Applications of Artificial Intelligence in Food Industry
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hassoun, A.; Aït-Kaddour, A.; Abu-Mahfouz, A.M.; Rathod, N.B.; Bader, F.; Barba, F.J.; Biancolillo, A.; Cropotova, J.; Galanakis, C.M.; Jambrak, A.R.; et al. The Fourth Industrial Revolution in the Food Industry—Part I: Industry 4.0 Technologies. Crit. Rev. Food Sci. Nutr. 2023, 63, 6547–6563. [Google Scholar] [CrossRef] [PubMed]
- Guo, Z.M.; Barimah, A.O.; Shujat, A.; Zhang, Z.Z.; Qin, O.Y.; Shi, J.Y.; El-Seedi, H.R.; Zou, X.B.; Chen, Q.S. Simultaneous Quantification of Active Constituents and Antioxidant Capability of Green Tea Using NIR Spectroscopy Coupled with Swarm Intelligence Algorithm. Lwt-Food Sci. Technol. 2020, 129, 109510. [Google Scholar] [CrossRef]
- Li, H.; Geng, W.; Hassan, M.M.; Zuo, M.; Wei, W.; Wu, X.; Ouyang, Q.; Chen, Q. Rapid Detection of Chloramphenicol in Food Using SERS Flexible Sensor Coupled Artificial Intelligent Tools. Food Control 2021, 128, 108186. [Google Scholar] [CrossRef]
- Chen, J.; Zhang, M.; Xu, B.; Sun, J.; Mujumdar, A.S. Artificial Intelligence Assisted Technologies for Controlling the Drying of Fruits and Vegetables Using Physical Fields: A Review. Trends Food Sci. Technol. 2020, 105, 251–260. [Google Scholar] [CrossRef]
- Lu, B.; Han, F.; Aheto, J.H.; Rashed, M.M.A.; Pan, Z. Artificial Bionic Taste Sensors Coupled with Chemometrics for Rapid Detection of Beef Adulteration. Food Sci. Nutr. 2021, 9, 5220–5228. [Google Scholar] [CrossRef]
- Esmaeily, R.; Razavi, M.A.; Razavi, S.H. A Step Forward in Food Science, Technology and Industry Using Artificial Intelligence. Trends Food Sci. Technol. 2024, 143, 104286. [Google Scholar] [CrossRef]
- Chen, Q.; Sun, C.; Ouyang, Q.; Wang, Y.; Liu, A.; Li, H.; Zhao, J. Classification of Different Varieties of Oolong Tea Using Novel Artificial Sensing Tools and Data Fusion. LWT-Food Sci. Technol. 2015, 60, 781–787. [Google Scholar] [CrossRef]
- Wang, C.; Gu, C.; Zhao, X.; Yu, S.; Zhang, X.; Xu, F.; Ding, L.; Huang, X.; Qian, J. Self-Designed Portable Dual-Mode Fluorescence Device with Custom Python-Based Analysis Software for Rapid Detection via Dual-Color FRET Aptasensor with IoT Capabilities. Food Chem. 2024, 457, 140190. [Google Scholar] [CrossRef]
- Wang, W.; Jayan, H.; Majeed, U.; Zou, X.; Hu, Q.; Guo, Z. Visual detection of Auramine O using dual-signal ratiometric fluorescent nanopaper sensor combined portable smartphone. Food Biosci. 2025, 65, 106135. [Google Scholar] [CrossRef]
- Gu, W.; Wen, W.; Wu, S.; Zheng, C.; Lu, X.; Chang, W.; Xiao, P.; Guo, X. 3D Reconstruction of Wheat Plants by Integrating Point Cloud Data and Virtual Design Optimization. Agriculture 2024, 14, 391. [Google Scholar] [CrossRef]
- Nirere, A.; Sun, J.; Atindana, V.A.; Hussain, A.; Zhou, X.; Yao, K. A Comparative Analysis of Hybrid SVM and LS-SVM Classification Algorithms to Identify Dried Wolfberry Fruits Quality Based on Hyperspectral Imaging Technology. J. Food Process. Preserv. 2022, 46, e16320. [Google Scholar] [CrossRef]
