IoT-Enabled Biosensors in Food Packaging: A Breakthrough in Food Safety for Monitoring Risks in Real Time
Abstract
:1. Introduction
2. Biosensor Technologies and Opportunities
2.1. Biosensor Definition and Types
2.2. Biosensor Application for Food Packaging
2.2.1. Pathogen Biosensors
Biosensor Type | Biosensor Format | Analytes | Sensitivity, Response | Remarks | Reference |
---|---|---|---|---|---|
Pathogen biosensor | Surface Plasmon Resonance (SPR) biosensor | Salmonella typhimurium E. coli O157:H7 | 103 CFU/mL, 15 min 14 CFU/mL, 2 h | Low affinity with Salmonella and high affinity with E. coli | [17,29] |
Quartz Crystal Microbalance (QCM) | Listeria monocytogenes | 336 nM, 60 min | Good sensitivity | [30] | |
Impedance-based biosensors | Campylobacter jejuni | 5 nM, 30 min | Very high sensitivity | [31] | |
SWCNT biosensor | Yersinia enterocolitica | 104 CFU/mL, 30 min | Low affinity | [7] | |
ZnO_NW/Au immunosensor | Listeria monocytogenes | 8.3 × 102 CFU/mL, 15 min | Low affinity and non-specific binding | [32] | |
Pt@MnO2 nanowires | Salmonella typhimurium | 13 CFU/mL, 1.5 h | High affinity and increased detection time | [33] | |
rGO-TiO2-based biosensor | Salmonella enterica | 10 CFU/mL, 5 min | High affinity with decreased detection time | [34] | |
CuO2-Mxenes biosensor | E. coli O157:H7 | 30 CFU/mL, 50 min | High affinity | [35] | |
pH sensors | Ion-Sensitive Field Effect Transistor | pH in food samples | pH 3–10, 1 min | Sensitive to different pHs | [36] |
Optical Fiber pH Sensor | Food acids (e.g., citric, acetic acid) | 105 CFU/mL, 1–5 min | Low affinity confirmed | [17] | |
Electrochemical pH Sensor | General pH in liquids | ±0.1 pH unit, <2 min | Very high sensitivity with rapid response | [37] | |
Paper-based pH Sensor | Acids in beverages (e.g., juices) | pH 4–9, 1–5 min | Sensitive to different pHs | [38] | |
pH-sensitive Fluorescent Sensor | Acids in canned fruits | pH 4–8, <1 min | Rapid response and sensitive to different pHs | [24] | |
Enzyme-based pH Biosensor | Organic acids in dairy products | ±0.05 pH unit, 2–5 min | Very high sensitivity | [39] | |
Gas Sensor | FET-type sensor | SO2 | 10 ppm, 3 min | High sensitivity | [40] |
Microcantilever sensor | H2S | 1 ppm, 2 h | Very high sensitivity | [41] | |
Pd-coated SnO2 nanofiber | H2 | 0.25 ppm, 40 s | Very high sensitivity with rapid response | [42] | |
Carbon co-doped acetone sensor | Acetone | 10 ppm, 100 s | High sensitivity with extended detection time | [43] | |
Ethanol sensor | Ethanol | 200 ppm | Good sensitivity | [44] | |
Room temperature sensor | NH3 | <1 ppm, 12 s | Very high sensitivity with rapid response | [45] | |
Polypyrrole-based sensor | CO2 | 1.21 ppm, 72 s | High sensitivity | [46] | |
2D-MoS2 FETs | NO2 | 2 ppb, 24 s | Very high sensitivity with rapid response | [47] | |
ZnO/chemiresistive | H2S | 2 ppb, 130 s | Very high sensitivity | [48] |
2.2.2. pH and Temperature Sensors
2.2.3. Gas Sensors
3. IoT Technologies for Food Packaging Advancement
