Google Scholar]
- Li, M.; Wang, Y.; Zhang, Y.; You, X.; Zhou, K.; Wei, P.; Wei, L. Effects of Five Drying Methods on the Properties of Sour Cassava Starch. Sci. Technol. Food Ind. 2024, 45, 134–142. [Google Scholar]
- Wang, L.; Lu, S.; Wang, L.; Zheng, M.; Wang, Y. Effect of OSA Esterified Starch with Different Linear/Branched Chain Ratios on Solubilization of Hesperetin. J. Chin. Inst. Food Sci. Technol. 2022, 22, 67–75. [Google Scholar]
- Zhao, J.; Zhang, Y.; Wu, Y.; Liu, L.; Ouyang, J. Physicochemical properties and in vitro digestibility of starch from naturally air-dried chestnut. Int. J. Biol. Macromol. 2018, 117, 1074–1080. [Google Scholar] [CrossRef] [PubMed]
- Kumari, S.; Kaur, B.P.; Thiruvalluvan, M. Ultrasound modified millet starch: Changes in functional, pasting, thermal, structural, in vitro digestibility properties, and potential food applications. Food Hydrocoll. 2024, 153, 110008. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, H.; Shoemaker, C.F.; Xu, Z.; Zhu, S.; Zhong, F. Effect of dry heat treatment with xanthan on waxy rice starch. Carbohydr. Polym. 2013, 92, 1647–1652. [Google Scholar] [CrossRef] [PubMed]
- Lei, N.; Chai, S.; Xu, M.; Ji, J.; Mao, H.; Yan, S.; Gao, Y.; Li, H.; Wang, J.; Sun, B. Effect of dry heating treatment on multi-levels of structure and physicochemical properties of maize starch: A thermodynamic study. Int. J. Biol. Macromol. 2020, 147, 109–116. [Google Scholar] [CrossRef]
- Zhao, W.; Wang, D.; Liu, X.; Zheng, J.; Liang, W.; Shen, H.; Ge, X.; Hu, Y.; Li, W. Effect of electron beam irradiation on granular cold-water swelling chestnut starch: Improvement of cold-water solubility, multiscale structure, and rheological properties. Carbohydr. Polym. 2023, 319, 121164. [Google Scholar] [CrossRef]
- Xu, M.; Zhao, X.; Chen, Z.; Zhou, Z.; Ji, S.; Xu, Y.; Zhang, C.; Shen, J.; Chen, Q.; Li, K.; et al. Insights into the improved cold-water solubility and digestibility of alkaline-alcohol modified cassava starch: A discussion from the perspective of fine structure. Int. J. Biol. Macromol. 2025, 305, 140952. [Google Scholar] [CrossRef]
- Syarifin, A.N.K.; Purnomo, A.S.; Fudholi, A. The effect of heat moisture treatment on crystallinity and physicochemical-digestibility properties of purple yam flour. Food Hydrocoll. 2021, 120, 106889. [Google Scholar]
- Wu, X.L.; Wu, X.X.; Zhang, X.J.; Zhang, J.W.; Yan, X.X.; Zhang, Q.; Zhang, B.Q. Structural, physicochemical and in vitro digestibility of white kidney bean protein-corn starch complexes under various heat treatments. Food Res. Int. 2025, 200, 115479. [Google Scholar] [CrossRef]
- Lu, Z.H.; Donner, E.; Yada, R.Y.; Liu, Q. Physicochemical properties and in vitro starch digestibility of potato starch/protein blends. Carbohydr. Polym. 2016, 154, 214–222. [Google Scholar] [CrossRef]
- Okyere, A.Y.; Rajendran, S.; Annor, G.A. Cold plasma technologies: Their effect on starch properties and industrial scale-up for starch modification. Curr. Res. Food Sci. 2022, 5, 451–463. [Google Scholar] [PubMed]
- Zou, J.; Xu, M.; Tian, J.; Li, B. Impact of continuous and repeated dry heating treatments on the physicochemical and structural properties of waxy corn starch. Int. J. Biol. Macromol. 2019, 135, 379–385. [Google Scholar] [PubMed]
Processing Method | RDS (%) | SDS (%) | RS (%) | C∞ (%) | K (min−1) | R2 | AUC | HI | eGI |