- Zhao, Q.; Shi, Y.; Xu, C.; Jiang, Z.; Liu, J.; Sui, Y.; Zhang, H. Control of Postharvest Blue and Gray Mold in Kiwifruit by Wickerhamomyces Anomalus and Its Mechanism of Antifungal Activity. Postharvest Biol. Technol. 2023, 201, 112345. [Google Scholar] [CrossRef]
- Ropelewska, E.; Szwejda-Grzybowska, J. The Estimation of Chemical Properties of Pepper Treated with Natural Fertilizers Based on Image Texture Parameters. Foods 2023, 12, 2123. [Google Scholar] [CrossRef]
- Xu, B.; Sylvain Tiliwa, E.; Yan, W.; Roknul Azam, S.M.; Wei, B.; Zhou, C.; Ma, H.; Bhandari, B. Recent Development in High Quality Drying of Fruits and Vegetables Assisted by Ultrasound: A Review. Food Res. Int. 2022, 152, 110744. [Google Scholar] [CrossRef]
- Xu, M.; Sun, J.; Cheng, J.; Yao, K.; Wu, X.; Zhou, X. Non-destructive Prediction of Total Soluble Solids and Titratable Acidity in Kyoho Grape Using Hyperspectral Imaging and Deep Learning Algorithm. Int. J. Food Sci. Technol. 2023, 58, 9–21. [Google Scholar] [CrossRef]
- Zhang, W.; Luo, Z.; Wang, A.; Gu, X.; Lv, Z. Kinetic Models Applied to Quality Change and Shelf Life Prediction of Kiwifruits. LWT 2021, 138, 110610. [Google Scholar] [CrossRef]
- Du, C.; Han, D.; Song, Z.; Chen, Y.; Chen, X.; Wang, X. Calibration of Contact Parameters for Complex Shaped Fruits Based on Discrete Element Method: The Case of Pod Pepper (Capsicum annuum). Biosyst. Eng. 2023, 226, 43–54. [Google Scholar] [CrossRef]
- Guo, Z.; Zhang, Y.; Wang, J.; Liu, Y.; Jayan, H.; El-Seedi, H.R.; Alzamora, S.M.; Gómez, P.L.; Zou, X. Detection Model Transfer of Apple Soluble Solids Content Based on NIR Spectroscopy and Deep Learning. Comput. Electron. Agric. 2023, 212, 108127. [Google Scholar] [CrossRef]
- Tian, Y.; Sun, J.; Zhou, X.; Yao, K.; Tang, N. Detection of Soluble Solid Content in Apples Based on Hyperspectral Technology Combined with Deep Learning Algorithm. J. Food Process. Preserv. 2022, 46, e16414. [Google Scholar] [CrossRef]
- Yu, S.; Zheng, H.; Wilson, D.I.; Yu, W.; Young, B.R. Integrating Image Analysis and Machine Learning for Moisture Prediction and Appearance Quality Evaluation: A Case Study of Kiwifruit Drying Pretreatment. Foods 2024, 13, 1789. [Google Scholar] [CrossRef]
- Zhou, X.; Sun, J.; Tian, Y.; Lu, B.; Hang, Y.; Chen, Q. Hyperspectral Technique Combined with Deep Learning Algorithm for Detection of Compound Heavy Metals in Lettuce. Food Chem. 2020, 321, 126503. [Google Scholar] [CrossRef]
- Zhou, X.; Zhao, C.; Sun, J.; Cao, Y.; Yao, K.; Xu, M. A Deep Learning Method for Predicting Lead Content in Oilseed Rape Leaves Using Fluorescence Hyperspectral Imaging. Food Chem. 2023, 409, 135251. [Google Scholar] [CrossRef] [PubMed]
- Noutfia, Y.; Ropelewska, E. Exploration of Convective and Infrared Drying Effect on Image Texture Parameters of ‘Mejhoul’ and ‘Boufeggous’ Date Palm Fruit Using Machine Learning Models. Foods 2024, 13, 1602. [Google Scholar] [CrossRef]