3.1. IoT and Internet Hub Application During Food Storage
3.2. IoT for Food Transportation
3.3. Wi-Fi, Bluetooth, and 5G Data Transmission Technologies
3.4. Blockchain Food Traceability and Food Fraud
4. Challenges of IoT-Enabled Biosensors in Food Packaging
4.1. Power Management and Technological Barriers
4.2. Integration Barrier of IoT-Enabled Biosensor
4.3. Data Security and Privacy Concerns
5. IoT-Enabled Biosensor Opportunities
5.1. Food Quality, Freshness, and Pathogen Investigation
5.2. Food Allergen, Nutrition, and Dietary Recommendations
5.3. Expiration Alert via Mobile Apps
5.4. Marketing Opportunities
6. Conclusions and Future Perspective
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yang, X.; Scharff, R. Foodborne Illnesses from Leafy Greens in the United States: Attribution, Burden, and Cost. J. Food Prot. 2024, 87, 100275. [Google Scholar] [CrossRef] [PubMed]
- Arowosegbe, O.B.; Ballali, C.; Kofi, K.R.; Adeshina, M.K. Combating Food Waste in the Agricultural Supply Chain: A Systematic Review of Supply Chain Optimization Strategies and Their Sustainability Benefits Combating Food Waste in the Agricultural Supply Chain: A Systematic Review of Supply Chain Optimization. World J. Adv. Res. Rev. 2024, 24, 122–140. [Google Scholar] [CrossRef]
- Park, Y.W.; Kim, S.M.; Lee, J.Y.; Jang, W. Application of Biosensors in Smart Packaging. Mol. Cell. Toxicol. 2015, 11, 277–285. [Google Scholar] [CrossRef]
- Li, Z.; Zheng, P.; Tian, Y. Application of IoT and Blockchain Technology in the Integration of Innovation and Industrial Chains in High-Tech Manufacturing. Alex. Eng. J. 2025, 119, 465–477. [Google Scholar] [CrossRef]
- Marimuthu, M.; Krishnan, V.; Sudhakaran, S.D.; Vigneswari, S.; Senthilkumar, S.; Veerapandian, M. Electrochemical-Based Biosensor Platforms in Lab-Chip Models for Point-of-Need Toxicant Analysis. Electrochem 2023, 4, 537–552. [Google Scholar] [CrossRef]
- Mehrotra, P. Biosensors and Their Applications—A Review. J. Oral Biol. Craniofacial Res. 2016, 6, 153–159. [Google Scholar] [CrossRef]
- Sobhan, A.; Lee, J.; Park, M.-K.; Oh, J.-H. Rapid Detection of Yersinia Enterocolitica Using a Single–walled Carbon Nanotube-Based Biosensor for Kimchi Product. LWT 2019, 108, 48–54. [Google Scholar] [CrossRef]
- Heredia, N.; García, S. Animals as Sources of Food-Borne Pathogens: A Review. Anim. Nutr. 2018, 4, 250–255. [Google Scholar] [CrossRef]
- Youssef, K.; Ullah, A.; Rezai, P.; Hasan, A.; Amirfazli, A. Recent Advances in Biosensors for Real Time Monitoring of PH, Temperature, and Oxygen in Chronic Wounds. Mater. Today Bio 2023, 22, 100764. [Google Scholar] [CrossRef]
- Duguma, A.L.; Bai, X. How the Internet of Things Technology Improves Agricultural Efficiency. Artif. Intell. Rev. 2025, 58, 1–26. [Google Scholar] [CrossRef]
- Schiller, E.; Aidoo, A.; Fuhrer, J.; Stahl, J.; Ziörjen, M.; Stiller, B. Landscape of IoT Security. Comput. Sci. Rev. 2022, 44, 100467. [Google Scholar] [CrossRef]
