Mezcal: A Review of Chemistry, Processing, and Potential Health Benefits
Abstract
:1. Introduction
Definitions
- (1)
- Raw materials. The raw materials include only the juice extracted from agave plants [wild or cultivated] within the DOP geographical regions. No other fermentation substrates are allowed.
- (2)
- Categories. The NOM includes three categories of mezcal according to the elaboration process.
- (a)
- Ancient mezcal. The elaboration of ancient mezcal involves cooking the stem in rustic ovens dug in the ground, mashing the cooked stem with mallets or in stone mills driven by mules or donkeys, fermentation in pottery or wood vessels after water addition, and distillation of the fermented must in fire-heated clay containers.
- (b)
- Artisanal mezcal. The preparation of artisanal mezcal includes baking the stem in ovens excavated in the ground or cookers with masonry walls, pounding the cooked heart with hammers or in stone or trapiche mills, fermentation in pottery or wood vessels after adding water, and distillation of the fermented juice by means of fire-heated clay, copper, or stainless steel vessels.
- (c)
- Mezcal. The production of mezcal comprises cooking the stem in ovens dug in the ground or with brickwork walls or autoclaves, crushing the baked stem with mallets or in stone, trapiche, or electric mills, fermentation in wood vessels, masonry vats, or stainless steel tanks, and purification of the fermented must using copper or steel stills or continuous distillation equipment.
- (3)
- Classes or styles.
- (a)
- Joven or white. Joven or white is an unaged mezcal that is ready for sale after the distillation process.
- (b)
- Aged in glass. Aged in a glass mezcal is stabilized inside glass bottles for over a year in dark cellars.
- (c)
- Reposado. Reposado means “rested” in Spanish, and this mezcal rests in wood barrels for no less than two months and no more than one year. Mezcal reposado is caramel in color.
- (d)
- Añejo. Añejo means “aged” in Spanish. Mezcal añejo is aged in 1000 L or less wood barrels for at least one year, which gives it a dark caramel color.
- (e)
- Abocado con. Abocado con or “flavored with” mezcals are flavored or infused. This can include flavors from maguey “worms,” damiana, lime, orange, mango, and honey. Other fruits, herbs, and caramel are also common additions.
- (f)
- Destilado con (distilled with). In the case of destilado con mezcals, certain ingredients are added during distillation to add flavors. The most common ingredients include chicken or turkey breast (“pechuga” style), rabbit meat, mole sauce, plums, etc.
2. Agave Characteristics, Cultivation, and Production
3. Elaboration
3.1. Cooking
3.2. Milling
3.3. Fermentation
3.4. Distillation
3.5. Aging
4. Potential Health Benefits Related to Mezcal
4.1. Prebiotics
4.2. Probiotics
4.3. Synbiotics and Postbiotics
- (a)
- Complementary synbiotics, which is a mixture of probiotics and prebiotics in which each works independently to accomplish one or more health benefits.
- (b)
- Synergistic synbiotics, which is a mixture of a selectively utilized substrate and a live microorganism chosen for its ability to deliver a health effect. Components comprising synergistic synbiotics collaborate to generate resulting health benefits.
4.4. Solid-State Fermentation of Agave Byproducts to Produce Metabolites with Potential Health Benefits
4.5. Alcohol and Polyphenols
5. Final Remarks
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tamang, J.P.; Samuel, D. Dietary cultures and antiquity of fermented foods and beverages. In Fermented Foods and Beverages of The World; Tamang, J.P., Kailasapathy, K., Eds.; CRC Press: Boca Raton, FL, USA, 2010; pp. 1–40. [Google Scholar]
- Ojeda-Linares, C.; Álvarez-Ríos, G.D.; Figueredo-Urbina, C.J.; Islas, L.A.; Lappe-Oliveras, P.; Nabhan, G.P.; Torres-García, I.; Vallejo, M.; Casas, A. Traditional fermented beverages of Mexico: A biocultural unseen foodscape. Foods 2021, 10, 2390. [Google Scholar] [CrossRef] [PubMed]
- Arellano-Plaza, M.; Paez-Lerma, J.B.; Soto-Cruz, N.O.; Kirchmayr, M.R.; Gschaedler Mathis, A. Mezcal production in Mexico: Between tradition and commercial exploitation. Front. Sustain. Food Syst. 2022, 6, 832532. [Google Scholar] [CrossRef]
- NOM-070-SCFI-2016; Norma Oficial Mexicana. Bebidas alcohólicas—Mezcal—Especificaciones. Secretaría de Economía—Dirección General de Normas: Ciudad de México, Mexico. Available online: https://dof.gob.mx/nota_detalle.php?codigo=5472787&fecha=23/02/2017 (accessed on 23 October 2024).
- Secretaría de Economía—Instituto Mexicano de la Propiedad Industrial. Resolución por la que se Modifica la Declaración General de Protección de la Denominación de Origen Mezcal, para Incluir los Municipios del Estado de Sinaloa que en la Misma se Indican. Available online: https://www.dof.gob.mx/nota_detalle.php?codigo=5632309&fecha=12/10/2021 (accessed on 23 October 2024).