- Wang, J.; Gao, Z.; Zhang, Y.; Zhou, J.; Wu, J.; Li, P. Real-Time Detection and Location of Potted Flowers Based on a ZED Camera and a YOLO V4-Tiny Deep Learning Algorithm. Horticulturae 2021, 8, 21. [Google Scholar] [CrossRef]
- El-Mesery, H.S.; Qenawy, M.; Li, J.; El-Sharkawy, M.; Du, D. Predictive Modeling of Garlic Quality in Hybrid Infrared-Convective Drying Using Artificial Neural Networks. Food Bioprod. Process. 2024, 145, 226–238. [Google Scholar] [CrossRef]
- Granados-Vega, B.V.; Maldonado-Flores, C.; Gómez-Navarro, C.S.; Warren-Vega, W.M.; Campos-Rodríguez, A.; Romero-Cano, L.A. Development of a Low-Cost Artificial Vision System as an Alternative for the Automatic Classification of Persian Lemon: Prototype Test Simulation. Foods 2023, 12, 3829. [Google Scholar] [CrossRef]
- Zhu, Y.; Fan, S.; Zuo, M.; Zhang, B.; Zhu, Q.; Kong, J. Discrimination of New and Aged Seeds Based on On-Line Near-Infrared Spectroscopy Technology Combined with Machine Learning. Foods 2024, 13, 1570. [Google Scholar] [CrossRef]
- Cai, Z.; Sun, C.; Zhang, H.; Zhang, Y.; Li, J. Developing Universal Classification Models for the Detection of Early Decayed Citrus by Structured-Illumination Reflectance Imaging Coupling with Deep Learning Methods. Postharvest Biol. Technol. 2024, 210, 112788. [Google Scholar] [CrossRef]
- Ukwuoma, C.C.; Zhiguang, Q.; Bin Heyat, M.B.; Ali, L.; Almaspoor, Z.; Monday, H.N. Recent Advancements in Fruit Detection and Classification Using Deep Learning Techniques. Math. Probl. Eng. 2022, 2022, 9210947. [Google Scholar] [CrossRef]
- You, J.; Li, D.; Wang, Z.; Chen, Q.; Ouyang, Q. Prediction and Visualization of Moisture Content in Tencha Drying Processes by Computer Vision and Deep Learning. J. Sci. Food Agric. 2024, 104, 5486–5494. [Google Scholar] [CrossRef]
- Deng, J.; Ni, L.; Bai, X.; Jiang, H.; Xu, L. Simultaneous Analysis of Mildew Degree and Aflatoxin B1 of Wheat by a Multi-Task Deep Learning Strategy Based on Microwave Detection Technology. LWT 2023, 184, 115047. [Google Scholar] [CrossRef]
- Pao-la-or, P.; Marungsri, B.; Chirinang, P.; Posridee, K.; Oonsivilai, R.; Oonsivilai, A. Boosting Purnica granatum L. Seed Oil Yield: An Adaptive Neuro-Fuzzy Interference System Fuels SC-CO2 Extraction Breakthrough. Foods 2024, 13, 161. [Google Scholar] [CrossRef] [PubMed]
- Pao-la-or, P.; Posridee, K.; Buranakon, P.; Singthong, J.; Oonmetta-Aree, J.; Oonsivilai, R.; Oonsivilai, A. Beyond Traditional Methods: Deep-Learning Machines Empower Fingerroot (Boesenbergia Rotunda)-Extract Production with Superior Antioxidant Activity. Foods 2024, 13, 2676. [Google Scholar] [CrossRef]
- Sharifmousavi, M.; Kayvanfar, V.; Baldacci, R. Distributed Artificial Intelligence Application in Agri-Food Supply Chains 4.0. Procedia Comput. Sci. 2024, 232, 211–220. [Google Scholar] [CrossRef]
- Makridis, G.; Mavrepis, P.; Kyriazis, D. A Deep Learning Approach Using Natural Language Processing and Time-Series Forecasting towards Enhanced Food Safety. Mach. Learn. 2023, 112, 1287–1313. [Google Scholar] [CrossRef]
