Techno-Functional, Rheological, and Physico-Chemical Properties of Gelatin Capsule By-Product for Future Functional Food Ingredients
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Collection and Preparation of Gelatin Capsule Waste
2.3. Spray Drying
2.4. Chemical Analysis
2.5. Physico-Chemical Analysis
2.5.1. Yield
2.5.2. Water Activity and pH
2.5.3. Hygroscopicity and Syneresis
2.5.4. Solubility
2.6. Rheological and Textural Analysis
2.6.1. Texture Profiling
2.6.2. Gel Strength and DSC
2.6.3. Gelling and Melting Temperatures
2.7. Techno-Functional Property
2.8. Optical Analysis
2.9. Structural Analysis by Scanning Electron Microscopy (SEM)
2.10. Statistical Analysis
3. Results and Discussion
3.1. Proximate Studies
3.2. Physico-Chemical Properties
3.2.1. Water Activity and pH
3.2.2. Hygroscopicity
3.2.3. Syneresis and Solubility
3.2.4. Amino Acid Composition
3.3. Rheology and Textural Profiling
3.3.1. Texture Profile Analysis and Gel Strength
3.3.2. Rheological Behavior
3.3.3. Differential Scanning Calorimetry
3.4. Techno-Functional Properties
3.5. Color and FTIR Profiling
3.6. Morphological Studies
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Frost, B. Functional Foods Market Size, Share & Trends Analysis Report by Ingredient (Carotenoids, Prebiotics & Probiotics, Fatty Acids, Dietary Fibers), by Product, by Application, and Segment Forecasts, 2019–2025; Research and Markets: San Francisco, CA, USA, 2019; p. 7215. Available online: https://www.grandviewresearch.com/industry-analysis/functional-food-market (accessed on 10 January 2025).
- Fazial, F.F.; Ahmad, A.; Hani, N.M. Comprehensive characterisation of tilapia fish gelatine under varied extraction conditions for the advancement of hard capsule production. Int. J. Food Sci. Technol. 2024, 59, 276–287. [Google Scholar] [CrossRef]
- Zheng, B.-D.; Yu, Y.-Z.; Yuan, X.-L.; Chen, X.-S.; Yang, Y.-C.; Zhang, N.; Huang, Y.-Y.; Ye, J.; Xiao, M.-T. Sodium alginate/carboxymethyl starch/κ-carrageenan enteric soft capsule: Processing, characterization, and rupture time evaluation. Int. J. Biol. Macromol. 2023, 244, 125427. [Google Scholar] [CrossRef]
- Kalmer, R.R.; Karimi, A.; Moosavi, S.; Ghanbari, M.; Sadjadinia, A.; Samandarian, D.; Ramezanalizadeh, H.; Gholizadeh Dogaheh, S. Novel formulation of uncoated enteric capsule shells: Study the effect of gelling agents and salts on the rheology and physical properties. Mater. Chem. Phys. 2024, 312, 128614. [Google Scholar] [CrossRef]
- Hu, S.; Xu, C.; Zhang, Y.; Du, Y.; Tang, J.; Chen, L. Preparation of enteric capsules with pulsatile drug delivery potential using pullulan and polyacrylic acid resin III. Arab. J. Chem. 2024, 17, 105691. [Google Scholar] [CrossRef]
- Polyak, F.; Pugliese, S.; Reinelt, C.; Reich, G. Temperature effects on ribbon characteristics in soft gelatin capsule manufacture. Eur. J. Pharm. Biopharm. 2024, 203, 114465. [Google Scholar] [CrossRef]
- Charoenchaitrakool, M.; Tulathon, P.; Meesangnil, W.; Niamnuy, C.; Seubsai, A.; Nunta, S.; Sudsakorn, K. Carboxymethyl cellulose and gelatin composite hydrogel for environmentally friendly urea delivery. Colloids Surf. A Physicochem. Eng. Asp. 2024, 690, 133774. [Google Scholar] [CrossRef]
