The Functional Components and Hepatic Protective Mechanism of Wolfberry Vinegar by Mixed-Culture Fermentation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Raw Materials and Chemicals
2.2. Production of Mixed-Culture Fermented Vinegar of Wolfberry
2.3. Determination of Nutritional Components
2.4. Determination of Active Ingredients
2.5. Antioxidant Activity Analysis
2.6. Animal Experiments
2.7. Histopathological Observation
2.8. Analysis of Biochemical Indexes
2.9. Measurement of Liver Inflammatory Cytokines
2.10. Western Blotting Analysis
2.11. Statistical Analysis
3. Results and Discussion
3.1. Nutritional Components in Wolfberry Juice and Mixed-Culture Fermented Wolfberry Vinegar
3.2. Bioactive Ingredients and Antioxidant Activities in Wolfberry Juice and Mixed-Culture Fermented Wolfberry Vinegar
3.3. The Effect of Mixed-Culture Fermented Wolfberry Vinegar on Alcoholic Liver Disease in Mice
3.4. The Effect of Mixed-Culture Fermented Wolfberry Vinegar on Alcohol Metabolism Enzymes in Mice with Alcoholic Liver Disease
3.5. The Effect of Mixed-Culture Fermented Wolfberry Vinegar on Liver Oxidative Stress in Mice with Alcoholic Liver Disease
3.6. Effect of Mixed-Culture Fermented Wolfberry Vinegar on Hepatic Inflammatory Indicators in Mice with Alcoholic Liver Disease
3.7. Effect of Mixed-Culture Fermented Wolfberry Vinegar on the Alcohol-Induced PI3K-AKT-NF-κB Pathway In Vivo
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, C.; Qin, K.; Shang, X.; Gao, Y.; Wu, J.; Ma, H.; Wei, Z.; Dai, G. Mapping quantitative trait loci associated with self-(in)compatibility in goji berries (Lycium barbarum). BMC Plant Biol. 2024, 24, 441. [Google Scholar] [CrossRef] [PubMed]
- Tian, Y.L.; Xia, T.; Qiang, X.; Zhao, Y.X.; Li, S.P.; Wang, Y.M.; Zheng, Y.; Yu, J.W.; Wang, J.X.; Wang, M. Nutrition, Bioactive Components, and Hepatoprotective Activity of fruit vinegar produced from Ningxia wolfberry. Molecules 2022, 27, 4422. [Google Scholar] [CrossRef]
- Rybicka, I.; Kiewlicz, J.; Kowalczewski, P.L.; Gliszczyńska-Świgło, A. Selected dried fruits as a source of nutrients. Eur. Food Res. Technol. 2021, 247, 2409–2419. [Google Scholar] [CrossRef]
- Liang, X.J.; An, W.; Li, Y.K.; Qin, X.Y.; Zhao, J.H.; Su, S.C. Effects of different nitrogen application rates and picking batches on the nutritional components of Lycium barbarum L. fruits. Front. Plant Sci. 2024, 15, 1355832. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.J.; Rukeya, J.; Tao, W.Y.; Sun, P.L.; Ye, X.Q. Bioactive compounds and antioxidant activity of wolfberry infusion. Sci. Rep. 2017, 7, 40605. [Google Scholar] [CrossRef]
- Amagase, H.; Farnsworth, N.R. A review of botanical characteristics, phytochemistry, clinical relevance in efficacy and safety of Lycium barbarum fruit (Goji). Food Res. Int. 2011, 44, 1702–1717. [Google Scholar] [CrossRef]
- Huang, R.; Wu, E.; Deng, X. Potential of Lycium barbarum polysaccharide for the control of glucose and lipid metabolism disorders: A review. Int. J. Food Prop. 2022, 25, 673–680. [Google Scholar] [CrossRef]
- Taguchi, K.; Kensler, T.W. Nrf2 in liver toxicology. Arch Pharm Res. 2020, 43, 337349. [Google Scholar] [CrossRef]
- Nowak, A.J.; Relja, B. The impact of acute or chronic alcohol intake on the NF-κB signaling pathway in alcohol-related liver disease. Int. J. Mol. Sci. 2020, 21, 9407. [Google Scholar] [CrossRef]
- Zhong, X.; Zhang, Z.G.; Shen, H.; Xiong, Y.; Shah, Y.M.; Liu, Y.; Fan, X.; Rui, L.Y. Hepatic NF-κB-inducing kinase and inhibitor of NF-κB kinase subunit α promote liver oxidative stress, ferroptosis, and liver injury. Hepatol. Commun. 2021, 5, 1704–1720. [Google Scholar] [CrossRef]
