Can Different Fermentation Boxes Improve the Nutritional Composition and the Antioxidant Activity of Fermented and Dried Floodplain Cocoa Beans in the Brazilian Amazon?
Abstract
:1. Introduction
2. Material and Methods
2.1. Chemicals and Reagents
2.2. Collection Location
2.3. Fermentation and Drying Treatments and Sampling
2.4. Methods of Analysis
2.4.1. Physicochemical Analysis of Fermented and Dried Cocoa Beans
2.4.2. Methylxanthines and Phenolic Compounds
2.4.3. Total Flavonoids
2.4.4. Antioxidant Capacity of Fermented and Dried Cocoa Beans
DPPH
ABTS
FRAP
2.4.5. Chemical Elements (MEC)
2.5. Statistical Analysis
3. Results and Discussion
3.1. Physicochemical Analysis of Cocoa Beans
3.2. Analysis of Total Phenolic Compounds and Total Alkaloids
3.3. Antioxidant Activity of Fermented and Dried Cocoa Beans
3.4. Essential and Non-Essential Minerals
3.5. PCA: Analysis of Minerals in Different Fermentation Boxes
Self-Analysis of the Covariance Matrix
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Achaw, O.-W.; Danso-Boateng, E. Cocoa Processing and Chocolate Manufacture. In Chemical and Process Industries: With Examples of Industries in Ghana; Achaw, O.-W., Danso-Boateng, E., Eds.; Springer International Publishing: Cham, Switzerland, 2021; pp. 267–292. ISBN 978-3-030-79139-1. [Google Scholar]
- Nobre, I.; Margit, A.; Nobre, C.A.; Koch-Weser, M.; Veríssimo, A.; Neto, A.F. Amazon Creative Labs of the Cupuaçu-Cocoa Chain; Inter-American Development Bank: Washington, DC, USA, 2021. [Google Scholar]
- Brazil’s Cocoa Farms Get High-Tech Upgrade. Available online: https://www.thestar.com.my/business/business-news/2024/04/09/brazils-cocoa-farmsget-high-tech-upgrade (accessed on 14 February 2025).
- Venturieri, A.; Oliveira, R.R.S.D.; Igawa, T.K.; Fernandes, K.D.A.; Adami, M.; Júnior, M.; Almeida, C.A.; Silva, L.G.T.; Cabral, A.I.R.; Pinto, J.F.K.C.; et al. The Sustainable Expansion of the Cocoa Crop in the State of Pará and Its Contribution to Altered Areas Recovery and Fire Reduction. JGIS 2022, 14, 294–313. [Google Scholar] [CrossRef]
- Brazil Cocoa-Supply Chain-Explore the Data-Trase. Available online: https://trase.earth/explore/supply-chain/brazil/cocoa (accessed on 14 February 2025).
- Santana, A.C.; Santana, Á.L.; Santana, Á.L.; De Oliveira, G.M.T.D.S.; Do Santos, M.A.S. Bioeconomic Evaluation of an Agroforestry System and the Potential to Recover Degraded Areas and Capitalize Producers in the State of Pará, Brazilian Amazon. Desenvolv. Meio Ambiente 2023, 61, 439–455. [Google Scholar] [CrossRef]
- Motamayor, J.C.; Lachenaud, P.; da Silva e Mota, J.W.; Loor, R.; Kuhn, D.N.; Brown, J.S.; Schnell, R.J. Geographic and Genetic Population Differentiation of the Amazonian Chocolate Tree (Theobroma cacao L). PLoS ONE 2008, 3, e3311. [Google Scholar] [CrossRef] [PubMed]