- Kumnerdsiri, P.; Sanprasert, S.; Praiboon, J.; Seubsai, A.; Sirisarn, W.; Pongsetkul, J.; Harnkarnsujarit, N.; Rawdkuen, S.; Karnjanapratum, S.; Sai-Ut, S.; et al. Characterization of Cha-Kram leaf extract powder using ultrasound-assisted extraction and its application in gelatin-based film as biodegradable active film. Future Foods 2024, 10, 100419. [Google Scholar] [CrossRef]
- Kumnerdsiri, P.; Sanprasert, S.; Seubsai, A.; Pongsetkul, J.; Harnkarnsujarit, N.; Rawdkuen, S.; Sai-ut, S.; Phongthai, S.; Lueangjaroenkit, P.; Onsaard, E.; et al. Properties of novel biodegradable film from gelatin capsule waste as influenced by various solvents and washing cycles. Future Foods 2024, 10, 100485. [Google Scholar] [CrossRef]
- Costa, N.d.A.; Silveira, L.R.; Amaral, E.d.P.; Pereira, G.C.; Paula, D.d.A.; Vieira, É.N.R.; Martins, E.M.F.; Stringheta, P.C.; Leite Júnior, B.R.d.C.; Ramos, A.M. Use of maltodextrin, sweet potato flour, pectin and gelatin as wall material for microencapsulating Lactiplantibacillus plantarum by spray drying: Thermal resistance, in vitro release behavior, storage stability and physicochemical properties. Food Res. Int. 2023, 164, 112367. [Google Scholar] [CrossRef]
- Dantas, A.; Piella-Rifà, M.; Costa, D.P.; Felipe, X.; Gou, P. Innovations in spray drying technology for liquid food processing: Design, mechanisms, and potential for application. Appl. Food Res. 2024, 4, 100382. [Google Scholar] [CrossRef]
- Fonseca, M.T.; Vital, A.C.; Silva, M.B.; Monteiro, S.S.; Nascimento, A.; Trindade, A.P.; Lisboa, H.M.; Pasquali, M.B. Improving the stability of spray-dried probiotic acerola juice: A study on hydrocolloids’ efficacy and process variables. Food Bioprod. Process. 2024, 147, 209–218. [Google Scholar] [CrossRef]
- Achmad Kosasih, E.; Dzaky, M.I.; Zikri, A.; Rachmanudiputra, A.; Abizar, F.; Fauzi, M.B.; Suharyadi, Y.S. Microencapsulation of maltodextrin and gelatin using spray drying with double-condenser compression refrigeration systems. Case Stud. Therm. Eng. 2023, 45, 102931. [Google Scholar] [CrossRef]
- Wang, J.; Enayati, M.; Madarshahian, S.; Ufheil, G.; Yan, B.; Abbaspourrad, A. Encapsulation of N-acetylcysteine (NAC) using protein-polysaccharide combinations through spray drying and air drying. LWT 2023, 187, 115268. [Google Scholar] [CrossRef]
- Rigolon, T.C.B.; Silva, R.R.A.; de Oliveira, T.V.; Nascimento, A.L.A.A.; de Barros, F.A.R.; Martins, E.; Campelo, P.H.; Stringheta, P.C. Exploring anthocyanins-polysaccharide synergies in microcapsule wall materials via spray drying: Interaction characterization and evaluation of particle stability. Meas. Food 2024, 13, 100126. [Google Scholar] [CrossRef]
- Chuaychan, S.; Benjakul, S. Effect of maltodextrin on characteristics and antioxidative activity of spray-dried powder of gelatin and gelatin hydrolysate from scales of spotted golden goatfish. J. Food Sci. Technol. 2016, 53, 3583–3592. [Google Scholar] [CrossRef]
- Millinia, B.L.; Mashithah, D.; Nawatila, R.; Kartini, K. Microencapsulation of roselle (Hibiscus sabdariffa L.) anthocyanins: Effects of maltodextrin and trehalose matrix on selected physicochemical properties and antioxidant activities of spray-dried powder. Future Foods 2024, 9, 100300. [Google Scholar] [CrossRef]
- Piñón-Balderrama, C.I.; Leyva-Porras, C.; Terán-Figueroa, Y.; Espinosa-Solís, V.; Álvarez-Salas, C.; Saavedra-Leos, M.Z. Encapsulation of active ingredients in food industry by spray-drying and nano spray-drying technologies. Processes 2020, 8, 889. [Google Scholar] [CrossRef]