- Ting, C.T.; Cheng, Y.Y.; Tsai, T.H. Herb-drug interaction between the traditional hepatoprotective formulation and sorafenib on hepatotoxicity, histopathology and pharmacokinetics in rats. Molecules 2017, 22, 1034. [Google Scholar] [CrossRef] [PubMed]
- Meng, X.; Li, S.; Li, Y.; Gan, R.Y.; Li, H.B. Gut microbiota’s relationship with liver disease and role in hepatoprotection by dietary natural products and probiotics. Nutrients 2018, 10, 1457. [Google Scholar] [CrossRef]
- Luzón-Quintana, L.M.; Castro, R.; Durán-Guerrero, E. Biotechnological processes in fruit vinegar production. Foods 2021, 10, 945. [Google Scholar] [CrossRef]
- Sánchez-Valle, V.; Chávez-Tapia, N.C.; Uribe, M.; Mendez-Sanchez, N. Role of oxidative stress and molecular changes in liver fibrosis: A review. Curr. Med. Chem. 2012, 19, 4850–4860. [Google Scholar] [PubMed]
- Bouazza, A.; Bitam, A.; Amiali, M.; Bounihi, A.; Yargui, L.; Koceir, E.A. Effect of fruit vinegars on liver damage and oxidative stress in high-fat-fed rats. Pharm. Biol. 2016, 54, 260–265. [Google Scholar] [PubMed]
- Karakçı, D.; Bakır, B.; Seyidoglu, N.; Yıkmış, S. Ultrasound-treated and thermal-pasteurized hawthorn vinegar: Antioxidant and lipid profiles in rats. Nutrients 2020, 15, 3933. [Google Scholar] [CrossRef]
- Peyer, L.C.; Zannini, E.; Arendt, E.K. Lactic acid bacteria as sensory biomodulators for fermented cereal-based beverages. Trends Food Sci. Tech. 2016, 54, 17. [Google Scholar] [CrossRef]
- GB/T15038-2006; Analytical Methods of Wine and Fruit Wine. General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China: Beijing, China, 2006.
- GB 5009.6-2016; Determination of Fat in Foods. National Health Commission of the People’s Republic of China: Beijing, China, 2016.
- GB 5009.5-2016; Determination of Protein in Foods. National Health Commission of the People’s Republic of China: Beijing, China, 2016.
- Xia, T.; Qiang, X.; Geng, B.B.; Zhang, X.D.; Wang, Y.M.; Li, S.P.; Meng, Y.; Zheng, Y.; Wang, M. Changes in the phytochemical and bioactive compounds and the antioxidant properties of wolfberry during vinegar fermentation processes. Int. J. Mol. Sci. 2022, 23, 15839. [Google Scholar] [CrossRef]
- Li, Y.; Nguyen, T.T.H.; Jin, J.; Lim, J.; Lee, J.; Piao, M.; Mok, I.K.; Kim, D. Brewing of glucuronic acid-enriched apple cider with enhanced antioxidant activities through the co-fermentation of yeast (Saccharomyces cerevisiae and Pichia kudriavzevii) and bacteria (Lactobacillus plantarum). Food Sci Biotechnol. 2021, 30, 555–564. [Google Scholar]
- Guan, Q.J.; Gong, T.T.; Lu, Z.M.; Geng, Y.; Duan, W.H.; Ren, Y.L.; Zhang, X.J.; Chai, L.J.; Shi, J.S.; Xu, Z.H. Hepatoprotective effect of cereal vinegar sediment in acute liver injury mice and its influence on gut microbiota. Front. Nutr. 2021, 8, 798273. [Google Scholar]
- Wang, X.J.; Liu, X.L.; Zheng, X.Q.; Qu, Y.; Shi, Y.G. Preparation of corn glycopeptides and evaluation of their antagonistic effects on alcohol-induced liver injury in rats. J. Funct. Foods 2020, 66, 103776. [Google Scholar] [CrossRef]
- Chen, Y.; Huang, Y.; Bai, Y.; Fu, C.X.; Zhou, M.Z.; Gao, B.; Wang, C.; Li, D.S.; Hu, Y.; Xu, N. Effects of mixed cultures of Saccharomyces cerevisiae and Lactobacillus plantarum in alcoholic fermentation on the physicochemical and sensory properties of citrus vinegar. LWT-Food Sci. Technol. 2017, 84, 753–763. [Google Scholar] [CrossRef]
- Wang, X.H.; Wang, J.; Kamal, G.M.; Jiang, B.; Sun, P.; Zhang, X.; Liu, M.L. Characterization and comparison of commercial Chinese cereal and European grape vinegars using 1H NMR spectroscopy combined with multivariate analysis. Chin. J. Chem. 2016, 34, 1183–1193. [Google Scholar] [CrossRef]