- Pérez-Zavala, M.L.; Hernández-Arzaba, J.C.; Bideshi, D.K.; Barboza-Corona, J.E. Agave: A natural renewable resource with multiple applications. J. Sci. Food Agric. 2020, 100, 5324–5333. [Google Scholar] [CrossRef] [PubMed]
- Bermúdez-Bazán, M.; Castillo-Herrera, G.A.; Urias-Silvas, J.E.; Escobedo-Reyes, A.; Estarrón-Espinosa, M. Hunting bioactive molecules from the Agave genus: An update on extraction and biological potential. Molecules 2021, 26, 6789. [Google Scholar] [CrossRef] [PubMed]
- Roman, S.; Zepeda-Carrillo, E.A.; Moreno-Luna, L.E.; Panduro, A. Alcoholism and liver disease in Mexico: Genetic and environmental factors. World J. Gastroenterol. 2013, 19, 7972–7982. [Google Scholar] [CrossRef]
- Rivera-Lugo, M.; García-Mendoza, A.; Simpson, J.; Solano, E.; Gil-Vega, K. Taxonomic implications of the morphological and genetic variation of cultivated and domesticated populations of the Agave angustifolia complex (Agavoideae, Asparagaceae) in Oaxaca, Mexico. Plant Syst. Evol. 2018, 304, 969–979. [Google Scholar] [CrossRef]
- Colunga-GarcíaMarín, P.; Torres-García, I.; Casas, A.; Figueredo-Urbina, C.J.; Rangel-Landa, S.; Delgado-Lemus, A.; Vargas-Ponce, O.; Cabrera-Toledo, D.; Zizumbo-Villareal, D.; Aguirre-Dugua, X.; et al. Los agaves y las prácticas mesoamericanas de aprovechamiento, manejo y domesticación. In Domesticación en el Continente Americano; Casas, A., Torres-Guevara, I., Parra-Rondinel, F., Eds.; Universidad Nacional Autónoma de México: Ciudad de México, México, 2017; Volume 2, pp. 273–308. [Google Scholar]
- Páez-Lerma, J.B.; Arias-García, A.; Rutiaga-Quiñones, O.M.; Barrio, E.; Soto-Cruz, N.O. Yeasts isolated from the alcoholic fermentation of Agave duranguensis during mezcal production. Food Biotechnol. 2013, 27, 342–356. [Google Scholar] [CrossRef]
- Delgado-Lemus, A.; Casas, A.; Téllez, O. Distribution, abundance and traditional management of Agave potatorum in the Tehuacán Valley, Mexico: Bases for sustainable use of non-timber forest products. J. Ethnobiol. Ethnomed. 2014, 10, 63. [Google Scholar] [CrossRef]
- García-Mendoza, A.J. Los Agaves de México. Ciencias 2007, 87, 14–23. [Google Scholar]
- Colunga-GarcíaMarín, P.; Zizumbo-Villarreal, D. El tequila y otros mezcales del centro-occidente de México: Domesticación, diversidad y conservación de germoplasma. In En lo Ancestral Hay Futuro: Del Tequila, los Mezcales y Otros Agaves; Colunga-GarcíaMarín, P., Larqué Saavedra, A., Eguiarte, L., Zizumbo-Villarreal, D., Eds.; Centro de Investigación Científica de Yucatán: Mérida, México, 2007; pp. 113–131. [Google Scholar]
- Jiménez-Barron, O.; García-Sandoval, R.; Magallón, S.; García-Mendoza, A.; Nieto-Sotelo, J.; Aguirre-Planter, E.; Eguiarte, L.E. Phylogeny, Diversification Rate, and Divergence Time of Agave sensu lato (Asparagaceae), a Group of Recent Origin in the Process of Diversification. Front. Plant Sci. 2020, 11, 536135. [Google Scholar] [CrossRef]
- Parker, K.C.; Trapnell, D.W.; Hamrick, J.L.; Hodgson, W.C.; Parker, A.J. Inferring ancient Agave cultivation practices from contemporary genetic patterns. Mol. Ecol. 2010, 19, 1622–1637. [Google Scholar] [CrossRef] [PubMed]
- Davis, S.C.; Dohleman, F.G.; Long, S.P. The global potential for Agave as a biofuel feedstock. GCB Bioenergy 2011, 3, 68–78. [Google Scholar] [CrossRef]
- Escamilla-Treviño, L.L. Potential of Plants from the Genus Agave as Bioenergy Crops. BioEnergy Res. 2012, 5, 1–9. [Google Scholar] [CrossRef]
- Gilman, I.S.; Edwards, E.J. Crassulacean acid metabolism. Curr. Biol. 2020, 30, R51–R63. [Google Scholar] [CrossRef]
- Lemus-Diaz, P.G.; Belmonte-Izquierdo, Y.; González-Hernández, J.C. The importance of CAM metabolism in the Agavaceae family. Milen. Cienc. Arte 2024, 13, 39–42. [Google Scholar] [CrossRef]
- Tan, B.; Chen, S. Defining Mechanisms of C3 to CAM Photosynthesis Transition toward Enhancing Crop Stress Resilience. Int. J. Mol. Sci. 2023, 24, 13072. [Google Scholar] [CrossRef]
- Winter, K.; Smith, A.C. CAM photosynthesis: The acid test. New Phytol. 2022, 233, 599–609. [Google Scholar] [CrossRef]
- Abraham, P.E.; Yin, H.; Borland, A.M.; Weighill, D.; Lim, S.D.; De Paoli, H.C.; Engle, N.; Jones, P.C.; Agh, R.; Weston, D.J.; et al. Transcript, protein and metabolite temporal dynamics in the CAM plant Agave. Nat. Plants 2016, 2, 16178. [Google Scholar] [CrossRef]
- Correa-Hernández, L.; Baltazar-Bernal, O.; Sánchez-Páez, R.; Bello-Bello, J.J. In vitro multiplication of agave tobala (Agave potatorum Zucc.) using Ebb-and-Flow bioreactor. S. Afr. J. Bot. 2022, 147, 670–677. [Google Scholar] [CrossRef]