- Horwitz, W.; Latimer, G. Official Methods of Analysis of AOAC International, 17th ed.; Association of Analytical Chemists International: Gaithersburg, MD, USA, 2000. [Google Scholar]
- Phetchthumrongchai, T.; Tachapuripunya, V.; Chintong, S.; Roytrakul, S.; E-kobon, T.; Klaypradit, W. Properties of protein hydrolysates and bioinformatics prediction of peptides derived from thermal and enzymatic process of skipjack tuna (katsuwonus pelamis) roe. Fishes 2022, 7, 255. [Google Scholar] [CrossRef]
- Teo, M.; Khoo, L.W.; Chew, W. A simplified small-scale workflow for determination of complete protein-bound amino acids using pre-column derivatization HPLC method. J. Food Compos. Anal. 2024, 135, 106571. [Google Scholar] [CrossRef]
- Rather, J.A.; Majid, S.D.; Dar, A.H.; Amin, T.; Makroo, H.; Mir, S.A.; Barba, F.J.; Dar, B. Extraction of gelatin from poultry byproduct: Influence of drying method on structural, thermal, functional, and rheological characteristics of the dried gelatin powder. Front. Nutr. 2022, 9, 895197. [Google Scholar] [CrossRef]
- Kou, X.; Zhang, X.; Cheng, Y.; Yu, M.; Meng, Q.; Ke, Q. Mannitol is a good anticaking agent for spray-dried hydroxypropyl-beta-cyclodextrin microcapsules. Molecules 2023, 28, 1119. [Google Scholar] [CrossRef]
- Petcharat, T.; Benjakul, S.; Hemar, Y. Improvement of gel properties of fish gelatin using gellan. Int. J. Food Eng. 2017, 13, 20160410. [Google Scholar] [CrossRef]
- Petcharat, T.; Benjakul, S. Effect of gellan incorporation on gel properties of bigeye snapper surimi. Food Hydrocoll. 2018, 77, 746–753. [Google Scholar] [CrossRef]
- Petcharat, T.; Benjakul, S. Property of fish gelatin gel as affected by the incorporation of gellan and calcium chloride. Food Biophys. 2017, 12, 339–347. [Google Scholar] [CrossRef]
- Quek, S.Y.; Chok, N.K.; Swedlund, P. The physicochemical properties of spray-dried watermelon powders. Chem. Eng. Process. Process 2007, 46, 386–392. [Google Scholar] [CrossRef]
- Rizqiati, H.; Febrisiantosa, A.; Setiyawan, A.I.; Setiawan, J.; Safira, H.; Insyira, V.R.; Belinda, A.G.; Wiryawan, R.E.; Adrian, E. Influence of maltodextrin concentration on the proximate, chemical, and microbiological properties of powdered bovine colostrum kefir. Curr. J. Appl. Sci. Technol. 2023, 42, 1–11. [Google Scholar] [CrossRef]
- Mahdi, A.A.; Mohammed, J.K.; Al-Ansi, W.; Ghaleb, A.D.S.; Al-Maqtari, Q.A.; Ma, M.; Ahmed, M.I.; Wang, H. Microencapsulation of fingered citron extract with gum arabic, modified starch, whey protein, and maltodextrin using spray drying. Int. J. Biol. Macromol. 2020, 152, 1125–1134. [Google Scholar] [CrossRef] [PubMed]
- Booranasakawee, N.; Banjongsinsiri, P.; Donrung, N. Encapsulation maltodextrin with spray drying affecting on shiitake (Lentinula edodes) protein hydrolysate properties. J. Food Sci. Agric. Technol. 2022, 6, 78–84. [Google Scholar]
- Toprakçı, İ.; Güngör, K.K.; Torun, M.; Şahin, S. Spray-drying microencapsulation of plum peel bioactives using Arabic gum and maltodextrin as coating matrix. Food Biosci. 2024, 61, 104824. [Google Scholar] [CrossRef]
- Grabowski, J.A.; Truong, V.-D.; Daubert, C.R. Spray-Drying of Amylase Hydrolyzed Sweetpotato Puree and Physicochemical Properties of Powder. J. Food Sci. 2006, 71, E209–E217. [Google Scholar] [CrossRef]
- How, Y.H.; Teo, M.Y.M.; In, L.L.A.; Yeo, S.K.; Bhandari, B.; Pui, L.P. Freeze drying of food-grade recombinant Lactococcus lactis NZ3900-fermented milk with different protecting agents. Int. Dairy J. 2023, 146, 105752. [Google Scholar] [CrossRef]