- Kolikipogu, R.; Shivaputra; Muniyandy, E.; Maroor, J.P.; Lakshmi, G.V.R.; Konduri, B.; Naveenkumar, R. Improving Food Safety by IoT-Based Climate Monitoring and Control Systems for Food Processing Plants. Remote Sens. Earth Syst. Sci. 2025, 2025, 1–13. [Google Scholar] [CrossRef]
- Verma, D.; Singh, K.R.; Yadav, A.K.; Nayak, V.; Singh, J.; Solanki, P.R.; Singh, R.P. Internet of Things (IoT) in Nano-Integrated Wearable Biosensor Devices for Healthcare Applications. Biosens. Bioelectron. X 2022, 11, 100153. [Google Scholar] [CrossRef]
- van Kranenburg, R.; Bassi, A. IoT Challenges. Commun. Mob. Comput. 2021, 9, 77–93. [Google Scholar] [CrossRef]
- Sobhan, A.; Muthukumarappan, K.; Wei, L.; Zhou, R.; Ghimire, N. Development of a Biosensor with Electrically Conductive and Biodegradable Composite by Combinatory Use of Silver Nanoparticles, Novel Activated Biochar, and Polylactic Acid. J. Electrochem. Soc. 2021, 168, 107501. [Google Scholar] [CrossRef]
- Liang, G.; Man, Y.; Li, A.; Jin, X.; Liu, X.; Pan, L. DNAzyme-Based Biosensor for Detection of Lead Ion: A Review. Microchem. J. 2017, 131, 145–153. [Google Scholar] [CrossRef]
- Sachdeva, P.; Nath, G.; Jain, U. Phage Based Biosensors: Enhancing Early Detection of Emerging Pathogens in Diagnostics. Talanta Open 2024, 10, 100345. [Google Scholar] [CrossRef]
- Subjakova, V.; Oravczova, V.; Tatarko, M.; Hianik, T. Advances in Electrochemical Aptasensors and Immunosensors for Detection of Bacterial Pathogens in Food. Electrochim. Acta 2021, 389, 138724. [Google Scholar] [CrossRef]
- Nnachi, R.C.; Sui, N.; Ke, B.; Luo, Z.; Bhalla, N.; He, D.; Yang, Z. Biosensors for Rapid Detection of Bacterial Pathogens in Water, Food and Environment. Environ. Int. 2022, 166, 107357. [Google Scholar] [CrossRef]
- Polli, F.; Zumpano, R.; Zanellato, G.; Pereira, S.d.A.; Fantoni, A.; Mazzei, F.; Almeida, M.G. Optimization of a Gold Electrodeposited Platform for the Development of Electrochemical Immunosensors: The Case of Study of Acute Kidney Injury. Electrochim. Acta 2025, 518, 145787. [Google Scholar] [CrossRef]
- Cho, I.H.; Irudayaraj, J. In-Situ Immuno-Gold Nanoparticle Network ELISA Biosensors for Pathogen Detection. Int. J. Food Microbiol. 2013, 164, 70–75. [Google Scholar] [CrossRef] [PubMed]
- Meira, D.I.; Barbosa, A.I.; Borges, J.; Correlo, V.M.; Reis, R.L.; Vaz, F. Novel Label-Free Localized Surface Plasmon Resonance (LSPR) Biosensor, Based on Au-Ag NPs Embedded in TiO2 Matrix, for on-Site and Sensitive Detection of Ochratoxin-A (OTA) in Wine. Talanta 2025, 284, 127238. [Google Scholar] [CrossRef] [PubMed]
- Bae, Y.M.; Oh, B.-K.; Lee, W.; Lee, W.H.; Choi, J.-W. Immunosensor for Detection of Legionella Pneumophila Based on Imaging Ellipsometry. Mater. Sci. Eng. C 2004, 24, 61–64. [Google Scholar] [CrossRef]
- Xue, L.; Zheng, L.; Zhang, H.; Jin, X.; Lin, J. An Ultrasensitive Fluorescent Biosensor Using High Gradient Magnetic Separation and Quantum Dots for Fast Detection of Foodborne Pathogenic Bacteria. Sens. Actuators B Chem. 2018, 265, 318–325. [Google Scholar] [CrossRef]