- Delgado-Aceves, L.; Portillo, L.; Folgado, R.; de Jesús Romo-Paz, F.; González-Arnao, M.T. New approaches for micropropagation and cryopreservation of Agave peacockii, an endangered species. Plant Cell Tissue Organ Cult. 2022, 150, 85–95. [Google Scholar] [CrossRef]
- Monja-Mio, K.M.; Herrera-Alamillo, M.A.; Sánchez-Teyer, L.F.; Robert, M.L. Breeding strategies to improve production of Agave (Agave spp.). In Advances in Plant Breeding Strategies: Industrial and Food Crops; Al-Khayri, J., Jain, S., Johnson, D.V., Eds.; Springer: Cham, Switzerland, 2019; Volume 6, pp. 319–362. [Google Scholar]
- Singh, V.; Maiti, R.K. A review on in-vitro micropropagation of Agave and other plants. Farming Manag. 2020, 5, 108–114. [Google Scholar]
- Stewart, J.R. Agave as a model CAM crop system for a warming and drying world. Front. Plant Sci. 2015, 6, 684. [Google Scholar] [CrossRef] [PubMed]
- Álvarez-Ríos, G.D.; Pacheco-Torres, F.; Figueredo-Urbina, C.J.; Casas, A. Management, morphological and genetic diversity of domesticated agaves in Michoacán, México. J. Ethnobiol. Ethnomed. 2020, 16, 3. [Google Scholar] [CrossRef] [PubMed]
- Torres, I.; Casas, A.; Vega, E.; Martínez-Ramos, M.; Delgado-Lemus, A. Population Dynamics and Sustainable Management of Mescal Agaves in Central Mexico: Agave potatorum in the Tehuacán-Cuicatlán Valley. Econ. Bot. 2015, 69, 26–41. [Google Scholar] [CrossRef]
- Lappe-Oliveras, P.; Moreno-Terrazas, R.; Arrizón-Gaviño, J.; Herrera-Suárez, T.; García-Mendoza, A.; Gschaedler-Mathis, A. Yeasts associated with the production of Mexican alcoholic nondistilled and distilled Agave beverages. FEMS Yeast Res. 2008, 8, 1037–1052. [Google Scholar] [CrossRef]
- López-Romero, J.C.; Ayala-Zavala, J.F.; González-Aguilar, G.A.; Peña-Ramos, E.A.; González-Ríos, H. Biological activities of Agave by-products and their possible applications in food and pharmaceuticals. J. Sci. Food Agric. 2018, 98, 2461–2474. [Google Scholar] [CrossRef]
- Blog Agricultura. Estadísticas de Producción de Agave en México. Available online: https://blogagricultura.com/estadisticas-agave-mexico/ (accessed on 3 March 2025).
- Consejo Regulador de la Calidad del Mezcal, A.C. Informe Estadístico 2023; COMERCAM: Oaxaca, Mexico, 2023; pp. 1–26. [Google Scholar]
- Tetreault, D.; McCulligh, C.; Lucio, C. Distilling agro-extractivism: Agave and tequila production in Mexico. J. Agrar. Change 2021, 21, 219–241. [Google Scholar] [CrossRef]
- Lira, M.G.; Robson, J.P.; Klooster, D.J. Commons, global markets and small-scale family enterprises: The case of mezcal production in Oaxaca, Mexico. Agric. Hum. Values 2022, 39, 937–952. [Google Scholar] [CrossRef]
- Sanchez-Marroquin, A.; Hope, P.H. Agave juice, fermentation and chemical composition studies of some species. J. Agric. Food Chem. 1953, 1, 246–249. [Google Scholar] [CrossRef]
- Michel-Cuello, C.; Juárez-Flores, B.I.; Aguirre-Rivera, J.R.; Pinos-Rodríguez, J.M. Quantitative characterization of nonstructural carbohydrates of mezcal Agave (Agave salmiana Otto ex Salm-Dick). J. Agric. Food Chem. 2008, 56, 5753–5757. [Google Scholar] [CrossRef]
- Mellado-Mojica, E.; López, M.G. Identification, classification, and discrimination of agave syrups from natural sweeteners by infrared spectroscopy and HPAEC-PAD. Food Chem. 2015, 167, 349–357. [Google Scholar] [CrossRef]
- Godínez-Hernández, C.I.; Aguirre-Rivera, J.R.; Juárez-Flores, B.I.; Ortiz-Pérez, M.D.; Becerra-Jiménez, J. Extracción y caracterización de fructanos de Agave salmiana Otto ex Salm-Dyck. Rev. Chapingo Ser. Cienc. For. Ambient. 2016, 22, 59–72. [Google Scholar] [CrossRef]
- Garcia-Soto, M.J.; Jiménez-Islas, H.; Navarrete-Bolaños, J.L.; Rico-Martinez, R.; Miranda-López, R.; Botello-Álvarez, J.E. Kinetic study of the thermal hydrolysis of Agave salmiana for mezcal production. J. Agric. Food Chem. 2011, 59, 7333–7340. [Google Scholar] [CrossRef] [PubMed]
- Verdugo Valdez, A.; Segura Garcia, L.; Kirchmayr, M.; Ramírez Rodríguez, P.; González Esquinca, A.; Coria, R.; Gschaedler Mathis, A. Yeast communities associated with artisanal mezcal fermentations from Agave salmiana. Antonie van Leeuwenhoek 2011, 100, 497–506. [Google Scholar] [CrossRef] [PubMed]
- Durán, H.; Pulido, J.L. Análisis de la molienda en el proceso de elaboración de mezcal. Inform. Tecnol. 2007, 18, 47–52. [Google Scholar] [CrossRef]
- Martell-Nevárez, M.A.; Córdova-Gurrola, E.E.; López-Miranda, J.; Soto-Cruz, N.O.; López-Pérez, M.G.; Rutiaga-Quiñones, O.M. Effect of fermentation temperature on chemical composition of mescals made from Agave duranguensis juice with different native yeast genera. Afr. J. Microbiol. Res. 2011, 4, 3669–3676. [Google Scholar] [CrossRef]