- Chng, G.; Chang, L.; Pui, L. Effects of maltodextrin concentration and inlet temperature on the physicochemical properties of spray-dried kuini powder. Asia Pac. J. Mol. Biol. Biotechnol. 2020, 28, 113–131. [Google Scholar] [CrossRef]
- Koc, B.; Yilmazer, M.S.; Balkır, P.; Ertekin, F.K. Spray Drying of Yogurt: Optimization of Process Conditions for Improving Viability and Other Quality Attributes. Dry. Technol. 2010, 28, 495–507. [Google Scholar] [CrossRef]
- Nurhidajah, N.; Yonata, D.; Pranata, B. Microencapsulation of anthocyanin-rich extract from indonesian black rice using maltodextrin, arabic gum and skimmed milk powder as wall material by spray drying. Trends Sci. 2024, 21, 7971. [Google Scholar] [CrossRef]
- Mazidatu Zulfa, N.; Sarofa, U. The effect of foaming agent and maltodextrin concentrations on the characteristics of bidara fruit powder drink, strawberry and butterfly pea flower. Asian J. Appl. Res. Community Dev. Empower. 2023, 7, 221–227. [Google Scholar] [CrossRef]
- Caliskan, G.; Nur Dirim, S. The effects of the different drying conditions and the amounts of maltodextrin addition during spray drying of sumac extract. Food Bioprod. Process. 2013, 91, 539–548. [Google Scholar] [CrossRef]
- Goula, A.M.; Adamopoulos, K.G. Effect of Maltodextrin Addition during Spray Drying of Tomato Pulp in Dehumidified Air: II. Powder Properties. Dry. Technol. 2008, 26, 726–737. [Google Scholar] [CrossRef]
- Zhang, L.; Zeng, X.; Fu, N.; Tang, X.; Sun, Y.; Lin, L. Maltodextrin: A consummate carrier for spray-drying of xylooligosaccharides. Food Res. Int. 2018, 106, 383–393. [Google Scholar] [CrossRef]
- Jimenez Sánchez, D.E.; Calderon-Santoyo, M.; Herman-Lara, E.; González-Cruz, E.M.; Ragazzo-Sanchez, J.A. Effect of a formulation with Agave fructans as a carrier polymer on the quality properties of Chayote (Sechium edule) powder. Afinidad J. Chem. Eng. Theor. Appl. Chem. 2022, 79, 70–79. [Google Scholar] [CrossRef]
- Castro, N.; Durrieu, V.; Raynaud, C.; Rouilly, A. Influence of DE-value on the physicochemical properties of maltodextrin for melt extrusion processes. Carbohydr. Polym. 2016, 144, 464–473. [Google Scholar] [CrossRef]
- Mishra, P.; Mishra, S.; Mahanta, C.L. Effect of maltodextrin concentration and inlet temperature during spray drying on physicochemical and antioxidant properties of amla (Emblica officinalis) juice powder. Food Bioprod. Process. 2014, 92, 252–258. [Google Scholar] [CrossRef]
- Sinthusamran, S.; Benjakul, S.; Hemar, Y. Physical and sensory properties of gelatin from seabass (Lates calcarifer) as affected by agar and κ-carrageenan. J. Texture Stud. 2018, 49, 47–55. [Google Scholar] [CrossRef] [PubMed]
- Vidović, S.S.; Vladić, J.Z.; Vaštag, Ž.G.; Zeković, Z.P.; Popović, L.M. Maltodextrin as a carrier of health benefit compounds in Satureja montana dry powder extract obtained by spray drying technique. Powder Technol. 2014, 258, 209–215. [Google Scholar] [CrossRef]
- Zaitsev, S.Y. Changes in the Amino Acid Composition of Gelatin After Treatment of Bovine Collagen with Enzyme Preparations. Mosc. Univ. Chem. Bull. 2023, 78, 292–298. [Google Scholar] [CrossRef]
- Sae-Leaw, T.; Benjakul, S.; O’Brien, N.M. Effect of pretreatments and drying methods on the properties and fishy odor/flavor of gelatin from seabass (Lates calcarifer) skin. Dry. Technol. 2016, 34, 53–65. [Google Scholar] [CrossRef]