- Nascimento, L.L.; Pereira, M.S.; De Almeida, L.S.; Da Silveira Ferreira, L.; De Moura Pita, B.L.; De Souza, C.O.; Ribeiro, C.D.F.; Fricks, A.T. Innovation in Cocoa Fermentation: Evidence from Patent Documents and Scientific Articles. Fermentation 2024, 10, 251. [Google Scholar] [CrossRef]
- Ooi, T.S.; Ting, A.S.Y.; Siow, L.F. Influence of Selected Native Yeast Starter Cultures on the Antioxidant Activities, Fermentation Index and Total Soluble Solids of Malaysia Cocoa Beans: A Simulation Study. LWT Food Sci. Technol. 2020, 122, 108977. [Google Scholar] [CrossRef]
- Castro-Alayo, E.M.; Idrogo-Vásquez, G.; Siche, R.; Cardenas-Toro, F.P. Formation of Aromatic Compounds Precursors during Fermentation of Criollo and Forastero Cocoa. Heliyon 2019, 5, e01157. [Google Scholar] [CrossRef]
- Calvo, A.M.; Botina, B.L.; García, M.C.; Cardona, W.A.; Montenegro, A.C.; Criollo, J. Dynamics of Cocoa Fermentation and Its Effect on Quality. Sci. Rep. 2021, 11, 16746. [Google Scholar] [CrossRef]
- Cempaka, L.; Ardiansyah; Asiah, N.; David, W. The Effect of Fermentation on Bioactive Compound of Cocoa Beans: A Systematic Review and Meta-Analysis Approach. Future Food: J. Food Agric. Soc. 2023, 11, 20230260319. [Google Scholar]
- de Ferreira, O.S.; Chagas-Junior, G.C.A.; Chisté, R.C.; Martins, L.H.d.S.; Andrade, E.H.d.A.; Nascimento, L.D.D.; Lopes, A.S. Saccharomyces cerevisiae and Pichia manshurica from Amazonian Biome Affect the Parameters of Quality and Aromatic Profile of Fermented and Dried Cocoa Beans. J. Food Sci. 2022, 87, 4148–4161. [Google Scholar] [CrossRef]
- Martins, J.M.; Santos, J.H.F.; Silva, W.S.; Silva, V.B.; Arruda, J.A.P.; Nascimento, J.A.R.; Dortas, L.C.; Freitas, A.J.; Ramos, A.A. Melhoria da Qualidade do Cacau; CEPLAC/CENEX: Itabuna, Brazil, 2012. [Google Scholar]
- Chagas Junior, G.C.A.; Ferreira, N.R.; Lopes, A.S. The microbiota diversity identified during the cocoa fermentation and the benefits of the starter cultures use: An overview. Int. J. Food Sci. Technol. 2021, 56, 544–552. [Google Scholar] [CrossRef]
- Herrera-Rocha, F.; Cala, M.P.; Aguirre Mejía, J.L.; Rodríguez-López, C.M.; Chica, M.J.; Olarte, H.H.; Fernández-Niño, M.; Gonzalez Barrios, A.F. Dissecting Fine-Flavor Cocoa Bean Fermentation through Metabolomics Analysis to Break down the Current Metabolic Paradigm. Sci. Rep. 2021, 11, 21904. [Google Scholar] [CrossRef] [PubMed]
- González, A.F.R.; García, G.A.G.; Polanía-Hincapié, P.A.; López, L.J.; Suárez, J.C. Fermentation and Its Effect on the Physicochemical and Sensory Attributes of Cocoa Beans in the Colombian Amazon. PLoS ONE 2024, 19, e0306680. [Google Scholar] [CrossRef] [PubMed]
- Balcázar-Zumaeta, C.R.; Castro-Alayo, E.M.; Cayo-Colca, I.S.; Idrogo-Vásquez, G.; Muñoz-Astecker, L.D. Metabolomics during the Spontaneous Fermentation in Cocoa (Theobroma cacao L.): An Exploraty Review. Food Res. Int. 2023, 163, 112190. [Google Scholar] [CrossRef]