- Hernández-Cortés, G.; Córdova-López, J.A.; Herrera-López, E.J.; Morán-Marroquín, G.A.; Valle-Rodríguez, J.O.; Díaz-Montaño, D.M. Effect of pH, aeration and feeding non-sterilized agave juice in a continuous agave juice fermentation. J. Sci. Food Agric. 2010, 90, 1423–1428. [Google Scholar] [CrossRef]
- De León-Rodríguez, A.; González-Hernández, L.; Barba de la Rosa, A.P.; Escalante-Minakata, P.; López, M.G. Characterization of volatile compounds of mezcal, an ethnic alcoholic beverage obtained from Agave salmiana. J. Agric. Food Chem. 2006, 54, 1337–1341. [Google Scholar] [CrossRef]
- Narváez-Zapata, J.A.; Rojas-Herrera, R.A.; Rodríguez-Luna, I.C.; Larralde-Corona, C.P. Culture-independent analysis of lactic acid bacteria diversity associated with mezcal fermentation. Curr. Microbiol. 2010, 61, 444–450. [Google Scholar] [CrossRef]
- Vera-Guzmán, A.M.; López, M.G.; Chávez-Servia, J.L. Chemical composition and volatile compounds in the artisanal fermentation of mezcal in Oaxaca, Mexico. Afr. J. Biotechnol. 2012, 11, 14344–14353. [Google Scholar] [CrossRef]
- Yang, S.; Fei, Q.; Zhang, Y.; Contreras, L.M.; Utturkar, S.M.; Brown, S.D.; Himmel, M.E.; Zhang, M. Zymomonas mobilis as a model system for production of biofuels and biochemicals. Microb. Biotechnol. 2016, 9, 699–717. [Google Scholar] [CrossRef] [PubMed]
- Rutkis, R.; Kalnenieks, U.; Stalidzans, E.; Fell, D.A. Kinetic modelling of the Zymomonas mobilis Entner–Doudoroff pathway: Insights into control and functionality. Microbiology 2013, 159, 2674–2689. [Google Scholar] [CrossRef] [PubMed]
- Compagno, C.; Dashko, S.; Piškur, J. Introduction to Carbon Metabolism in Yeast. In Molecular Mechanisms in Yeast Carbon Metabolism; Piškur, J., Compagno, C., Eds.; Springer: Berlin/Heidelberg, Germany, 2014; pp. 1–19. [Google Scholar] [CrossRef]
- Adame-Soto, P.J.; Aréchiga-Carvajal, E.T.; González-Herrera, S.M.; Moreno-Jiménez, M.R.; Rutiaga-Quiñones, O.M. Characterization of mating type on aroma production and metabolic properties wild Kluyveromyces marxianus yeasts. World J. Microbiol. Biotechnol. 2023, 39, 216. [Google Scholar] [CrossRef] [PubMed]
- Yin, S.; Zhou, H.; Xiao, X.; Lang, T.; Liang, J.; Wang, C. Improving 2-Phenylethanol Production via Ehrlich Pathway Using Genetic Engineered Saccharomyces cerevisiae Strains. Curr. Microbiol. 2015, 70, 762–767. [Google Scholar] [CrossRef]
- Jara-Servín, A.; Alcaraz, L.D.; Juárez-Serrano, S.I.; Espinosa-Jaime, A.; Barajas, I.; Morales, L.; deLuna, A.; Hernández-López, A. Microbial Communities in Agave Fermentations Vary by Local Biogeographic Regions. Environ. Microbiol. Rep. 2025, 17, e70057. [Google Scholar] [CrossRef]
- Escalante-Minakata, P.; Blaschek, H.P.; Barba de la Rosa, A.P.; Santos, L.; De León-Rodríguez, A. Identification of yeast and bacteria involved in the mezcal fermentation of Agave salmiana. Let. Appl. Microbiol. 2008, 46, 626–630. [Google Scholar] [CrossRef]
- Arrizon, J.; Morel, S.; Gschaedler, A.; Monsan, O. Purification and substrate specificities of a fructanase from Kluyveromyces marxianus isolated from the fermentation process of Mezcal. Bioresour. Technol. 2011, 102, 3298–3303. [Google Scholar] [CrossRef]
- Arrizon, J.; Morel, S.; Gschaedler, A.; Monsan, P. Fructanase and fructosyltransferase activity of non-Saccharomyces yeasts isolated from fermenting musts of Mezcal. Bioresour. Technol. 2012, 110, 560–565. [Google Scholar] [CrossRef]
- González-Hernández, J.C.; Pérez, E.; Damián, R.M.; Chávez-Parga, R.C. Isolation, molecular and fermentative characterization of a yeast used in ethanol production during mezcal elaboration. Rev. Mex. Ing. Quím. 2012, 11, 389–400. [Google Scholar]
- Pérez, E.; González-Hernández, J.C.; Chávez-Parga, M.D.C.; Cortés-Penagos, C. Fermentative characterization of producers ethanol yeast from Agave cupreata juice in mezcal elaboration. Rev. Mex. Ing. Quim. 2013, 12, 451–461. [Google Scholar]
- Kirchmayr, M.R.; Segura-García, L.E.; Lappe-Oliveras, P.; Moreno-Terrazas, R.; de la Rosa, M.; Gschaedler Mathis, A. Impact of environmental conditions and process modifications on microbial diversity, fermentation efficiency and chemical profile during the fermentation of Mezcal in Oaxaca. LWT Food Sci. Technol. 2017, 79, 160–169. [Google Scholar] [CrossRef]
- González-Hernández, J.C.; Hernández-Esparza, M.J.; Madrigal-Pérez, L.A.; Salazar-Torres, J.A.; Trejo-Valencia, R. Comparative analysis of the kinetic growth parameters and ethanol production in non-Saccharomyces yeasts at the bioreactor level using Agave cupreata juice. J. Biochem. Technol. 2018, 9(1), 1–7. [Google Scholar]
- Nolasco-Cancino, H.; Santiago-Urbina, J.A.; Wacher, C.; Ruíz-Terán, F. Predominant yeasts during artisanal mezcal fermentation and their capacity to ferment maguey juice. Front. Microbiol. 2018, 9, 2900. [Google Scholar] [CrossRef] [PubMed]