- Sobhan, A.; Oh, J.-H.; Park, M.-K.; Kim, S.W.; Park, C.; Lee, J. Assessment of Peanut Allergen Ara H1 in Processed Foods Using a SWCNTs-Based Nanobiosensor. Biosci. Biotechnol. Biochem. 2018, 82, 1134–1142. [Google Scholar] [CrossRef]
- Zhang, B.; Ye, S.; Xiao, G.; Dong, D. Identification of Beef Spoilage via the Analysis of Volatiles Using Long Optical-Path Fourier Transform Infrared Spectroscopy. Anal. Methods 2015, 7, 5891–5897. [Google Scholar] [CrossRef]
- Hua, Z.; Yu, T.; Liu, D.; Xianyu, Y. Recent Advances in Gold Nanoparticles-Based Biosensors for Food Safety Detection. Biosens. Bioelectron. 2021, 179, 113076. [Google Scholar] [CrossRef]
- Tolkou, A.K.; Toubanaki, D.K.; Kyzas, G.Z. Detection of Arsenic, Chromium, Cadmium, Lead, and Mercury in Fish: Effects on the Sustainable and Healthy Development of Aquatic Life and Human Consumers. Sustainability 2023, 15, 16242. [Google Scholar] [CrossRef]
- Wang, M.; Zhang, Y.; Tian, F.; Liu, X.; Du, S.; Ren, G. An Overview of Rapid Detection Methods for Salmonella. Foods 2021, 10, 2402. [Google Scholar] [CrossRef]
- Dong, J.X.; Gao, Z.F.; Zhang, Y.; Li, B.L.; Li, N.B.; Luo, H.Q. A Selective and Sensitive Optical Sensor for Dissolved Ammonia Detection via Agglomeration of Fluorescent Ag Nanoclusters and Temperature Gradient Headspace Single Drop Microextraction. Biosens. Bioelectron. 2017, 91, 155–161. [Google Scholar] [CrossRef]
- Chikkaveeraiah, B.V.; Liu, H.; Mani, V.; Papadimitrakopoulos, F.; Rusling, J.F. A Microfluidic Electrochemical Device for High Sensitivity Biosensing: Detection of Nanomolar Hydrogen Peroxide. Electrochem. Commun. 2009, 11, 819–822. [Google Scholar] [CrossRef] [PubMed]
- Myndrul, V.; Yanovska, A.; Babayevska, N.; Korniienko, V.; Diedkova, K.; Jancelewicz, M.; Pogorielov, M.; Iatsunskyi, I. 1D ZnO–Au Nanocomposites as Label-Free Photoluminescence Immunosensors for Rapid Detection of Listeria Monocytogenes. Talanta 2024, 271, 125641. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Hao, L.; Qi, W.; Huo, X.; Xue, L.; Liu, Y.; Zhang, Q.; Lin, J. A Sensitive Salmonella Biosensor Using Platinum Nanoparticle Loaded Manganese Dioxide Nanoflowers and Thin-Film Pressure Detector. Sens. Actuators B Chem. 2020, 321, 128616. [Google Scholar] [CrossRef]
- Muniandy, S.; Teh, S.J.; Appaturi, J.N.; Thong, K.L.; Lai, C.W.; Ibrahim, F.; Leo, B.F. A Reduced Graphene Oxide-Titanium Dioxide Nanocomposite Based Electrochemical Aptasensor for Rapid and Sensitive Detection of Salmonella Enterica. Bioelectrochemistry 2019, 127, 136–144. [Google Scholar] [CrossRef]
- Xiao, S.; Cao, C.; Ming, T.; Cao, Y.; Yu, Z.; Gan, N. Simultaneous and Rapid Screening of Live and Dead E. Coli O157:H7 with Three Signal Outputs: An All-in-One Biosensor Using Phage-Apoferritin@CuO2 Signal Tags on MXenes-Modified Electrode Platform. J. Hazard. Mater. 2023, 458, 131875. [Google Scholar] [CrossRef]