- Li, T.; Wei, W.; Xing, S.; Min, W.; Zhang, C.; Jiang, S. Deep Learning-Based Near-Infrared Hyperspectral Imaging for Food Nutrition Estimation. Foods 2023, 12, 3145. [Google Scholar] [CrossRef]
- Said, Z.; Sharma, P.; Thi Bich Nhuong, Q.; Bora, B.J.; Lichtfouse, E.; Khalid, H.M.; Luque, R.; Nguyen, X.P.; Hoang, A.T. Intelligent Approaches for Sustainable Management and Valorisation of Food Waste. Bioresour. Technol. 2023, 377, 128952. [Google Scholar] [CrossRef]
- Zou, Z.; Zhu, X.; Zhu, Q.; Zhang, H.; Zhu, L. Disambiguity and Alignment: An Effective Multi-Modal Alignment Method for Cross-Modal Recipe Retrieval. Foods 2024, 13, 1628. [Google Scholar] [CrossRef]
- Mu, W.; Kleter, G.A.; Bouzembrak, Y.; Dupouy, E.; Frewer, L.J.; Radwan Al Natour, F.N.; Marvin, H.J.P. Making Food Systems More Resilient to Food Safety Risks by Including Artificial Intelligence, Big Data, and Internet of Things into Food Safety Early Warning and Emerging Risk Identification Tools. Compr. Rev. Food Sci. Food Saf. 2024, 23, e13296. [Google Scholar] [CrossRef]
- Lau, E.A.; Rukmana, A.Y.; Uhai, S.; Mokodenseho, S.; Tapaningsih, W.I.D.A. Mapping Research on the Influence of Social Media on Consumer Food Behavior a Bibliometric Approach. Eastasouth J. Soc. Sci. Humanit. 2024, 1, 84–94. [Google Scholar] [CrossRef]
- Molenaar, A.; Lukose, D.; Brennan, L.; Jenkins, E.L.; McCaffrey, T.A. Using Natural Language Processing to Explore Social Media Opinions on Food Security: Sentiment Analysis and Topic Modeling Study. J. Med. Internet Res. 2024, 26, e47826. [Google Scholar] [CrossRef] [PubMed]
- Tao, D.; Hu, R.; Zhang, D.; Laber, J.; Lapsley, A.; Kwan, T.; Rathke, L.; Rundensteiner, E.; Feng, H. A Novel Foodborne Illness Detection and Web Application Tool Based on Social Media. Foods 2023, 12, 2769. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Guo, Y.; Fan, Q.; Zhang, Q.; Dong, Y. Health-Aware Food Recommendation Based on Knowledge Graph and Multi-Task Learning. Foods 2023, 12, 2079. [Google Scholar] [CrossRef] [PubMed]
- Samad, S.; Ahmed, F.; Naher, S.; Kabir, M.A.; Das, A.; Amin, S.; Islam, S.M.S. Smartphone Apps for Tracking Food Consumption and Recommendations: Evaluating Artificial Intelligence-Based Functionalities, Features and Quality of Current Apps. Intell. Syst. Appl. 2022, 15, 200103. [Google Scholar] [CrossRef]
- Patra, E.; Kokkinopoulou, A.; Wilson-Barnes, S.; Hart, K.; Gymnopoulos, L.P.; Tsatsou, D.; Solachidis, V.; Dimitropoulos, K.; Rouskas, K.; Argiriou, A.; et al. Personal Goals, User Engagement, and Meal Adherence within a Personalised AI-Based Mobile Application for Nutrition and Physical Activity. Life 2024, 14, 1238. [Google Scholar] [CrossRef]
- Hart, K.H.; Wilson-Barnes, S.; Stefanidis, K.; Tsatsou, D.; Gymnopoulos, L.; Dimitropoulos, K.; Rouskas, K.; Argiriou, N.; Leoni, R.; Russell, D.; et al. The Suitability of Dietary Recommendations Suggested By Artificial Intelligence Technology via a Novel Personalised Nutrition Mobile Application. Proc. Nutr. Soc. 2022, 81, E37. [Google Scholar] [CrossRef]