- Kanwate, B.W.; Ballari, R.V.; Kudre, T.G. Influence of spray-drying, freeze-drying and vacuum-drying on physicochemical and functional properties of gelatin from Labeo rohita swim bladder. Int. J. Biol. Macromol. 2019, 121, 135–141. [Google Scholar] [CrossRef]
- Castro-Muñoz, R.; Barragán-Huerta, B.E.; Yáñez-Fernández, J. Use of gelatin-maltodextrin composite as an encapsulation support for clarified juice from purple cactus pear (Opuntia stricta). LWT 2015, 62, 242–248. [Google Scholar] [CrossRef]
- Luo, Q.; Hossen, M.A.; Zeng, Y.; Dai, J.; Li, S.; Qin, W.; Liu, Y. Gelatin-based composite films and their application in food packaging: A review. J. Food Eng. 2022, 313, 110762. [Google Scholar] [CrossRef]
- Bebartta, R.P.; Umar, M.; Ruktanonchai, U.R.; Anal, A.K. Development of cryo-desiccated whey and soy protein conglomerates; effect of maltodextrin on their functionality and digestibility. J. Food Process Eng. 2023, 46, e14350. [Google Scholar] [CrossRef]
- Jridi, M.; Lassoued, I.; Kammoun, A.; Nasri, R.; Chaâbouni, M.; Nasri, M.; Souissi, N. Screening of factors influencing the extraction of gelatin from the skin of cuttlefish using supersaturated design. Food Bioprod. Process. 2015, 94, 525–535. [Google Scholar] [CrossRef]
- Benjakul, S.; Kittiphattanabawon, P.; Regenstein, J.M. Fish Gelatin. In Food Biochemistry and Food Processing; John Wiley & Sons: Hoboken, NJ, USA, 2012; pp. 388–405. [Google Scholar] [CrossRef]
- Zhang, Y.; Niu, F.; Zhang, X.; Lu, Z.; Guo, Y.; Wang, H. Controlled enzymatic hydrolysis on characteristic and antioxidant properties of soybean protein isolate-maltodextrin conjugates. Int. J. Food Prop. 2018, 21, 2239–2249. [Google Scholar] [CrossRef]
- Xue, F.; Li, C.; Zhu, X.; Wang, L.; Pan, S. Comparative studies on the physicochemical properties of soy protein isolate-maltodextrin and soy protein isolate-gum acacia conjugate prepared through Maillard reaction. Food Res. Int. 2013, 51, 490–495. [Google Scholar] [CrossRef]
- Yang, X.; Li, A.; Li, D.; Guo, Y.; Sun, L. Applications of mixed polysaccharide-protein systems in fabricating multi-structures of binary food gels—A review. Trends Food Sci. Technol. 2021, 109, 197–210. [Google Scholar] [CrossRef]
- Bian, X.; Luo, S.; Liu, C.; Hu, X. Effect of formation of the maltodextrin/gelatin emulsion on gel properties of gelatin. Food Biosci. 2023, 56, 103254. [Google Scholar] [CrossRef]
- Ye, X.; Jiang, S.; Niu, W.; Bai, R.; Yang, C.; Wang, S.; Li, Z.; Zhang, L.; Han, H.; Xi, J.; et al. Glycosylated gelatin prepared based on electron beam irradiation and its physicochemical properties. Int. J. Biol. Macromol. 2024, 279, 135369. [Google Scholar] [CrossRef]
- Kim, S.; Jeong, D.; Lee, H.; Kim, D.; Jung, S. Succinoglycan dialdehyde-reinforced gelatin hydrogels with toughness and thermal stability. Int. J. Biol. Macromol. 2020, 149, 281–289. [Google Scholar] [CrossRef]
- Wasinnitiwong, N.; Benjakul, S.; Hong, H. Effects of κ-carrageenan on gel quality of threadfin bream (Nemipterus spp.) surimi containing salted duck egg white powder. Int. J. Biol. Macromol. 2022, 221, 61–70. [Google Scholar] [CrossRef]
- Başyiğit, B.; Altun, G.; Yücetepe, M.; Karaaslan, A.; Karaaslan, M. Locust bean gum provides excellent mechanical and release attributes to soy protein-based natural hydrogels. Int. J. Biol. Macromol. 2023, 231, 123352. [Google Scholar] [CrossRef]