- Ren, H.; Liang, K.; Li, D.; Chen, Y.; Tang, Y.; Wang, Y.; Li, F.; Liu, G.; Zhu, B. Field-Effect Transistor-Based Biosensor for PH Sensing and Mapping. Adv. Sens. Res. 2023, 2, 2200098. [Google Scholar] [CrossRef]
- Maftoonazad, N.; Ramaswamy, H. Design and Testing of an Electrospun Nanofiber Mat as a PH Biosensor and Monitor the PH Associated Quality in Fresh Date Fruit (Rutab). Polym. Test. 2019, 75, 76–84. [Google Scholar] [CrossRef]
- Zhang, H.; Hou, A.; Xie, K.; Gao, A. Smart Color-Changing Paper Packaging Sensors with PH Sensitive Chromophores Based on Azo-Anthraquinone Reactive Dyes. Sens. Actuators B Chem. 2019, 286, 362–369. [Google Scholar] [CrossRef]
- Zhang, X.; Zou, W.; Xia, M.; Zeng, Q.; Cai, Z. Intelligent Colorimetric Film Incorporated with Anthocyanins-Loaded Ovalbumin-Propylene Glycol Alginate Nanocomplexes as a Stable PH Indicator of Monitoring Pork Freshness. Food Chem. 2022, 368, 130825. [Google Scholar] [CrossRef]
- Jung, G.; Jeong, Y.; Hong, Y.; Wu, M.; Hong, S.; Shin, W.; Park, J.; Jang, D.; Lee, J.H. SO2 Gas Sensing Characteristics of FET- and Resistor-Type Gas Sensors Having WO3 as Sensing Material. Solid State Electron. 2020, 165, 107747. [Google Scholar] [CrossRef]
- Tang, L.; Xu, P.; Li, M.; Yu, H.; Li, X. H2S Gas Sensor Based on Integrated Resonant Dual-Microcantilevers with High Sensitivity and Identi Fi Cation Capability. Chin. Chem. Lett. 2020, 31, 2155–2158. [Google Scholar] [CrossRef]
- Wang, F.; Hu, K.; Liu, H.; Zhao, Q.; Wang, K.; Zhang, Y. Low Temperature and Fast Response Hydrogen Gas Sensor with Pd Coated SnO2 Nanofiber Rods. Int. J. Hydrog. Energy 2020, 45, 7234–7242. [Google Scholar] [CrossRef]
- Shen, J.Y.; Di Wang, M.; Wang, Y.F.; Hu, J.Y.; Zhu, Y.; Zhang, Y.X.; Li, Z.J.; Yao, H.C. Iron and Carbon Codoped WO3 with Hierarchical Walnut-like Microstructure for Highly Sensitive and Selective Acetone Sensor. Sens. Actuators B Chem. 2018, 256, 27–37. [Google Scholar] [CrossRef]
- Xu, H.; Xu, J.; Li, H.; Zhang, W.; Zhang, Y.; Zhai, Z. Highly Sensitive Ethanol and Acetone Gas Sensors with Reduced Working Temperature Based on Sr-Doped BiFeO3 Nanomaterial. J. Mater. Res. Technol. 2022, 17, 1955–1963. [Google Scholar] [CrossRef]
- Akhtar, K.; Zubair, N.; Zeb, N.; Shah, S.S.A.; Khan, Z.U.; Khalid, H. Morphology Controlled Fabrication of Zinc Phosphate Hierarchical Microspheres for Room Temperature Ammonia Gas Sensor. Sens. Actuators Rep. 2025, 9, 100288. [Google Scholar] [CrossRef]
- Malepe, L.; Ndinteh, D.T.; Ndungu, P.; Mamo, M.A. The Detection of Volatile Organic Compounds Using a CNPs/Polypyrrole-Based Solid-State Sensor Operating at Room Temperature. Mater. Chem. Phys. 2025, 332, 130186. [Google Scholar] [CrossRef]
- Kumar, S.; Sharma, A.; Tomar, M. Fabrication of Highly Sensitive Room Temperature Operated NO2 Gas Sensor Using Back Gated 2d-Mos2 Fets. SSRN Electron. J. 2022, 10, 100847. [Google Scholar] [CrossRef]