- Gaspar, D.P.; Junior, G.C.A.C.; Andrade, E.H.d.A.; Nascimento, L.D.D.; Chisté, R.C.; Ferreira, N.R.; Martins, L.H.d.S.; Lopes, A.S. How Climatic Seasons of the Amazon Biome Affect the Aromatic and Bioactive Profiles of Fermented and Dried Cocoa Beans? Molecules 2021, 26, 3759. [Google Scholar] [CrossRef]
- Assi-Clair, B.J.; Koné, M.K.; Kouamé, K.; Lahon, M.C.; Berthiot, L.; Durand, N.; Lebrun, M.; Julien-Ortiz, A.; Maraval, I.; Boulanger, R.; et al. Effect of Aroma Potential of Saccharomyces cerevisiae Fermentation on the Volatile Profile of Raw Cocoa and Sensory Attributes of Chocolate Produced Thereof. Eur. Food Res. Technol. 2019, 245, 1459–1471. [Google Scholar] [CrossRef]
- Santos, R.M.; de Silva, N.M.J.; Moura, F.G.; Lourenço, L.d.F.H.; Souza, J.N.S.D.; Sousa de Lima, C.L. Analysis of the Sensory Profile and Physical and Physicochemical Characteristics of Amazonian Cocoa (Theobroma cacao L.) Beans Produced in Different Regions. Foods 2024, 13, 2171. [Google Scholar] [CrossRef]
- Fideles, S.O.M.; de Ortiz, A.C.; Reis, C.H.B.; Buchaim, D.V.; Buchaim, R.L. Biological Properties and Antimicrobial Potential of Cocoa and Its Effects on Systemic and Oral Health. Nutrients 2023, 15, 3927. [Google Scholar] [CrossRef]
- Tušek, K.; Valinger, D.; Jurina, T.; Sokač Cvetnić, T.; Gajdoš Kljusurić, J.; Benković, M. Bioactives in Cocoa: Novel Findings, Health Benefits, and Extraction Techniques. Separations 2024, 11, 128. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis. Available online: https://www.aoac.org/ (accessed on 5 June 2024).
- Do Carmo Brito, B.d.N.; Campos Chisté, R.; da Silva Pena, R.; Abreu Gloria, M.B.; Santos Lopes, A. Bioactive amines and phenolic compounds in cocoa beans are affected by fermentation. Food Chem. 2017, 228, 484–490. [Google Scholar] [CrossRef]
- Rodríguez-Carrasco, Y.; Gaspari, A.; Graziani, G.; Sandini, A.; Ritieni, A. Fast Analysis of Polyphenols and Alkaloids in Cocoa-Based Products by Ultra-High Performance Liquid Chromatography and Orbitrap High Resolution Mass Spectrometry (UHPLC-Q-Orbitrap-MS/MS). Food Res. Int. 2018, 111, 229–236. [Google Scholar] [CrossRef]
- Fagundes, C.; Biasi, L.; Tofanelli, M.; Rodrigues, A.; Franciscon, V.; Siqueira, A. Production, Quality, Bioactive Compounds, and Phenology of Raspberry Cultivars under an Organic Cropping System in a Subtropical Region of Brazil. Sci. Agric. 2024, 81, e20230009. [Google Scholar] [CrossRef]
- Balcázar-Zumaeta, C.R.; Pajuelo-Muñoz, A.J.; Trigoso-Rojas, D.F.; Iliquin-Chavez, A.F.; Fernández-Romero, E.; Yoplac, I.; Muñoz-Astecker, L.D.; Rodríguez-Hamamura, N.; Maza Mejía, I.M.; Cayo-Colca, I.S.; et al. Reduction in the Cocoa Spontaneous and Starter Culture Fermentation Time Based on the Antioxidant Profile Characterization. Foods 2023, 12, 3291. [Google Scholar] [CrossRef] [PubMed]