- Zhao, H.; Kang, X.; Zhou, X.; Tong, L.; Yu, W.; Zhang, J.; Yang, W.; Lou, Q.; Huang, T. Glycosylation fish gelatin with gum Arabic: Functional and structural properties. LWT 2021, 139, 110634. [Google Scholar] [CrossRef]
- Sinthusamran, S.; Benjakul, S.; Swedlund, P.J.; Hemar, Y. Physical and rheological properties of fish gelatin gel as influenced by κ-carrageenan. Food Biosci. 2017, 20, 88–95. [Google Scholar] [CrossRef]
- Masilan, K.; Neethiselvan, N.; Shakila, R.J.; Muralidharan, N.; Karthy, A.; Ravikumar, T.; Parthiban, F. Investigation on the coacervation of fish scale gelatin hydrogel with seafood waste hydrolysates for the development of artificial fish bait: Physico-chemical, thermodynamic, and morpho-structural properties. J. Indian Chem. Soc. 2022, 99, 100783. [Google Scholar] [CrossRef]
- Karrar, E.; Mahdi, A.A.; Sheth, S.; Mohamed Ahmed, I.A.; Manzoor, M.F.; Wei, W.; Wang, X. Effect of maltodextrin combination with gum arabic and whey protein isolate on the microencapsulation of gurum seed oil using a spray-drying method. Int. J. Biol. Macromol. 2021, 171, 208–216. [Google Scholar] [CrossRef]
- Stępień, A.; Witczak, M. State diagrams of green peas (Pisum sativum L.) powders with different maltodextrin additions. Biopolymers 2024, 115, e23580. [Google Scholar] [CrossRef] [PubMed]
- Nagarajan, M.; Benjakul, S.; Prodpran, T.; Songtipya, P.; Kishimura, H. Characteristics and functional properties of gelatin from splendid squid (Loligo formosana) skin as affected by extraction temperatures. Food Hydrocoll. 2012, 29, 389–397. [Google Scholar] [CrossRef]
- Romulo, A.; Aurellia, C.A. Different concentrations of maltodextrin and albumin influenced the quality characteristics and hedonic acceptance of sorghum powder drinks. IOP Conf. Ser. Earth Environ. Sci. 2024, 1338, 012029. [Google Scholar] [CrossRef]
- Khatri, B.; Hamid; Jaiswal, A.K. Optimizing foaming agents for shelf-stable foam-mat-dried black mulberry juice powder. LWT 2024, 205, 116512. [Google Scholar] [CrossRef]
- Caliskan, G.; Dirim, S.N. The effect of different drying processes and the amounts of maltodextrin addition on the powder properties of sumac extract powders. Powder Technol. 2016, 287, 308–314. [Google Scholar] [CrossRef]
- Wartini, N.M.; Gunam, I.B.W.; Ganda Putra, G.P.; Nara Swari, L.S. Encapsulation Characteristic of Bougainvillea (Bougainvillea glabra) Dye Extract in Comparison of Maltodextrin and Carrageenan. Trends Sci. 2024, 21, 7972. [Google Scholar] [CrossRef]
- Shams, R.; Singh, J.; Dash, K.K.; Dar, A.H.; Nayik, G.A.; Ansari, M.J.; Hemeg, H.A.; Ahmed, A.E.M.; Shaikh, A.M.; Kovács, B. Effect of Maltodextrin and Soy Protein Isolate on the Physicochemical and Flow Properties of Button Mushroom Powder. Front. Nutr. 2022, 9, 908570. [Google Scholar] [CrossRef]
- Sow, L.C.; Yang, H. Effects of salt and sugar addition on the physicochemical properties and nanostructure of fish gelatin. Food Hydrocoll. 2015, 45, 72–82. [Google Scholar] [CrossRef]
- Pępczyńska, M.; Díaz-Calderón, P.; Quero, F.; Matiacevich, S.; Char, C.; Enrione, J. Interaction and fragility study in salmon gelatin-oligosaccharide composite films at low moisture conditions. Food Hydrocoll. 2019, 97, 105207. [Google Scholar] [CrossRef]
