Assessment of Biochemical Composition, Mineral Content, and Fatty Acid Profile in Maize (Zea mays) Cultivars Under Water Stress and Excessive Water Using Biplot Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Field Experiments
2.2. Soil and Climate Characteristics
2.3. Biochemical Assays
2.4. Mineral Contents
2.5. Fatty Acids Composition
2.6. Static Analysis
3. Results
3.1. Biochemical Parameters
3.2. Mineral Contents
3.3. Fatty Acid Composition
3.4. Relationship Among Biochemical Parameters, Mineral and Fatty Acid Profile in Irrigation and Maize Cultivars
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Laxmi Prasanna, A.; Das Bairagya, M.; Madhuri Devi, T.; Uz Zaman, A. Effects of Irrigation Regime and Nitrogen Level on Yield and Yield Attributes of Summer Maize (Zea mays L.). Int. J. Curr. Microbiol. Appl. Sci. 2019, 8, 727–733. [Google Scholar] [CrossRef]
- Kaur, M.; Kaur, G.; Birwal, P.; Kaur, R. Storage of maize and its products. In Maize; CRC Press: Boca Raton, FL, USA, 2022; pp. 325–356. [Google Scholar]
- Soto-Gómez, D.; Pérez-Rodríguez, P. Sustainable agriculture through perennial grains: Wheat, rice, maize, and other species. A review. Agric. Ecosyst. Environ. 2022, 325, 107747. [Google Scholar] [CrossRef]
- Chukwudi, U.P.; Kutu, F.R.; Mavengahama, S. Influence of heat stress, variations in soil type, and soil amendment on the growth of three drought tolerant maize varieties. Agronomy 2021, 11, 1485. [Google Scholar] [CrossRef]
- Baber, S.A.; Waseem, B.; Loangove, M.A. Influence of Different Irrigation Scheduling Practices on The Growth and Yield Performance of Maize (Zea mays L.) Cultivar. J. Biol. Agric. Healthc. 2015, 5, 168–174. [Google Scholar]
- Varol, I.S.; Cetin, N.; Kirnak, H. Evaluation of Image Processing Technique on Quality Properties of Chickpea Seeds (Cicer arietinum L.) Using Machine Learning Algorithms. J. Agric. Sci. 2022, 29, 427–442. [Google Scholar] [CrossRef]
- Varol, I.S.; Ünlükara, A.; Kaplan, M. Water productivity, yield response factors, yield and quality of alfalfa cultivars in semi-arid climate conditions. Environ. Exp. Bot. 2024, 224, 105826. [Google Scholar] [CrossRef]
- Xing, Y.; Chen, M.; Wang, X. Enhancing water use efficiency and fruit quality in jujube cultivation: A review of advanced irrigation techniques and precision management strategies. Agric. Water Manag. 2025, 307, 109243. [Google Scholar] [CrossRef]
- Tahiri, A.I.; Meddich, A.; Raklami, A.; Alahmad, A.; Bechtaoui, N.; Anli, M.; Göttfert, M.; Heulin, T.; Achouak, W.; Oufdou, K. Assessing the potential role of compost, PGPR, and AMF in improving tomato plant growth, yield, fruit quality, and water stress tolerance. J. Soil Sci. Plant Nutr. 2022, 22, 743–764. [Google Scholar] [CrossRef]
- Mallareddy, M.; Thirumalaikumar, R.; Balasubramanian, P.; Naseeruddin, R.; Nithya, N.; Mariadoss, A.; Eazhilkrishna, N.; Choudhary, A.K.; Deiveegan, M.; Subramanian, E.; et al. Maximizing water use efficiency in rice farming: A comprehensive review of innovative irrigation management technologies. Water 2023, 15, 1802. [Google Scholar] [CrossRef]
- Yu, B.G.; Chen, X.X.; Zhou, C.X.; Ding, T.B.; Wang, Z.H.; Zou, C.Q. Nutritional composition of maize grain associated with phosphorus and zinc fertilization. J. Food Compos. Anal. 2022, 114, 104775. [Google Scholar] [CrossRef]