- Ruiz-Terán, F.; Martínez-Zepeda, P.N.; Geyer-de la Merced, S.Y.; Nolasco-Cancino, H.; Santiago-Urbina, J.A. Mezcal: Indigenous Saccharomyces cerevisiae strains and their potential as starter cultures. Food Sci. Biotechnol. 2019, 28, 459–467. [Google Scholar] [CrossRef]
- Hernández-Delgado, N.C.; Torres-Maravilla, E.; Mayorga-Reyes, L.; Martín, R.; Langella, P.; Pérez-Pastén-Borja, R.; Sánchez-Pardo, M.E.; Bermúdez-Humarán, L.G. Antioxidant and anti-inflammatory properties of probiotic candidate strains isolated during fermentation of Agave (Agave angustifolia Haw). Microorganisms 2021, 9, 1063. [Google Scholar] [CrossRef]
- Ruiz-Camou, C.; Núñez, J.; Musule, R. Evaluating the environmental performance of mezcal production in Michoacán, México: A life cycle assessment approach. Int. J. Life Cycle Assess. 2023, 28, 1658–1671. [Google Scholar] [CrossRef]
- De León-Rodríguez, A.; Escalante-Minakata, P.; Barba de la Rosa, A.P.; Blaschek, H.P. Optimization of fermentation conditions for the production of the mezcal from Agave salmiana using response surface methodology. Chem. Eng. Process. Process Intensific. 2008, 47, 76–82. [Google Scholar] [CrossRef]
- Goguitchaichvili, A.; Solano, M.C.; Lazcano-Arce, J.C.; Serra-Puche, M.C.; Morales, J.; Soler, A.M.; Urrutia-Fucugauchi, J. Archaeomagnetic evidence of pre-Hispanic origin of Mezcal. J. Archaeol. Sci. Rep. 2018, 21, 504–511. [Google Scholar] [CrossRef]
- Prado-Ramírez, R. Tequila and mezcal distillation technology: Similarities and differences. In Sustainable and Integral Exploitation of Agave; Gutiérrez-Mora, A., Ed.; CIATEJ: Guadalajara, Mexico, 2014; pp. 72–76. [Google Scholar]
- Nolasco-Cancino, H.; Jarquín-Martínez, D.; Ruiz-Terán, F.; Santiago-Urbina, J.A. Behavior of the volatile compounds regulated by the Mexican Official Standard NOM-070-SCFI-2016 during the distillation of artisanal Mezcal. Biotecnia 2022, 24, 20–27. [Google Scholar] [CrossRef]
- Balcerek, M.; Pielech-Przybylska, K.; Patelski, P.; Dziekońska-Kubczak, U.; Strąk, E. The effect of distillation conditions and alcohol content in ‘heart’ fractions on the concentration of aroma volatiles and undesirable compounds in plum brandies. J. Inst. Brew. 2017, 123, 452–463. [Google Scholar] [CrossRef]
- Ascencio-San Pedro, D.E.; Berra-Ruiz, G.; Lentz-Herrera, A.; Rincón-Mejía, E.A. Destilador solar de alambique de cobre con agua como fluido de trabajo para producción de mezcal. Energías Renov. 2023, 8, 21–26. [Google Scholar] [CrossRef]
- Touaref, F.; Saadi, A.; Farkas, I.; Seres, I. Design and implementation of parabolic trough solar concentrator distiller. Energy Rep. 2025, 13, 1138–1157. [Google Scholar] [CrossRef]
- López-Pérez, M.G.; Guevara-Yañes, S.C. Tequila, Mezcal y Sotol: Volátiles marcadores de origen y planta. Investig. Cienc. 2001, 9, 28–32. [Google Scholar]
- Ramírez-Elías, M.G.; Guevara, E.; Zamora-Pedraza, C.; Aguirre, R.J.; Juárez, B.I.; Bárcenas, G.M.; Ruiz, F.; González, F.J. Assessment of mezcal aging combining Raman spectroscopy and multivariate analysis techniques. Biomed. Spectrosc. Imaging 2017, 6, 75–81. [Google Scholar] [CrossRef]
- Ávila-Reyes, J.A.; Almaraz-Abarca, N.; Delgado-Alvarado, E.A.; González-Valdez, L.S.; Valencia-del Toro, G.; Durán-Páramo, E. Phenol profile and antioxidant capacity of mescal aged in oak wood barrels. Food Res. Int. 2010, 43, 296–300. [Google Scholar] [CrossRef]
- Acosta-García, E.D.; Páez-Lerma, J.B.; Martínez-Prado, M.A.; Soto-Cruz, N.O. Volatile compound analysis in mezcal based on multiple extraction/concentration methods, deconvolution software, and multivariate analysis. Food Control 2025, 168, 110852. [Google Scholar] [CrossRef]
- Vera-Guzmán, A.M.; Santiago-García, P.A.; López, M.G. Aromatic Volatile Compounds Generated during Mezcal Production from Agave angustifolia and Agave potatorum. Rev. Fitotec. Mex. 2009, 32, 273–279. [Google Scholar]
- Vera-Guzmán, A.M.; Guzmán-Gerónimo, R.I.; López, M.G.; Chávez-Servia, J.L. Volatile compound profiles in mezcal spirits as influenced by Agave Species and production processes. Beverages 2018, 4, 9. [Google Scholar] [CrossRef]
- Martínez-Jarquín, S.; Moreno-Pedraza, A.; Cázarez-García, D.; Winkler, R. Automated chemical fingerprinting of Mexican spirits derived from Agave (tequila and mezcal) using direct-injection electrospray ionisation (DIESI) and low-temperature plasma (LTP) mass spectrometry. Anal. Methods 2017, 9, 5023–5028. [Google Scholar] [CrossRef]
- Abad, R. Proceso de Elaboración del Mezcal. 2018. Available online: https://procesodeelaboraciondelmezcal.blogspot.com/ (accessed on 3 March 2025).