- Lueyot, A.; Wonganu, B.; Rungsardthong, V.; Vatanyoopaisarn, S.; Hutangura, P.; Wongsa-Ngasri, P.; Roytrakul, S.; Charoenlappanit, S.; Wu, T.; Thumthanaruk, B. Improved jellyfish gelatin quality through ultrasound-assisted salt removal and an extraction process. PLoS ONE 2022, 17, e0276080. [Google Scholar] [CrossRef]
- Kutzli, I.; Gibis, M.; Baier, S.K.; Weiss, J. Electrospinning of whey and soy protein mixed with maltodextrin—Influence of protein type and ratio on the production and morphology of fibers. Food Hydrocoll. 2019, 93, 206–214. [Google Scholar] [CrossRef]
- Xue, F.; Li, C.; Adhikari, B. Physicochemical properties of soy protein isolates-cyanidin-3-galactoside conjugates produced using free radicals induced by ultrasound. Ultrason. Sonochemistry 2020, 64, 104990. [Google Scholar] [CrossRef]
- Vargas-Muñoz, D.P.; Kurozawa, L.E. Influence of combined hydrolyzed collagen and maltodextrin as carrier agents in spray drying of cocona pulp. Braz. J. Food Technol. 2020, 23, e2019254. [Google Scholar] [CrossRef]
- Ma, Y.; Zang, J.; Qing, M.; Xiao, Y.; Zhang, H.; Chi, Y.; Chi, Y. Glycosylation of egg white protein with maltodextrin in the dry state: Changes in structural and gel properties. Food Chem. 2023, 401, 134113. [Google Scholar] [CrossRef] [PubMed]
- Geng, H.; Sun, W.; Zhan, S.; Jia, R.; Lou, Q.; Huang, T. Glycosylation with different saccharides on the gelling, rheological and structural properties of fish gelatin. Food Hydrocoll. 2024, 150, 109699. [Google Scholar] [CrossRef]
- Loksuwan, J. Characteristics of microencapsulated β-carotene formed by spray drying with modified tapioca starch, native tapioca starch and maltodextrin. Food Hydrocoll. 2007, 21, 928–935. [Google Scholar] [CrossRef]
Sample | Moisture (%) | Fat (%) | Ash (%) | Protein (%) | Carbohydrate (%) | Yield |
---|---|---|---|---|---|---|
CFG | 10.78 ± 0.14 a | 0.03 ± 0.02 b | 0.04 ± 0.03 c | 82.35 ± 0.52 a | 6.80 ± 0.45 f | - |
GCW-1M | 3.02 ± 1.27 b | 0.06 ± 0.03 ab | 0.13 ± 0.07 a | 26.15 ± 0.10 b | 70.64 ± 1.36 e | 10.06 |
GCW-2M | 0.85 ± 0.16 c | 0.03 ± 0.02 b | 0.11 ± 0.02 ab | 15.87 ± 0.03 c | 83.13 ± 0.19 d | 11.38 |
GCW-3M | 0.29 ± 0.21 c | 0.03 ± 0.01 b | 0.06 ± 0.03 bc | 11.30 ± 0.06 d | 88.33 ± 0.29 c | 14.67 |
GCW-4M | 0.17 ± 0.09 c | 0.12 ± 0.09 a | 0.04 ± 0.03 c | 9.39 ± 0.16 e | 90.28 ± 0.31 b | 31.91 |
GCW-5M | 0.21 ± 0.16 c | 0.08 ± 0.01 ab | 0.03 ± 0.02 c | 7.71 ± 0.00 f | 91.96 ± 0.10 a | 41.70 |
Sample | aw | pH | Hygroscopicity (%) | L* | a* | b* |
---|---|---|---|---|---|---|
CFG | 0.54 ± 0.00 a | 5.41 ± 0.04 d | 13.74 ± 0.11 b | 86.33 ± 1.50 c | −0.54 ± 0.21 b | 9.85 ± 1.06 a |
GCW-1M | 0.20 ± 0.00 b | 5.88 ± 0.05 c | 13.94 ± 1.24 b | 95.91 ± 0.32 b | −0.24 ± 0.03 a | 3.82 ± 0.20 b |
GCW-2M | 0.17 ± 0.01 c | 5.91 ± 0.01 bc | 13.89 ± 1.74 b | 96.36 ± 0.19 ab | −0.23 ± 0.05 a | 2.80 ± 0.09 c |
GCW-3M | 0.14 ± 0.01 de | 5.95 ± 0.03 b | 13.88 ± 0.67 b | 96.65 ± 0.23 a | −0.22 ± 0.02 a | 2.59 ± 0.10 cd |
GCW-4M | 0.15 ± 0.01 d | 6.01 ± 0.01 a | 13.40 ± 1.15 b | 96.71 ± 0.28 a | −0.17 ± 0.04 a | 2.23 ± 0.09 d |
GCW-5M | 0.14 ± 0.01 e | 6.02 ± 0.01 a | 11.18 ± 1.09 a | 96.57 ± 0.21 a | −0.24 ± 0.03 a | 2.50 ± 0.13 cd |
Samples | Texture Profile Analysis | Gel Strength (g) | Syneresis (%) | Solubility (%) | Foaming Capacity (%) | Foaming Stability (%) | ||||
---|---|---|---|---|---|---|---|---|---|---|
Hardness (N) | Adhesiveness (N × s) | Springiness (cm) | Gumminess (N) | Chewiness (N × cm) | ||||||