- Joachim, S.; Forkan, A.R.M.; Jayaraman, P.P.; Morshed, A.; Wickramasinghe, N. A Nudge-Inspired AI-Driven Health Platform for Self-Management of Diabetes. Sensors 2022, 22, 4620. [Google Scholar] [CrossRef]
- Sun, J.; Cheng, J.; Xu, M.; Yao, K. A Method for Freshness Detection of Pork Using Two-Dimensional Correlation Spectroscopy Images Combined with Dual-Branch Deep Learning. J. Food Compos. Anal. 2024, 129, 106144. [Google Scholar] [CrossRef]
- Ariyo Okaiyeto, S.; Bai, J.; Xiao, H. Generative AI in Education: To Embrace It or Not? Int. J. Agric. Biol. Eng. 2023, 16, 285–286. [Google Scholar] [CrossRef]
- Ma, Z.; Zhu, Y.; Wu, Z.; Nfamoussa Traore, S.; Chen, D.; Xing, L. BP Neural Network Model for Material Distribution Prediction Based on Variable Amplitude Anti-Blocking Screening DEM Simulations. Int. J. Agric. Biol. Eng. 2023, 16, 190–199. [Google Scholar] [CrossRef]
- Zhang, L.; Yang, Q.; Zhu, Z. The Application of Multi-Parameter Multi-Modal Technology Integrating Biological Sensors and Artificial Intelligence in the Rapid Detection of Food Contaminants. Foods 2024, 13, 1936. [Google Scholar] [CrossRef]
- Guo, Z.; Zheng, Y.; Yin, L.; Xue, S.; Ma, L.; Zhou, R.; El-Seedi, H.R.; Zhang, Y.; Yosri, N.; Jayan, H.; et al. Flexible Au@AgNRs/MAA/PDMS-Based SERS Sensor Coupled with Intelligent Algorithms for in-Situ Detection of Thiram on Apple. Sens. Actuators B Chem. 2024, 404, 135303. [Google Scholar] [CrossRef]
- Bai, J.-W.; Xiao, H.-W.; Ma, H.-L.; Zhou, C.-S. Artificial Neural Network Modeling of Drying Kinetics and Color Changes of Ginkgo Biloba Seeds during Microwave Drying Process. J. Food Qual. 2018, 2018, 3278595. [Google Scholar] [CrossRef]
- Zhao, Z.; Jin, M.; Tian, C.; Yang, S.X. Prediction of Seed Distribution in Rectangular Vibrating Tray Using Grey Model and Artificial Neural Network. Biosyst. Eng. 2018, 175, 194–205. [Google Scholar] [CrossRef]
- Huan, J.; Cao, W.; Liu, X. A Dissolved Oxygen Prediction Method Based on K-Means Clustering and the ELM Neural Network: A Case Study of the Changdang Lake, China. Appl. Eng. Agric. 2017, 33, 461–469. [Google Scholar] [CrossRef]
- Ding, C.; Wang, L.; Chen, X.; Yang, H.; Huang, L.; Song, X. A Blockchain-Based Wide-Area Agricultural Machinery Resource Scheduling System. Appl. Eng. Agric. 2023, 39, 1–12. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, L.; Battino, M.; Farag, M.A.; Xiao, J.; Simal-Gandara, J.; Gao, H.; Jiang, W. Blockchain: An Emerging Novel Technology to Upgrade the Current Fresh Fruit Supply Chain. Trends Food Sci. Technol. 2022, 124, 1–12. [Google Scholar] [CrossRef]
- Sun, J.; Nirere, A.; Dusabe, K.D.; Yuhao, Z.; Adrien, G. Rapid and Nondestructive Watermelon (Citrullus lanatus) Seed Viability Detection Based on Visible Near-infrared Hyperspectral Imaging Technology and Machine Learning Algorithms. J. Food Sci. 2024, 89, 4403–4418. [Google Scholar] [CrossRef]