- Alvarado-Jasso, G.M.; Camacho-Díaz, B.H.; Arenas-Ocampo, M.L.; Jiménez-Ferrer, J.E.; Mora-Escobedo, R.; Osorio-Díaz, P. Prebiotic effects of a mixture of agavins and green banana flour in a mouse model of obesity. J. Funct. Foods 2020, 64, 103685. [Google Scholar] [CrossRef]
- Mancilla-Margalli, N.A.; López, M.G. Water-Soluble Carbohydrates and Fructan Structure Patterns from Agave and Dasylirion Species. J. Agric. Food Chem. 2006, 54, 7832–7839. [Google Scholar] [CrossRef] [PubMed]
- Álvarez-Chávez, J.; Villamiel, M.; Santos-Zea, L.; Ramírez-Jiménez, A.K. Agave By-Products: An Overview of Their Nutraceutical Value, Current Applications, and Processing Methods. Polysaccharides 2021, 2, 720–743. [Google Scholar] [CrossRef]
- García-Villalba, W.G.; Rodríguez-Herrera, R.; Ochoa-Martínez, L.A.; Rutiaga-Quiñones, O.M.; Gallegos-Infante, J.A.; González-Herrera, S.M. Agave fructans: A review of their technological functionality and extraction processes. J. Food Sci. Technol. 2023, 60, 1265–1273. [Google Scholar] [CrossRef]
- Maugeri, F.; Hernalsteens, S. Screening of yeast strains for transfructosylating activity. J. Mol. Catal. B Enzym. 2007, 49, 43–49. [Google Scholar] [CrossRef]
- De Aguiar Silva, A.T.; Lima Cavalcanti, I.D.; de Lima Fernandes, M.A.; de Oliveira Coimbra, C.G.; de Souza Lima, G.M. Effect of Zymomonas mobilis probiotic on cholesterol and its lipoprotein fractions and the intestinal regulation. Clin. Nutr. 2020, 39, 3750–3755. [Google Scholar] [CrossRef]
- Swanson, K.S.; Gibson, G.R.; Hutkins, R.; Reimer, R.A.; Reid, G.; Verbeke, K.; Scott, K.P.; Holscher, H.D.; Azad, M.B.; Delzenne, N.M.; et al. The International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of synbiotics. Nat. Rev. Gastroenterol. Hepatol. 2020, 17, 687–701. [Google Scholar] [CrossRef]
- Buitrago-Arias, C.; Londoño-Moreno, A.; Avila-Reyes, S.V.; Arenas-Ocampo, M.L.; Alamilla-Beltran, L.; Jimenez-Aparicio, A.R.; Camacho-Diaz, B.H. Evaluation of the fermentation of acetylated agave fructans (agavins), with Saccharomyces boulardii as a probiotic. Rev. Mex. Ing. Quim. 2021, 20, Poly2533. [Google Scholar] [CrossRef]
- Moreno-Vilet, L.; Garcia-Hernandez, M.H.; Delgado-Portales, R.E.; Corral-Fernandez, N.E.; Cortez-Espinosa, N.; Ruiz-Cabrera, M.A.; Portales-Perez, D.P. In vitro assessment of agave fructans (Agave salmiana) as prebiotics and immune system activators. Int. J. Biol. Macromol. 2014, 63, 181–187. [Google Scholar] [CrossRef] [PubMed]
- Torres-Maravilla, E.; Méndez-Trujillo, V.; Hernández-Delgado, N.C.; Bermúdez-Humarán, L.G.; Reyes-Pavón, D. Looking inside Mexican Traditional Food as Sources of Synbiotics for Developing Novel Functional Products. Fermentation 2022, 8, 123. [Google Scholar] [CrossRef]
- Wang, C.; Chen, W.; Jiang, Y.; Xiao, X.; Zou, Q.; Liang, J.; Zhao, Y.; Wang, Q.; Yuan, T.; Guo, R.; et al. A synbiotic formulation of Lactobacillus reuteri and inulin alleviates ASD-like behaviors in a mouse model: The mediating role of the gut–brain axis. Food Funct. 2024, 15, 387–400. [Google Scholar] [CrossRef]
- Leaerts, L.; Porras-Domínguez, J.R.; Versluys, M.; van den Ende, W. A Refined Nomenclature System to Better Discriminate Endo- and Exo-Type Fructanases and Glucanases. Biomolecules 2025, 15, 11. [Google Scholar] [CrossRef] [PubMed]
- Ibarra-Cantún, D.; Ramos-Cassellis, M.E.; Marín-Castro, M.A.; Castelan-Vega, R.C. Secondary metabolites and antioxidant activity of the solid-state fermentation in apple (Pirus malus L.) and agave mezcalero (Agave angustifolia H.) bagasse. J. Fungi 2020, 6, 137. [Google Scholar] [CrossRef] [PubMed]
- Bermúdez-Bazán, M.; Estarrón-Espinosa, M.; Castillo-Herrera, G.A.; Escobedo-Reyes, A.; Urias-Silvas, J.E.; Lugo-Cervantes, E.; Gschaedler-Mathis, A. Agave angustifolia Haw. Leaves as a Potential Source of Bioactive Compounds: Extraction Optimization and Extract Characterization. Molecules 2024, 29, 1137. [Google Scholar] [CrossRef] [PubMed]
- Soto-Castro, D.; Pérez-Herrera, A.; García-Sánchez, E.; Santiago-García, P.A. Identification and Quantification of Bioactive Compounds in Agave potatorum Zucc. Leaves at Different Stages of Development and a Preliminary Biological Assay. Waste Biomass Valorization 2021, 12, 4537–4547. [Google Scholar] [CrossRef]
- Barragán-Huerta, B.E.; Cabrera-Soto, M.L.; Cruz, M.T.; Pedroza-Rodríguez, A.M. The valorization of tequila industry agricultural waste through its use as a substrate for laccase production in a fluidized bed bioreactor. Fresenius Environ. Bull. 2015, 24, 2026–2034. [Google Scholar]