---|---|---|---|---|---|---|---|---|---|
CS | 18.52 ± 0.38 j | 24.46 ± 0.04 g | 57.02 ± 0.35 a | 45.13 | 0.0213 | 0.9872 | 3458 | 31.50 | 57.00 |
SB-10 | 21.49 ± 0.34 i | 35.02 ± 0.23 d | 43.49 ± 0.53 c | 60.94 | 0.0176 | 0.9813 | 4263 | 38.83 | 61.03 |
SB-20 | 22.97 ± 0.37 h | 30.95 ± 0.15 f | 46.08 ± 0.40 b | 55.68 | 0.0208 | 0.9803 | 4221 | 38.45 | 60.82 |
SB-30 | 24.57 ± 0.16 g | 32.07 ± 0.32 e | 43.35 ± 0.46 c | 56.88 | 0.0222 | 0.9751 | 4444 | 40.48 | 61.93 |
SF-10 | 27.91 ± 0.05 f | 41.06 ± 0.19 c | 31.03 ± 0.23 d | 71.75 | 0.0219 | 0.9942 | 5575 | 50.78 | 67.59 |
SF-20 | 30.65 ± 0.67 e | 43.67 ± 1.81 b | 25.68 ± 2.35 e | 77.96 | 0.0208 | 0.9849 | 5916 | 53.88 | 69.29 |
SF-30 | 32.71 ± 0.92 d | 46.64 ± 0.16 a | 20.65 ± 1.07 f | 80.52 | 0.0232 | 0.9893 | 6405 | 58.34 | 71.74 |
SR-10 | 51.70 ± 0.53 b | 40.17 ± 0.28 c | 8.13 ± 0.33 g | 88.38 | 0.0356 | 0.9797 | 8156 | 74.29 | 80.50 |
SR-20 | 50.54 ± 0.39 c | 42.68 ± 0.21 b | 6.78 ± 0.54 gh | 90.60 | 0.0359 | 0.9850 | 8381 | 76.34 | 81.62 |
SR-30 | 53.35 ± 0.39 a | 40.24 ± 0.20 c | 6.40 ± 0.51 h | 93.74 | 0.0396 | 0.9975 | 8900 | 81.07 | 84.22 |
Processing Method | To (°C) | Tp (°C) | Tc (°C) | ∆H (J/g) | R (°C) | RC (%) |
---|---|---|---|---|---|---|
CS | 59.61 ± 0.11 a | 65.37 ± 0.09 a | 71.15 ± 0.15 a | 11.51 ± 0.32 a | 11.54 ± 0.15 de | 26.02 ± 0.09 a |
SB-10 | 58.33 ± 0.05 b | 64.38 ± 0.07 b | 70.35 ± 0.11 b | 10.68 ± 0.26 b | 12.02 ± 0.15 cd | 19.56 ± 0.07 b |
SB-20 | 58.01 ± 0.21 bc | 64.30 ± 0.61 b | 70.36 ± 0.23 b | 10.85 ± 0.21 b | 12.35 ± 0.18 bc | 18.07 ± 0.08 c |
SB-30 | 57.71 ± 0.20 d | 64.07 ± 0.04 b | 70.32 ± 0.25 b | 10.93 ± 0.23 b | 12.61 ± 0.08 b | 16.38 ± 0.04 e |
SF-10 | 54.97 ± 0.15 e | 61.57 ± 0.16 c | 68.17 ± 0.24 c | 9.14 ± 0.16 d | 13.19 ± 0.11 a | 17.02 ± 0.13 d |
SF-20 | 54.33 ± 0.20 f | 60.80 ± 0.68 d | 68.01 ± 0.58 c | 9.61 ± 0.18 c | 13.68 ± 0.53 a | 16.34 ± 0.14 e |
SF-30 | 53.76 ± 0.57 g | 60.24 ± 0.48 d | 66.96 ± 0.52 d | 8.42 ± 0.42 e | 13.20 ± 0.56 a | 16.16 ± 0.43 e |
SR-10 | 52.44 ± 0.27 h | 58.27 ± 0.43 e | 64.45 ± 0.27 e | 7.36 ± 0.10 f | 12.01 ± 0.21 cd | 16.97 ± 0.23 d |
SR-20 | 52.45 ± 0.09 h | 57.66 ± 0.24 ef | 63.60 ± 0.34 f | 7.33 ± 0.30 f | 11.15 ± 0.27 e | 16.94 ± 0.08 d |
SR-30 | 52.46 ± 0.20 h | 57.14 ± 0.17 f | 62.75 ± 0.30 g | 7.23 ± 0.13 f | 10.29 ± 0.20 f | 16.86 ± 0.03 d |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fang, H.; Wang, L.; Chen, Y.; Wang, Z.; Wang, X.; Wang, S. Analysis of the Physicochemical and Structural Properties of Chestnut Starch After Thermal Processing. Foods 2025, 14, 1190. https://doi.org/10.3390/foods14071190
Fang H, Wang L, Chen Y, Wang Z, Wang X, Wang S. Analysis of the Physicochemical and Structural Properties of Chestnut Starch After Thermal Processing. Foods. 2025; 14(7):1190. https://doi.org/10.3390/foods14071190
Chicago/Turabian StyleFang, Huijie, Liwen Wang, Yaxi Chen, Zechen Wang, Xianghong Wang, and Shuo Wang. 2025. "Analysis of the Physicochemical and Structural Properties of Chestnut Starch After Thermal Processing" Foods 14, no. 7: 1190. https://doi.org/10.3390/foods14071190
APA StyleFang, H., Wang, L., Chen, Y., Wang, Z., Wang, X., & Wang, S. (2025). Analysis of the Physicochemical and Structural Properties of Chestnut Starch After Thermal Processing. Foods, 14(7), 1190. https://doi.org/10.3390/foods14071190