- Bankaji, I.; Kouki, R.; Dridi, N.; Ferreira, R.; Hidouri, S.; Duarte, B.; Sleimi, N.; Caçador, I. Comparison of Digestion Methods Using Atomic Absorption Spectrometry for the Determination of Metal Levels in Plants. Separations 2023, 10, 40. [Google Scholar] [CrossRef]
- Leite, P.B.; da Bispo, E.S.; Santana, L.R.R.D. Sensory Profiles of Chocolates Produced from Cocoa Cultivars Resistant to Moniliophtora perniciosa. Rev. Bras. Frutic. 2013, 35, 594–602. [Google Scholar] [CrossRef]
- Coradi, P.C.; Fernandes, C.; Helmich, J.; Goneli, A. Effects of Drying Air Temperature and Grain Initial Moisture Content on Soybean Quality (Glycine max (L.) Merrill). Eng. Agrícola 2016, 36, 866–876. [Google Scholar] [CrossRef]
- Vuyst, L.; Leroy, F. Functional Role of Yeasts, Lactic Acid Bacteria, and Acetic Acid Bacteria in Cocoa Fermentation Processes. FEMS Microbiol. Rev. 2020, 44, 432–453. [Google Scholar] [CrossRef]
- Adler, P.; Frey, L.J.; Berger, A.; Bolten, C.J.; Hansen, C.E.; Wittmann, C. The Key to Acetate: Metabolic Fluxes of Acetic Acid Bacteria under Cocoa Pulp Fermentation-Simulating Conditions. Appl. Environ. Microbiol. 2014, 80, 4702–4716. [Google Scholar] [CrossRef]
- Efraim, P.; Pezoa-García, N.H.; Jardim, D.C.P.; Nishikawa, A.; Haddad, R.; Eberlin, M.N. Influência da fermentação e secagem de amêndoas de cacau no teor de compostos fenólicos e na aceitação sensorial. Food Sci. Technol. 2010, 30, 142–150. [Google Scholar] [CrossRef]
- Llano, S.; Vaillant, F.; Santander, M.; Zorro-González, A.; González-Orozco, C.E.; Maraval, I.; Boulanger, R.; Escobar, S. Exploring the Impact of Fermentation Time and Climate on Quality of Cocoa Bean-Derived Chocolate: Sensorial Profile and Volatilome Analysis. Foods 2024, 13, 2614. [Google Scholar] [CrossRef]
- Cevallos-Cevallos, J.M.; Gysel, L.; Maridueña-Zavala, M.G.; Molina-Miranda, M.J. Time-Related Changes in Volatile Compounds during Fermentation of Bulk and Fine-Flavor Cocoa (Theobroma cacao) Beans. J. Food Qual. 2018, 2018, 1758381. [Google Scholar] [CrossRef]
- Schwan, R.F.; Wheals, A.E. The Microbiology of Cocoa Fermentation and Its Role in Chocolate Quality. Crit. Rev. Food Sci. Nutr. 2004, 44, 205–221. [Google Scholar] [CrossRef] [PubMed]
- Hu, S.; Kim, B.-Y.; Baik, M.-Y. Physicochemical Properties and Antioxidant Capacity of Raw, Roasted and Puffed Cacao Beans. Food Chem. 2016, 194, 1089–1094. [Google Scholar] [CrossRef] [PubMed]
- Araujo, Q.R.; Fernandes, C.A.F.; Ribeiro, D.O.; Efraim, P.; Steinmacher, D.; Lieberei, R.; Bastide, P.; Araujo, T.G. Cocoa Quality Index—A proposal. Food Control 2014, 46, 49–54. [Google Scholar] [CrossRef]
- Ozturk, G.; Young, G.M. Food Evolution: The Impact of Society and Science on the Fermentation of Cocoa Beans. Compr. Rev. Food Sci. Food Saf. 2017, 16, 431–455. [Google Scholar] [CrossRef]