- Kunamneni, A.; Plou, F.J.; Ballesteros, A.; Alcalde, M. Laccases and Their Applications: A Patent Review. Recent Pat. Biotechnol. 2008, 2, 10–24. [Google Scholar] [CrossRef]
- Zhao, X.; Liu, S.; Li, S.; Jiang, W.; Wang, J.; Xiao, J.; Chen, T.; Ma, J.; Khan, M.Z.; Wang, W.; et al. Unlocking the power of postbiotics: A revolutionary approach to nutrition for humans and animals. Cell Metab. 2024, 36, 725–744. [Google Scholar] [CrossRef]
- Criqui, M.H. Alcohol and coronary heart disease: Consistent relationship and public health implications. Clin. Chim. Acta 1996, 246, 51–57. [Google Scholar] [CrossRef]
- Goldberg, D.M.; Hoffman, B.; Yang, J.; Soleas, G.J. Phenolic constituents, furans, and total antioxidant status of distilled spirits. J. Agric. Food Chem. 1999, 47, 3978–3985. [Google Scholar] [CrossRef]
- Pellegrini, N.; Colombi, B.; Del Rio, D.; Salvatore, S.; Bianchi, M.; Brighenti, F. Total antioxidant capacity of plant foods, beverages and oils consumed in Italy assessed by three different in vitro assays. J. Nutr. 2003, 133, 2812–2819. [Google Scholar] [CrossRef]
- Bukovsky-Reyes, S.E.R.; Lowe, L.E.; Brandon, W.M.; Owens, J.E. Measurement of antioxidants in distilled spirits by a silver nanoparticle assay. J. Inst. Brew. 2018, 124, 291–299. [Google Scholar] [CrossRef]
- Vivas, N.; Vivas de Gaulejac, N.; Bourden-Nonier, M.; Mouche, C.; Rossy, C. Extraction of phenolics from new oak casks during spirit maturation: Impact on spirit colour. J. Inst. Brew. 2020, 126, 83–89. [Google Scholar] [CrossRef]
- Híc, P.; Horák, M.; Balík, J.; Martinák, K. Assessment of spirit aging on different kinds of wooden fragments. Wood Sci. Technol. 2021, 55, 257–270. [Google Scholar] [CrossRef]
- Zhang, B.; Cai, J.; Duan, C.Q.; Reeves, M.J.; He, F. A review of polyphenolics in oak woods. Int. J. Mol. Sci. 2015, 16, 6978–7014. [Google Scholar] [CrossRef]
- Polak, J.; Bartoszek, M.; Lowe, A.R.; Postnikov, E.B.; Chorążewski, M. Antioxidant properties of various alcoholic beverages: Application of a semiempirical equation. Anal. Chem. 2019, 92, 2145–2150. [Google Scholar] [CrossRef]
- Koga, K.; Taguchi, A.; Koshimizu, S.; Suwa, Y.; Yamada, Y.; Shirasaka, N.; Yoshizumi, H. Reactive oxygen scavenging activity of matured whiskey and its active polyphenols. J. Food Sci. 2007, 72, S212–S217. [Google Scholar] [CrossRef]
- Más allá de la cata: Promoción del mezcal. Cava Revista. Available online: https://www.revistacava.com/mezcal/ (accessed on 12 May 2024).
- Sharma, R.; Padwad, Y. Plant-polyphenols based second-generation synbiotics: Emerging concepts, challenges, and opportunities. Nutrition 2020, 77, 110785. [Google Scholar] [CrossRef]
- Rodríguez-Daza, M.C.; Pulido-Mateos, E.C.; Lupien-Meilleur, J.; Guyonnet, D.; Desjardins, Y.; Roy, D. Polyphenol-Mediated Gut Microbiota Modulation: Toward Prebiotics and Further. Front. Nutr. 2021, 8, 689456. [Google Scholar] [CrossRef]
Component or Parameter | Concentration or Value | Reference |
---|---|---|
Specific gravity | 1.107–1.108 | [37] |
Glucose | 1.3–3.9% | [37] |
Fructose | 13.7–17.8% | [37] |
Direct reducing sugars | 16.7–18.9% | [44] |
Total carbohydrates | 24.2–24.8% | [44] |
Assimilable nitrogen | 0.02–0.03% | [37,45] |
pH | 4.2–4.6 | [41,45] |
Total yeast | <1 × 106 cfu/mL | [45] |
Compound | Concentration |
---|---|
Direct reducing sugars (%) | 28.2–79.0 |
Protein (%) | 0.072–0.11 |
Ethanol (% v/v) | 4.2–5.0 |
Ethyl acetate (mg/100 mL a.a.) | 1.4–3.45 |
Methanol (mg/100 mL a.a.) | 8.87–10.71 |
1-Propanol (mg/100 mL a.a.) | 0.59–0.88 |
2-Methyl propanol (mg/100 mL a.a.) | 2.59–2.84 |
3-Methyl butanol (mg/100 mL a.a.) | 8.18–8.64 |
n-Butanol (mg/100 mL a.a.) | 0.004–0.014 |
Acetic acid (mg/100 mL a.a.) | 40.46–65.05 |
Bacteria | Yeasts | Agave Species and State in Mexico | Reference |
---|---|---|---|
Zymomonas mobilis subsp. Mobilis, Z. mobilis subsp. Pomaceae, Weissella cibaria, W. paramesenteroides, Lactobacillus pontis, L. kefiri, L. plantarum, L. farraginis | Clavispora lusitaniae, Pichia fermentans, Kluyveromyces marxianus | A. salmiana from San Luis Potosí | [55] |
Pediococcus parvulus, L. brevis, L. composti, L. parabuchneri, L. plantarum, Weissella sp., Bacillus sp. | NR | Z. angustifolia, A. lechugilla [Torr] and A. americana (montium sancticaroli) from Tamaulipas | [47] |