- To, D.T.H.; Park, J.Y.; Yang, B.; Myung, N.V.; Choa, Y.H. Nanocrystalline ZnO Quantum Dot-Based Chemiresistive Gas Sensors: Improving Sensing Performance towards NO2 and H2S by Optimizing Operating Temperature. Sens. Actuators Rep. 2023, 6, 100166. [Google Scholar] [CrossRef]
- Ghoneim, M.T.; Nguyen, A.; Dereje, N.; Huang, J.; Moore, G.C.; Murzynowski, P.J.; Dagdeviren, C. Recent Progress in Electrochemical PH-Sensing Materials and Configurations for Biomedical Applications. Chem. Rev. 2019, 119, 5248–5297. [Google Scholar] [CrossRef]
- Nopwinyuwong, A.; Trevanich, S.; Suppakul, P. Development of a Novel Colorimetric Indicator Label for Monitoring Freshness of Intermediate-Moisture Dessert Spoilage. Talanta 2010, 81, 1126–1132. [Google Scholar] [CrossRef]
- Sobhan, A.; Muthukumarappan, K.; Wei, L. Biosensors and Biopolymer-Based Nanocomposites for Smart Food Packaging: Challenges and Opportunities. Food Packag. Shelf Life 2021, 30, 100745. [Google Scholar] [CrossRef]
- Yang, J.; Dong, X.; Wang, J.; Ching, Y.C.; Liu, J.; Chunhui, L.; Baikeli, Y.; Li, Z.; Mohammed Al-Hada, N.; Xu, S. Synthesis and Properties of Bioplastics from Corn Starch and Citric Acid-Epoxidized Soybean Oil Oligomers. J. Mater. Res. Technol. 2022, 20, 373–380. [Google Scholar] [CrossRef]
- Yang, M.; Wang, Y.; Dong, L.; Xu, Z.; Liu, Y.; Hu, N.; Kong, E.S.W.; Zhao, J.; Peng, C. Gas Sensors Based on Chemically Reduced Holey Graphene Oxide Thin Films. Nanoscale Res. Lett. 2019, 14, 218. [Google Scholar] [CrossRef] [PubMed]
- Cannilla, C.; Bonura, G.; Frusteri, F.; Spadaro, D.; Trocino, S.; Neri, G. Development of an Ammonia Sensor Based on Silver Nanoparticles in a Poly-Methacrylic Acid Matrix. J. Mater. Chem. C 2014, 2, 5778–5786. [Google Scholar] [CrossRef]
- Jafarzadeh, S.; Yildiz, Z.; Yildiz, P.; Strachowski, P.; Forough, M.; Esmaeili, Y.; Naebe, M.; Abdollahi, M. Advanced Technologies in Biodegradable Packaging Using Intelligent Sensing to Fight Food Waste. Int. J. Biol. Macromol. 2024, 261, 129647. [Google Scholar] [CrossRef]
- Nami, M.; Taheri, M.; Deen, I.A.; Packirisamy, M.; Deen, M.J. Nanomaterials in Chemiresistive and Potentiometric Gas Sensors for Intelligent Food Packaging. TrAC—Trends Anal. Chem. 2024, 174, 117664. [Google Scholar] [CrossRef]
- Idrissi, Z.; Lachgar, M.; Hrimech, H. Blockchain, IoT and AI in Logistics and Transportation: A Systematic Review. Transp. Econ. Manag. 2024, 2, 275–285. [Google Scholar] [CrossRef]
- Maritano, V.; Barge, P.; Biglia, A.; Comba, L.; Ricauda Aimonino, D.; Tortia, C.; Gay, P. Anticounterfeiting and Fraud Mitigation Solutions for High-Value Food Products. J. Food Prot. 2024, 87, 100251. [Google Scholar] [CrossRef]
- Dadhaneeya, H.; Nema, P.K.; Arora, V.K. Internet of Things in Food Processing and Its Potential in Industry 4.0 Era: A Review. Trends Food Sci. Technol. 2023, 139, 104109. [Google Scholar] [CrossRef]
- Akkerman, R.; Farahani, P.; Grunow, M. Quality, Safety and Sustainability in Food Distribution: A Review of Quantitative Operations Management Approaches and Challenges. OR Spectr. 2010, 32, 863–904. [Google Scholar] [CrossRef]