- de Lima, C.O.C.; De Castro, G.M.; Solar, R.; Vaz, A.B.M.; Lobo, F.; Pereira, G.; Rodrigues, C.; Vandenberghe, L.; Martins Pinto, L.R.; da Costa, A.M.; et al. Unraveling Potential Enzymes and Their Functional Role in Fine Cocoa Beans Fermentation Using Temporal Shotgun Metagenomics. Front. Microbiol. 2022, 13, 994524. [Google Scholar] [CrossRef]
- Chagas Junior, G.; Espírito-Santo, J.C.A.; Ferreira, N.R.; Marques-da-Silva, S.H.; Oliveira, G.; Vasconcelos, S.; Almeida, S.F.O.; Silva, L.R.C.; Figueredo, H.M.; Lopes, A.S. Yeast isolation and identification during on-farm cocoa natural fermentation in a highly producer region in northern Brazil. Sci. Plena 2020, 16, 121502. [Google Scholar] [CrossRef]
- Melo, C.; Bandeira, M.; Maciel, L.; Bispo, E.; de Oliveira Souza, C.; Soares, S. Chemical Composition and Fatty Acids Profile of Chocolates Produced with Different Cocoa (Theobroma cacao L.) Cultivars. Food Sci. Technol. 2020, 40, 326–333. [Google Scholar] [CrossRef]
- Chen, J.; Ghazani, S.M.; Stobbs, J.A.; Marangoni, A.G. Tempering of Cocoa Butter and Chocolate Using Minor Lipidic Components. Nat. Commun. 2021, 12, 5018. [Google Scholar] [CrossRef]
- Niemenak, N.; Rohsius, C.; Elwers, S.; Ndoumou, D.; Lieberei, R. Comparative Study of Different Cocoa (Theobroma Cacao L.) Clones in Terms of Their Phenolics and Anthocyanins Contents. J. Food Compos. Anal. 2006, 19, 612–619. [Google Scholar] [CrossRef]
- Chagas Junior, G.C.A.; Ferreira, N.R.; Gloria, M.B.A.; Martins, L.H.D.S.; Lopes, A.S. Chemical implications and time reduction of on-farm cocoa fermentation by Saccharomyces cerevisiae and Pichia kudriavzevii. Food Chem. 2021, 338, 127834. [Google Scholar] [CrossRef]
- Collazos-Escobar, G.A.; Barrios-Rodriguez, Y.F.; Bahamón-Monje, A.F.; Gutiérrez-Guzmán, N. Uses of Mid-Infrared Spectroscopy and Chemometric Models for Differentiating between Dried Cocoa Bean Varieties. Rev. Bras. Eng. Agríc. Ambient. 2023, 27, 803–810. [Google Scholar] [CrossRef]
- Martínez-Pinilla, E.; Oñatibia-Astibia, A.; Franco, R. The Relevance of Theobromine for the Beneficial Effects of Cocoa Consumption. Front. Pharmacol. 2015, 6, 30. [Google Scholar] [CrossRef] [PubMed]
- Carrillo Hormaza, L.; Londoño, J.; Gil, A. Comparison of Polyphenol, Methylxanthines and Antioxidant Activity in Theobroma Cacao Beans from Different Cocoa-Growing Areas in Colombia. Food Res. Int. 2014, 60, 273–280. [Google Scholar] [CrossRef]
- Di Mattia, C.; Martuscelli, M.; Sacchetti, G.; Scheirlinck, I.; Beheydt, B.; Mastrocola, D.; Pittia, P. Effect of Fermentation and Drying on Procyanidins, Antiradical Activity and Reducing Properties of Cocoa Beans. Food Bioprocess Technol. 2013, 6, 3420–3432. [Google Scholar] [CrossRef]
- Pineiro, J.M.L.; e Silva, A.P.S.; Pantoja, K.R.P.; Cardoso, M.A.R.; de Azevedo, F.F.M.; de Melo, L.V.G.; Campos, G.I.A.; Mota, R.V.; Mouzinho, R.S.; Carvalho Junior, R.N. Supercritical extraction of butter from agroindustrial cocoa residue from the Amazon. J. Supercrit. Fluids 2025, 222, 106560. [Google Scholar] [CrossRef]