CFG | 11.50 ± 1.39 a | −121.20 ± 79.41 b | 0.94 ± 0.03 ab | 10.65 ± 1.23 a | 10.03 ± 1.16 a | 146.25 ± 16.85 a | 0.12 ± 0.02 a | 98.37 ± 0.71 a | 32.00 ± 10.58 a | 28.67 ± 11.37 a |
GCW-1M | 1.85 ± 0.25 b | −8.12 ± 7.31 a | 1.42 ± 1.06 a | 1.13 ± 0.33 b | 1.56 ± 1.09 b | 17.22 ± 0.38 b | 0.19 ± 0.07 ab | 98.74 ± 0.61 a | 5.33 ± 1.15 c | 0.67 ± 1.15 c |
GCW-2M | 1.77 ± 0.56 b | −10.30 ± 0.32 a | 0.46 ± 0.01 b | 0.36 ± 0.00 b | 0.17 ± 0.00 c | 15.14 ± 0.31 b | 0.21 ± 0.02 b | 98.85 ± 0.05 a | 8.00 ± 2.00 c | 4.00 ± 2.00 bc |
GCW-3M | ND | ND | ND | ND | ND | ND | ND | 98.55 ± 0.25 a | 8.67 ± 2.31 c | 5.33 ± 3.06 bc |
GCW-4M | ND | ND | ND | ND | ND | ND | ND | 98.58 ± 0.07 a | 17.33 ± 1.15 b | 11.33 ± 1.15 b |
GCW-5M | ND | ND | ND | ND | ND | ND | ND | 98.33 ± 0.14 a | 20.00 ± 0.00 b | 10.67 ± 1.15 b |
Amino Acid Component (g/100 g Protein) | Abbrevations | Treatment | |
---|---|---|---|
CFG | GCW-1M | ||
Alanine | Ala | 7.34 ± 0.01 a | 0.90 ± 0.84 b |
Arginine | Arg | 4.63 ± 0.01 a | 0.56 ± 0.51 b |
Aspartic acid | Asp | 3.08 ± 0.01 a | 0.84 ± 0.00 b |
Cysteine | Cys | 0.02 ± 0.00 b | 0.81 ± 0.81 a |
Glutamic acid | Glu | 7.31 ± 0.01 a | 1.91 ± 0.00 b |
Glycine | Gly | 16.90 ± 0.01 a | 4.49 ± 0.00 b |
Histidine | His | 0.32 ± 0.02 a | 0.17 ± 0.09 b |
Hydroxy proline | Hypro | 7.52 ± 0.04 a | 2.27 ± 0.00 b |
Isoleucine | Ile | 0.96 ± 0.00 a | 0.46 ± 0.19 b |
Leucine | Lue | 2.02 ± 0.00 a | 0.27 ± 0.27 b |
Lysine | Lys | 1.96 ± 0.00 a | 0.29 ± 0.21 b |
Methionine | Met | 0.85 ± 0.01 b | 1.19 ± 1.11 a |
Phenylalanine | Phe | 1.41 ± 0.00 a | 0.17 ± 0.17 b |
Proline | Pro | 9.01 ± 0.05 a | 2.49 ± 0.00 b |
Serine | Ser | 2.54 ± 0.01 a | 0.66 ± 0.00 b |
Threonine | Thr | 2.01 ± 0.01 a | 0.39 ± 0.00 b |
Tryptophan | Trp | 0.00 ± 0.00 b | 0.85 ± 0.85 a |
Tyrosine | Tyr | 0.30 ± 0.00 b | 0.98 ± 0.91 a |
Valine | Val | 1.64 ± 0.00 a | 0.25 ± 0.17 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sanprasert, S.; Kumnerdsiri, P.; Seubsai, A.; Lueangjaroenkit, P.; Pongsetkul, J.; Indriani, S.; Petcharat, T.; Sai-ut, S.; Hunsakul, K.; Issara, U.; et al. Techno-Functional, Rheological, and Physico-Chemical Properties of Gelatin Capsule By-Product for Future Functional Food Ingredients. Foods 2025, 14, 1279. https://doi.org/10.3390/foods14071279
Sanprasert S, Kumnerdsiri P, Seubsai A, Lueangjaroenkit P, Pongsetkul J, Indriani S, Petcharat T, Sai-ut S, Hunsakul K, Issara U, et al. Techno-Functional, Rheological, and Physico-Chemical Properties of Gelatin Capsule By-Product for Future Functional Food Ingredients. Foods. 2025; 14(7):1279. https://doi.org/10.3390/foods14071279
Chicago/Turabian StyleSanprasert, Sasina, Pudthaya Kumnerdsiri, Anusorn Seubsai, Piyangkun Lueangjaroenkit, Jaksuma Pongsetkul, Sylvia Indriani, Tanyamon Petcharat, Samart Sai-ut, Kanrawee Hunsakul, Utthapon Issara, and et al. 2025. "Techno-Functional, Rheological, and Physico-Chemical Properties of Gelatin Capsule By-Product for Future Functional Food Ingredients" Foods 14, no. 7: 1279. https://doi.org/10.3390/foods14071279
APA StyleSanprasert, S., Kumnerdsiri, P., Seubsai, A., Lueangjaroenkit, P., Pongsetkul, J., Indriani, S., Petcharat, T., Sai-ut, S., Hunsakul, K., Issara, U., Pawde, S. V., Rawdkuen, S., Karbowiak, T., Jung, Y. H., & Kingwascharapong, P. (2025). Techno-Functional, Rheological, and Physico-Chemical Properties of Gelatin Capsule By-Product for Future Functional Food Ingredients. Foods, 14(7), 1279. https://doi.org/10.3390/foods14071279