- Guo, L.; Guan, Q.J.; Duan, W.H.; Ren, Y.L.; Zhang, X.J.; Xu, H.Y.; Shi, J.S.; Wang, F.Z.; Lu, R.; Zhang, H.L.; et al. Dietary goji shapes the gut microbiota to prevent the liver injury induced by acute alcohol intake. Front. Nutr. 2022, 9, 929776. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.J.; Cao, L.P.; Du, J.L.; Jia, R.; Wang, J.H.; Xu, P.; Yin, G.J. Protective effects of Lycium barbarum polysaccharides against carbon tetrachloride-induced hepatotoxicity in precision-cut liver slices in vitro and in vivo in common carp (Cyprinus carpio L.). Comp. Biochem. Phys. C 2015, 169, 65–72. [Google Scholar] [CrossRef] [PubMed]
- Yan, Y.M.; Wu, W.Q.; Lu, L.; Ren, J.; Mi, J.; Liu, X.B.; Cao, Y.L. Study on the synergistic protective effect of Lycium barbarum L. polysaccharides and zinc sulfate on chronic alcoholic liver injury in rats. Food Sci. Nutr. 2019, 7, 3435–3442. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.M.; Park, M.Y.; Kim, J.; Shin, J.H.; Park, K.S.; Kwon, O. Persimmon vinegar and its fractions protect against alcohol-induced hepatic injury in rats through the suppression of CYP2E1 expression. Pharm. Biol. 2016, 54, 2437–2442. [Google Scholar]
- Ding, L.; Wo, L.K.; Du, Z.Y.; Tang, L.Y.; Song, Z.Y.; Dou, X. Danshen protects against early-stage alcoholic liver disease in mice via inducing PPARα activation and subsequent 4-HNE degradation. PLoS ONE 2017, 12, e0186357. [Google Scholar]
- Wang, H.C.; Yan, J.J.; Wang, K.; Liu, Y.; Liu, S.; Wu, K.; Wang, X.M.; Haider, A.; Liu, Y.H.; Zhou, Q.; et al. The gut-liver axis perspective: Exploring the protective potential of polysaccharides from Cistanche deserticola against alcoholic liver disease. Int. J. Biol. Macromol. 2024, 256, 128394. [Google Scholar] [CrossRef]
- Xia, N.T.; Ding, Z.M.; Dong, M.R.; Li, S.Y.; Liu, J.; Xue, H.W.; Wang, Z.G.; Lu, J.; Chen, X. Protective effects of Lycium ruthenicum Murray against acute alcoholic liver disease in mice via the Nrf2/HO-1/NF-κB signaling pathway. Pharmaceuticals 2024, 17, 497. [Google Scholar] [CrossRef]
- Ma, M.; Chen, L.; Tang, Z.; Song, Z.X.; Kong, X. Hepatoprotective effect of total flavonoids from Carthamus tinctorius L. leaves against carbon tetrachloride-induced chronic liver injury in mice. Fitoterapia 2023, 171, 105605. [Google Scholar] [CrossRef] [PubMed]
Indexes | Content | ||
---|---|---|---|
WJ | MFV | ||
Active ingredients | TPC (mg GAE/mL) | 1.38 ± 0.03 b | 2.99 ± 0.12 a |
TFC (mg RE/mL) | 1.02 ± 0.06 b | 1.81 ± 0.11 a | |
LBP (mg/mL) | 7.79 ± 0.38 b | 15.89 ± 0.12 a | |
Carotenoids (mg/mL) | 0.87 ± 0.06 a | 0.86 ± 0.05 a | |
Betaine (mg/mL) | 3.01 ± 0.06 b | 4.74 ± 0.14 a | |
Antioxidant activities | DPPH (mM Trolox/L) | 6.95 ± 0.32 b | 20.84 ± 0.13 a |
ABTS (mM Trolox/L) | 5.82 ± 0.49 b | 18.67 ± 0.07 a | |
FRAP (mM Trolox/L) | 3.34 ± 0.24 b | 5.79 ± 0.26 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qiang, X.; Zhao, M.; Xia, T.; Wang, Q.; Yu, J.; Song, Y.; Zhang, H.; Qiao, C.; Wang, M. The Functional Components and Hepatic Protective Mechanism of Wolfberry Vinegar by Mixed-Culture Fermentation. Foods 2025, 14, 1278. https://doi.org/10.3390/foods14071278
Qiang X, Zhao M, Xia T, Wang Q, Yu J, Song Y, Zhang H, Qiao C, Wang M. The Functional Components and Hepatic Protective Mechanism of Wolfberry Vinegar by Mixed-Culture Fermentation. Foods. 2025; 14(7):1278. https://doi.org/10.3390/foods14071278
Chicago/Turabian StyleQiang, Xiao, Man Zhao, Ting Xia, Qi Wang, Junwei Yu, Yunru Song, Huimin Zhang, Changsheng Qiao, and Min Wang. 2025. "The Functional Components and Hepatic Protective Mechanism of Wolfberry Vinegar by Mixed-Culture Fermentation" Foods 14, no. 7: 1278. https://doi.org/10.3390/foods14071278
APA StyleQiang, X., Zhao, M., Xia, T., Wang, Q., Yu, J., Song, Y., Zhang, H., Qiao, C., & Wang, M. (2025). The Functional Components and Hepatic Protective Mechanism of Wolfberry Vinegar by Mixed-Culture Fermentation. Foods, 14(7), 1278. https://doi.org/10.3390/foods14071278