- Bertoldi, D.; Barbero, A.; Camin, F.; Caligiani, A.; Larcher, R. Multielemental Fingerprinting and Geographic Traceability of Theobroma Cacao Beans and Cocoa Products. Food Control 2016, 65, 46–53. [Google Scholar] [CrossRef]
- Pere-Villamila, A.; Cadena, T.; Herrera, J. El Cacao y Sus Productos Como Fuente de Antioxidantes: Efecto Del Procesamiento. Salud UIS 2009, 41, 128–134. [Google Scholar]
- Chen, R.; Tang, Y.; Fang, S.; Gong, K.; Liu, D.; Xie, Y.; Liu, G.; Tian, Y.; Zhang, L.; Li, Y.; et al. Total, Dietary, and Supplemental Calcium Intake and Risk of All-Cause, Cardiovascular, and Cancer Mortality among U.S. Adults: A Prospective Cohort Study from the National Health and Nutrition Examination Survey. Arch. Osteoporos 2024, 19, 114. [Google Scholar] [CrossRef]
- Ma, J.; Li, Y.; Yang, X.; Liu, K.; Zhang, X.; Zuo, X.; Ye, R.; Wang, Z.; Shi, R.; Meng, Q.; et al. Signaling Pathways in Vascular Function and Hypertension: Molecular Mechanisms and Therapeutic Interventions. Signal Transduct. Target. Ther. 2023, 8, 1–30. [Google Scholar] [CrossRef]
- Ross, A.C.; Manson, J.E.; Abrams, S.A.; Aloia, J.F.; Brannon, P.M.; Clinton, S.K.; Durazo-Arvizu, R.A.; Gallagher, J.C.; Gallo, R.L.; Jones, G.; et al. The 2011 Dietary Reference Intakes for Calcium and Vitamin D: What Dietetics Practitioners Need to Know. J. Am. Diet. Assoc. 2011, 111, 524–527. [Google Scholar] [CrossRef]
- Tolentino, M.; Camasca, P.; Peláez, P. Macro and Microelements, Lead, Cadmium, Functional Compounds, Antioxidant Capacity in Fresh, Dry Cocoa Beans and Cocoa Paste. Sci. Agropecu. 2019, 10, 521–530. [Google Scholar] [CrossRef]
- Lee, C.K.; Low, K.S. Determination of cadmium, lead, copper and arsenic in raw cocoa, semifinished and finished chocolate products. Pertanika 1985, 8, 243–248. [Google Scholar]
- Camargo, I.D.; Rodriguez-Silva, L.G.; Carreño-Olejua, R.; Montenegro, A.C.; Quintana-Fuentes, R. High Temperature and nib acidification during cacao-controlled fermentation improve cadmium transfer from nibs to testa and the liquor’s flavor. Sci. Rep. 2024, 14, 12254. [Google Scholar] [CrossRef] [PubMed]
- Rojas, L.M.C.; Rodríguez, E.A.G.; Ramirez, A.M.H.; Trujillo, A.I.U. Nutrition in Cacao (Theobroma cacao L.) Crops: What Determining Factors Should Be Considered? Rev. Fac. Agron. 2022, 121, 101. [Google Scholar] [CrossRef]
- World Health Organization; Food and Agriculture Organization of the United Nations; Joint FAO/WHO Expert Committee on Food Additives. Meeting (74th: 2011: Rome, I. Evaluation of Certain Food Additives and Contaminants: Seventy-Fourth [74th] Report of the Joint FAO/WHO Expert Committee on Food Additives. 2011. Available online: https://openknowledge.fao.org/server/api/core/bitstreams/0d5dd7c7-ea82-41c1-bee2-ab9768353cb5/content (accessed on 20 January 2025).