- Popa, A.; Hnatiuc, M.; Paun, M.; Geman, O.; Hemanth, D.J.; Dorcea, D.; Son, L.H.; Ghita, S. An Intelligent IoT-Based Food Quality Monitoring Approach Using Low-Cost Sensors. Symmetry 2019, 11, 374. [Google Scholar] [CrossRef]
- Meliana, C.; Liu, J.; Show, P.L.; Low, S.S. Biosensor in Smart Food Traceability System for Food Safety and Security. Bioengineered 2024, 15, 2310908. [Google Scholar] [CrossRef] [PubMed]
- Witjaksono, G.; Saeed Rabih, A.A.; Yahya, N.B.; Alva, S. IOT for Agriculture: Food Quality and Safety. IOP Conf. Ser. Mater. Sci. Eng. 2018, 343, 012023. [Google Scholar] [CrossRef]
- Mostafa, M.Z.; Khater, H.A.; Rizk, M.R.; Bahasan, A.M. A Novel GPS/DVL/MEMS-INS Smartphone Sensors Integrated Method to Enhance Autonomous Navigation, Guidance and Control System of AUSVs Based on ADSF Combined Filter. Meas. J. Int. Meas. Confed. 2019, 146, 590–605. [Google Scholar] [CrossRef]
- Maksimović, M.; Vujović, V.; Omanović-Mikličanin, E. Application of Internet of Things in Food Packaging and Transportation. Int. J. Sustain. Agric. Manag. Inform. 2015, 1, 333–350. [Google Scholar] [CrossRef]
- Abbasi, R.; Martinez, P.; Ahmad, R. The Digitization of Agricultural Industry—A Systematic Literature Review on Agriculture 4.0. Smart Agric. Technol. 2022, 2, 100042. [Google Scholar] [CrossRef]
- Oughton, E.; Geraci, G.; Polese, M.; Shah, V.; Bubley, D.; Blue, S. Reviewing Wireless Broadband Technologies in the Peak Smartphone Era: 6G versus Wi-Fi 7 and 8. Telecomm. Policy 2024, 48, 102766. [Google Scholar] [CrossRef]
- George, J.; Uko, M.; Ekpo, S.; Elias, F. Design of an Elliptically-Slotted Patch Antenna for Multi-Purpose Wireless Wi-Fi and Biosensing Applications. e-Prime—Adv. Electr. Eng. Electron. Energy 2023, 6, 100368. [Google Scholar] [CrossRef]
- Muraleedhara, P.; Christo, M.S.; Jaya, J.; Yuvasini, D. Any Bluetooth Device Can Be Hacked. Know How? Cyber Secur. Appl. 2024, 2, 100041. [Google Scholar] [CrossRef]
- Apeh, O.O.; Nwulu, N.I. Improving Traceability and Sustainability in the Agri-Food Industry through Blockchain Technology: A Bibliometric Approach, Benefits and Challenges. Energy Nexus 2025, 17, 100388. [Google Scholar] [CrossRef]
- Vázquez Meléndez, E.I.; Smith, B.; Bergey, P. Food Provenance Assurance and Willingness to Pay for Blockchain Data Security: A Case of Australian Consumers. J. Retail. Consum. Serv. 2025, 82, 104080. [Google Scholar] [CrossRef]
- Schaefer, D.; Cheung, W.M. Smart Packaging: Opportunities and Challenges. Procedia CIRP 2018, 72, 1022–1027. [Google Scholar] [CrossRef]
- Xiao, X.; Fu, Z.; Zhang, Y.; Peng, Z.; Zhang, X. SMS-CQ: A Quality and Safety Traceability System for Aquatic Products in Cold-Chain Integrated WSN and QR Code. J. Food Process Eng. 2017, 40, e12303. [Google Scholar] [CrossRef]
- Li, Z.; Liu, G.; Liu, L.; Lai, X.; Xu, G. IoT-Based Tracking and Tracing Platform for Prepackaged Food Supply Chain. Ind. Manag. Data Syst. 2017, 117, 1906–1916. [Google Scholar] [CrossRef]