NR | K. marxianus | Agave sp. from Guerrero | [56] |
NR | Saccharomyces cerevisiae, K. marxianus, P. kluyveri, Zygosaccharomyces bailii, Cl. Lusitaniae, Torulaspora delbrueckii, Candida ethanolica, S. exiguus | A. salmiana from San Luis Potosí | [42] |
NR | Z. bisporus, T. delbrueckii, K. marxianus, C. apicola, C. zemplinina, C. boidinii, P. anomala, Schizosaccharomyces pombe, Rhodotorula mucilaginosa, Hanseniaspora osmophila, Dekkera anómala, Issatchenkia orientalis | A. angustifolia Haw, A. potatorum, and A. karwinskii from Oaxaca | [57] |
NR | S. cerevisiae | A. cupreata from Michoacán | [58] |
NR | S. cerevisiae, K. marxianus, T. delbrueckii, C. diversa, P. fermentans, H. uvarum | A. duranguensis from Durango | [11] |
NR | S. cerevisiae, K. marxianus, K. marxianus, var. drosophilarum | A. cupreata from Michocán | [59] |
Z. mobilis, L. casei, L. harbinensis, Acetobacter senegalensis, Komagataeibacter saccharivorans, Bacillus subtilis, B. pumilus, Kocuria rhizophila | S. cerevisiae, Z. rouxii, Z. bisporus, T. delbrueckii, P. membranifaciens | Agave sp. from Oaxaca | [60] |
NR | S. cerevisiae, K. marxianus, Z. bailli, Z. rouxi, P. kluyveri, I. terrícola | A. cupreata from Michoacán | [61] |
NR | P. kudriavzevii, P. manshurica, S. cerevisiae, K. marxianus | A. angustifolia Haw from Oaxaca | [62] |
NR | S. cerevisiae | A. angustifolia Haw from Oaxaca | [63] |
L. plantarum, L. rhamnosus, Enterococcus faecium, Lactococcus lactis | NR | A. angustifolia Haw from Oaxaca | [64] |
Compound | Concentration Range |
---|---|
Ethanol (% v/v) | 35–55 |
Dry extract (g/L) | 0–10 |
Higher alcohols (mg/100 mL a.a.) | 100–500 |
Methanol (mg/100 mL a.a.) | 30–300 |
Furfural (mg/100 mL a.a.) | 0–5 |
Aldehydes (mg/100 mL a.a.) | 0–40 |
Compound | Concentration (mg/100 mL a.a.) |
---|---|
Ethyl acetate | 89.17 |
Ethyl lactate | 20.95 |
2-Butanol | 0.79 |
n-Propanol | 23.38 |
Isobutanol | 57.15 |
n-Butanol | 0.42 |
Isoamyl alcohol | 221.68 |
Amyl alcohol | 0.85 |
Methanol | 150–250 |
Furfural | 0.5–4 |
Acetaldehyde | 8 |
Compound | Concentration (Relative Abundance Units) |
---|---|
2-methyl-1-propanol | 3.90 |
3-methyl-1-butanol | 23.88 |
Acetic acid | 65.38 |
1-(2-furanyl)-ethanone | 1.24 |
α-Terpineol | 6.33 |
Phenyl ethyl alcohol | 7.66 |
Phenyl ethyl acetate | 4.94 |
3-methyl-1-butanol acetate | 3.08 |
Caproic acid EE | 4.07 |
2-hydroxy-propionic acid, EE | 29.77 |
Caprylic acid, EE | 18.62 |
Lauric acid, EE | 4.45 |
Palmitic acid, EE | 1.32 |
Phenolic Compound | 47 Days | 75 Days | 110 Days | 131 Days | 175 Days | 206 Days |
---|---|---|---|---|---|---|
Syringic acid | n.d. | n.d. | 31.27 | 33.91 | 35.99 | 44.89 |
Phenolic acid | 34.17 | 34.54 | 35.53 | 35.96 | 38.01 | 42.69 |
Hydroxycinnamic acid derivative | 34.39 | 35.34 | 34.92 | 35.93 | 37.98 | 45.56 |
Flavona glycoside | n.d. | n.d. | n.d. | 34.78 | 36.96 | 40.24 |
Benzoic acid | n.d. | n.d. | n.d. | n.d. | n.d. | 38.54 |
Sinapic acid | n.d. | n.d. | n.d. | n.d. | n.d. | 37.88 |
Luteolin glycoside | n.d. | n.d. | n.d. | n.d. | n.d. | 38.27 |
Benzoic acid derivative | n.d. | n.d. | n.d. | 37.06 | 38.65 | 43.89 |
Dihydroflavonoid | n.d. | n.d. | n.d. | n.d. | 36.67 | 39.27 |
Hydroxycinnamic acid derivative | n.d. | n.d. | n.d. | n.d. | n.d. | 40.61 |
Benzoic acid derivative | n.d. | n.d. | n.d. | n.d. | n.d. | 37.59 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ávila-Reyes, S.V.; Jiménez-Aparicio, A.R.; Melgar-Lalanne, G.; Fajardo-Espinoza, F.S.; Hernández-Sánchez, H. Mezcal: A Review of Chemistry, Processing, and Potential Health Benefits. Foods 2025, 14, 1408. https://doi.org/10.3390/foods14081408
Ávila-Reyes SV, Jiménez-Aparicio AR, Melgar-Lalanne G, Fajardo-Espinoza FS, Hernández-Sánchez H. Mezcal: A Review of Chemistry, Processing, and Potential Health Benefits. Foods. 2025; 14(8):1408. https://doi.org/10.3390/foods14081408
Chicago/Turabian StyleÁvila-Reyes, Sandra Victoria, Antonio Ruperto Jiménez-Aparicio, Guiomar Melgar-Lalanne, Fernanda Sarahí Fajardo-Espinoza, and Humberto Hernández-Sánchez. 2025. "Mezcal: A Review of Chemistry, Processing, and Potential Health Benefits" Foods 14, no. 8: 1408. https://doi.org/10.3390/foods14081408
APA StyleÁvila-Reyes, S. V., Jiménez-Aparicio, A. R., Melgar-Lalanne, G., Fajardo-Espinoza, F. S., & Hernández-Sánchez, H. (2025). Mezcal: A Review of Chemistry, Processing, and Potential Health Benefits. Foods, 14(8), 1408. https://doi.org/10.3390/foods14081408