- Kawahara, M.; Tanaka, K.; Kato-Negishi, M. Neurotoxicity of Aluminum and Its Link to Neurodegenerative Diseases. Met. Res. 2021, 1, 47. [Google Scholar] [CrossRef]
- Rahardjo, Y.P.; Syamsu, K.; Rahardja, S.; Samsudin; Mangunwijaya, D. Imapact of controlled fermentation on the volatile aroma of roasted cocoa. Braz. J. Food Technol. 2022, 25, e2020270. [Google Scholar] [CrossRef]
Parameter | PHB | SB | HP | LSB |
---|---|---|---|---|
Moisture (%) | 5.37 ± 0.09 b | 5.24 ± 0.08 bc | 5.06 ± 0.14 c | 6.16 ± 0.02 a |
pH | 4.65 ± 0.08 c | 5.75 ± 0.07 ab | 5.78 ± 0.02 ba | 5.07 ± 0.20 b |
Titratable acidity—TTA *** | 27.09 ± 0.8 a | 14.70 ± 1.1 c | 12.08 ± 0.96 d | 21.27 ± 0.8 b |
Ash (%) | 2.32 ± 0.04 b | 2.44 ± 0.07 b | 2.97 ± 0.01 a | 2.34 ± 0.04 b |
Protein (%) | 14.71 ± 0.25 a | 15.00 ± 0.15 a | 12.89 ± 0.15 b | 14.38 ± 0.54 a |
Lipids (%) | 41.5 ± 0.18 c | 46.6 ± 0.03 b | 49.8 ± 0.16 a | 37.51 ± 0.41 d |
Carbohydrates (%) | 36.1 ± 0.61 b | 30.72 ± 0.27 c | 29.28 ± 0.82 c | 39.61 ± 0.14 a |
Parameter | PHB | SB | HP | LSB |
---|---|---|---|---|
Total Polyphenols *** | 28.79 ± 2.11 a | 19.40 ± 1.12 c | 26.91 ± 3.91 ab | 9.72 ± 1.55 d |
Theobromine (mg/g) | 2.2 ± 0.2 c | 2.4 ± 0.2 b | 3.0 ± 0.2 a | 1.3 ± 0.1 d |
Theophylline (mg/g) | N/D **** | 0.1 ± 0.00 a | 0.1 ± 0.01 a | 0.1 ± 0.01 a |
Caffeine (mg/g) | 0.8 ± 0.00 c | 1.0 ± 0.1 b | 1.4 ± 0.1 a | 0.8 ± 0.01 c |
Catechin (mg/g) | 0.3 ± 0.00 b | 0.3 ± 0.01 b | 0.4 ± 0.00 a | 0.2 ± 0.01 c |
Procyanidin (mg/g) | 0.6 ± 0.00 c | 0.7 ± 0.01 b | 0.8 ± 0.00 a | 0.8 ± 0.01 a |
Parameter | PHB | SB | HP | LSB |
---|---|---|---|---|
Total Flavonoids (mg CAT/g) *** | 17.41 ± 1.99 ab | 16.68 ± 0.48 c | 35.14 ± 13.08 a | 24.72 ± 3.48 a |
DPPH (μM Trolox/g) **** | 60.8 ± 1.12 a | 61.7 ± 4.78 a | 64.8 ± 4.8 a | 67.80 ± 0.29 a |
ABTS (μM Trolox/g) **** | 17.345 ± 0.45 b | 7.2 ± 1.40 c | 28.8 ± 0.7 a | 1.2 ± 0.45 d |
FRAP (μmol Fe2+/100 g) ***** | 207.7 ± 31.0 b | 250.75 ± 2.1 b | 319 ± 3.0 a | 78.4 ± 12.7 c |
Mineral | PHB | SB | HP | LSB |
---|---|---|---|---|
K | 4720.64 ± 1259.50 b | 6352.64 ± 173.74 ab | 7505.02 ± 424.99 a | 6715.76 ± 753.06 ab |
Ca | 489.66 ± 156.80 a | 512.53 ± 9.34 a | 391.66 ± 16.86 a | 363.2 ± 41.34 a |
Mg | 1900.99 ± 517.52 bc | 2489.12 ± 31.43 ab | 2668.13 ± 110.63 a | 1643.13 ± 76.63 c |
Na | N/D | N/D | N/D | N/D |
Fe | 42.10 ± 5.19 b | 48.39 ± 8.67 a | 29.63 ± 1.8 c | 50.80 ± 3.89 a |
Zn | 60.78 ± 7.69 b | 70.05 ± 9.35 a | 46.98 ± 5.65 c | 60.49 ± 3.48 b |
Cu | 33.35 ± 4.84 a | 32.39 ± 2.53 a | 26.13 ± 1.36 b | 32.35 ± 1.39 a |