- Duan, K.; Onyeaka, H.; Pang, G. Leveraging Blockchain to Tackle Food Fraud: Innovations and Obstacles. J. Agric. Food Res. 2024, 18, 101429. [Google Scholar] [CrossRef]
- Madhusudan, P.; Chellukuri, N.; Shivakumar, N. Smart Packaging of Food for the 21 St Century—A Review with Futuristic Trends, Their Feasibility and Economics. Mater. Today Proc. 2018, 5, 21018–21022. [Google Scholar] [CrossRef]
- Dolmacı, N.; Çete, S.; Arslan, F.; Yaşar, A. An Amperometric Biosensor for Fish Freshness Detection from Xanthine Oxidase Immobilized in Polypyrrole Polyvinylsulphonate Film. Artif. Cells Blood Substit. Biotechnol. 2012, 40, 275–279. [Google Scholar] [CrossRef]
- Peris, M.; Escuder-Gilabert, L. Electronic Noses and Tongues to Assess Food Authenticity and Adulteration. Trends Food Sci. Technol. 2016, 58, 40–54. [Google Scholar] [CrossRef]
- Khosravi, A.; Fereidoon, A.; Khorasani, M.M.; Naderi, G.; Ganjali, M.R.; Zarrintaj, P.; Saeb, M.R.; Gutiérrez, T.J. Soft and Hard Sections from Cellulose-Reinforced Poly(Lactic Acid)-Based Food Packaging Films: A Critical Review. Food Packag. Shelf Life 2020, 23, 100429. [Google Scholar] [CrossRef]
- Franz, C.M.A.P.; den Besten, H.M.W.; Böhnlein, C.; Gareis, M.; Zwietering, M.H.; Fusco, V. Reprint of: Microbial Food Safety in the 21st Century: Emerging Challenges and Foodborne Pathogenic Bacteria. Trends Food Sci. Technol. 2019, 84, 34–37. [Google Scholar] [CrossRef]
- Ivens, B.S.; Pardo, C.; Wei, R. Exclusion and Inclusion on Business Markets: Impacts of the Internet-Of-Things (IoT). Ind. Mark. Manag. 2024, 123, 108–118. [Google Scholar] [CrossRef]
- Niemira, B.A.; Boyd, G.; Sites, J. Cold Plasma Inactivation of Escherichia coli O157: H7 Biofilms. Front. Sustain. Food Syst. 2018, 2, 47. [Google Scholar] [CrossRef]
- Zikria, Y.B.; Ali, R.; Afzal, M.K.; Kim, S.W. Next-generation Internet of Things (IoT): Opportunities, Challenges, and Solutions. Sensors 2021, 21, 1174. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sobhan, A.; Hossain, A.; Wei, L.; Muthukumarappan, K.; Ahmed, M. IoT-Enabled Biosensors in Food Packaging: A Breakthrough in Food Safety for Monitoring Risks in Real Time. Foods 2025, 14, 1403. https://doi.org/10.3390/foods14081403
Sobhan A, Hossain A, Wei L, Muthukumarappan K, Ahmed M. IoT-Enabled Biosensors in Food Packaging: A Breakthrough in Food Safety for Monitoring Risks in Real Time. Foods. 2025; 14(8):1403. https://doi.org/10.3390/foods14081403
Chicago/Turabian StyleSobhan, Abdus, Abul Hossain, Lin Wei, Kasiviswanathan Muthukumarappan, and Maruf Ahmed. 2025. "IoT-Enabled Biosensors in Food Packaging: A Breakthrough in Food Safety for Monitoring Risks in Real Time" Foods 14, no. 8: 1403. https://doi.org/10.3390/foods14081403
APA StyleSobhan, A., Hossain, A., Wei, L., Muthukumarappan, K., & Ahmed, M. (2025). IoT-Enabled Biosensors in Food Packaging: A Breakthrough in Food Safety for Monitoring Risks in Real Time. Foods, 14(8), 1403. https://doi.org/10.3390/foods14081403