- Chauhdary, J.N.; Li, H.; Akbar, N.; Javaid, M.; Rizwan, M.; Akhlaq, M. Evaluating Corn Production under Different Plant Spacings through Integrated Modeling Approach and Simulating Its Future Response under Climate Change Scenarios. Agric. Water Manag. 2024, 293, 108691. [Google Scholar] [CrossRef]
- Tuly, J.A.; Ma, H. Bioconversion of Food Industrial Waste Okara by Microbial Fermentation: Scope of Omics Study and Possibility. Trends Food Sci. Technol. 2024, 146, 104391. [Google Scholar] [CrossRef]
- Cayambe, J.; Heredia-R, M.; Torres, E.; Puhl, L.; Torres, B.; Barreto, D.; Heredia, B.N.; Vaca-Lucero, A.; Diaz-Ambrona, C.G.H. Evaluation of Sustainability in Strawberry Crops Production under Greenhouse and Open-Field Systems in the Andes. Int. J. Agric. Sustain. 2023, 21, 2255449. [Google Scholar] [CrossRef]
- Wu, H.; Li, X.; Lu, H.; Tong, L.; Kang, S. Crop Acreage Planning for Economy- Resource- Efficiency Coordination: Grey Information Entropy Based Uncertain Model. Agric. Water Manag. 2023, 289, 108557. [Google Scholar] [CrossRef]
- McCarthy, D.I. Nutritional Intelligence in the Food System: Combining Food, Health, Data and AI Expertise. Nutr. Bull. 2025, 50, 142–150. [Google Scholar] [CrossRef] [PubMed]
- Cassotta, M.; Forbes-Hernández, T.Y.; Calderón Iglesias, R.; Ruiz, R.; Elexpuru Zabaleta, M.; Giampieri, F.; Battino, M. Links between Nutrition, Infectious Diseases, and Microbiota: Emerging Technologies and Opportunities for Human-Focused Research. Nutrients 2020, 12, 1827. [Google Scholar] [CrossRef]
- Papastratis, I.; Konstantinidis, D.; Daras, P.; Dimitropoulos, K. AI Nutrition Recommendation Using a Deep Generative Model and ChatGPT. Sci. Rep. 2024, 14, 14620. [Google Scholar] [CrossRef]
- Ariyo Okaiyeto, S.; Mujumdar, A.S.; Prakash Sutar, P.; Liu, W.; Bai, J.; Xiao, H. Chatbots: A Critical Look into the Future of the Academia. Int. J. Agric. Biol. Eng. 2024, 17, 287–288. [Google Scholar] [CrossRef]
- Suresh Babu, C.V.; Simon, P.A.; Santhosh, S.; Shameem Ahamed, S.M.; Haran, J.H. Enhancing Support and Monitoring in Eating Disorders Through AI-Powered Chatbots and Neural Networks. In Neuroscientific Insights and Therapeutic Approaches to Eating Disorders; IGI Global: New York, NY, USA, 2024; pp. 82–100. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jayan, H.; Min, W.; Guo, Z. Applications of Artificial Intelligence in Food Industry. Foods 2025, 14, 1241. https://doi.org/10.3390/foods14071241
Jayan H, Min W, Guo Z. Applications of Artificial Intelligence in Food Industry. Foods. 2025; 14(7):1241. https://doi.org/10.3390/foods14071241
Chicago/Turabian StyleJayan, Heera, Weiqing Min, and Zhiming Guo. 2025. "Applications of Artificial Intelligence in Food Industry" Foods 14, no. 7: 1241. https://doi.org/10.3390/foods14071241
APA StyleJayan, H., Min, W., & Guo, Z. (2025). Applications of Artificial Intelligence in Food Industry. Foods, 14(7), 1241. https://doi.org/10.3390/foods14071241