Mn | 17.32 ± 2.23 b | 16.76 ± 0.92 b | 19.61 ± 1.47 a | 13.09 ± 0.91 c |
Sr | 12.95 ± 1.5 a | 12.48 ± 0.24 a | 13.17 ± 1.67 a | 12.80 ± 1.12 a |
Vn | 51.17 ± 8.57 b | 28.46 ± 5.54 d | 81.67 ± 4.07 a | 45.53 ± 4.74 c |
Al | 61.37 ± 8.52 a | N/D | N/D | 53.62 ± 3.43 a |
Ba | N/D | N/D | N/D | N/D |
PHB | SB | HP | LSB | |
---|---|---|---|---|
PC1 | 0.371 | 0.501 | 0.589 | 0.514 |
PC2 | −0.374 | −0.416 | −0.125 | 0.819 |
Mineral | PC1 | PC2 |
---|---|---|
K | 0.974 | −0.216 |
Mg | 0.222 | 0.967 |
Cu | 0.001 | −0.005 |
Mn | 0.001 | 0.004 |
Fe | 0 | −0.014 |
Sr | 0 | 0.001 |
Zn | −0.002 | −0.003 |
Ca | −0.036 | 0.121 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rocha, S.O.d.S.B.d.; Vilhena, M.d.P.S.P.; de Souza, J.N.S.; Balcázar-Zumaeta, C.R.; Castro-Alayo, E.M.; Pajuelo-Muñoz, A.J.; da Silva, B.S.F.; Trindade, M.J.d.S.; Chagas-Junior, G.C.A.; Ferreira, N.R. Can Different Fermentation Boxes Improve the Nutritional Composition and the Antioxidant Activity of Fermented and Dried Floodplain Cocoa Beans in the Brazilian Amazon? Foods 2025, 14, 1391. https://doi.org/10.3390/foods14081391
Rocha SOdSBd, Vilhena MdPSP, de Souza JNS, Balcázar-Zumaeta CR, Castro-Alayo EM, Pajuelo-Muñoz AJ, da Silva BSF, Trindade MJdS, Chagas-Junior GCA, Ferreira NR. Can Different Fermentation Boxes Improve the Nutritional Composition and the Antioxidant Activity of Fermented and Dried Floodplain Cocoa Beans in the Brazilian Amazon? Foods. 2025; 14(8):1391. https://doi.org/10.3390/foods14081391
Chicago/Turabian StyleRocha, Sabrina Oriana de Souza Begot da, Maria do Perpétuo Socorro Progene Vilhena, Jesus Nazareno Silva de Souza, César R. Balcázar-Zumaeta, Efraín M. Castro-Alayo, Alexa J. Pajuelo-Muñoz, Braian Saimon Frota da Silva, Maria José de Souza Trindade, Gilson C. A. Chagas-Junior, and Nelson Rosa Ferreira. 2025. "Can Different Fermentation Boxes Improve the Nutritional Composition and the Antioxidant Activity of Fermented and Dried Floodplain Cocoa Beans in the Brazilian Amazon?" Foods 14, no. 8: 1391. https://doi.org/10.3390/foods14081391
APA StyleRocha, S. O. d. S. B. d., Vilhena, M. d. P. S. P., de Souza, J. N. S., Balcázar-Zumaeta, C. R., Castro-Alayo, E. M., Pajuelo-Muñoz, A. J., da Silva, B. S. F., Trindade, M. J. d. S., Chagas-Junior, G. C. A., & Ferreira, N. R. (2025). Can Different Fermentation Boxes Improve the Nutritional Composition and the Antioxidant Activity of Fermented and Dried Floodplain Cocoa Beans in the Brazilian Amazon? Foods, 14(8), 1391. https://doi.org/10.3390/foods14081391