- Abate, T.; Fisher, M.; Abdoulaye, T.; Kassie, G.T.; Lunduka, R.; Marenya, P.; Asnake, W. Characteristics of maize cultivars in Africa: How modern are they and how many do smallholder farmers grow? Agric. Food Secur. 2017, 6, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Laskari, M.; Menexes, G.; Kalfas, I.; Gatzolis, I.; Dordas, C. Water stress effects on the morphological, physiological characteristics of maize (Zea mays L.), and on environmental cost. Agronomy 2022, 12, 2386. [Google Scholar] [CrossRef]
- Sah, R.P.; Chakraborty, M.; Prasad, K.; Pandit, M.; Tudu, V.K.; Chakravarty, M.K.; Moharana, D. Impact of water deficit stress in maize: Phenology and yield components. Sci. Rep. 2020, 10, 2944. [Google Scholar] [CrossRef]
- Shafi, M.; Bakht, J.; Ali, S.; Khan, H.; Khan, M.A.; Sharif, M. Effect of planting density on phenology, growth and yield of maize (Zea mays L.). Pak. J. Bot. 2012, 44, 691–696. [Google Scholar]
- Kaplan, M.; Tas, I.; Ciftci, B.; Varol, I.S.; Akçura, S. Effects of irrigation levels on biochemical traits of popcorn kernels. Gesunde Pflanz. 2023, 75, 1099–1106. [Google Scholar] [CrossRef]
- Ali, Q.; Ashraf, M.; Anwar, F. Seed composition and seed oil antioxidant activity of maize under water stress. J. Am. Oil Chem. Soc. 2010, 87, 1179–1187. [Google Scholar] [CrossRef]
- Kaplan, M.; Kale, H.; Kardes, Y.M.; Karaman, K.; Kahraman, K.; Yılmaz, M.F.; Temizgul, R.; Akar, T. Characterization of local sorghum (Sorghum bicolor L.) population grains in terms of nutritional properties and evaluation by GT biplot approach. Starch-Stärke 2020, 72, 1900232. [Google Scholar] [CrossRef]
- Acura, M. The relationships of some traits in Turkish winter bread wheat landraces. Turk. J. Agric. For. 2011 35, 115–125. [CrossRef]
- AOAC. Official Method of Analysis, 15th ed.; Association of Official Analytical Chemists: Washington, DC, USA, 1990; pp. 66–88. [Google Scholar]
- Mertens, D. AOAC International Suite, Chapter 3; AOAC: Gaithersburg, MD, USA, 2005; pp. 1–2. [Google Scholar]
- Kaplan, M.; Kale, H.; Karaman, K.; Ünlükara, A. Influence of different irrigation and nitrogen levels on crude oil and fatty acid composition of maize (Zea mays L.). Grasas y Aceites. 2017, 68, 1–6. [Google Scholar] [CrossRef]
- SAS Institute. Statistics and Graphics Guide; SAS Institute: Cary, NC, USA, 2000. [Google Scholar]
- Yan, W. Crop Variety Trials: Data Management and Analysis; Wiley Blackwell: Hoboken, NJ, USA, 2014; Available online: http://ca.wiley.com/WileyCDA/WileyTitle/productCd-1118688643.html (accessed on 10 November 2024).
- Nan, Z.; Li, J.; Zhang, J.; Cheng, G. Cadmium and zinc interactions and their transfer in soil-crop system under actual field conditions. Sci. Total Environ. 2002, 285, 187–195. [Google Scholar] [CrossRef] [PubMed]
- Paiva, C.L.; Queiroz, V.A.V.; Simeone, M.L.F.; Schaffert, R.E.; de Oliveira, A.C.; da Silva, C.S. Mineral content of sorghum genotypes and the influence of water stress. Food Chem. 2017, 214, 400–405. [Google Scholar] [CrossRef] [PubMed]
- Queiroz, V.A.V.; da Silva, C.S.; de Menezes, C.B.; Schaffert, R.E.; Guimarães, F.F.M.; Guimarães, L.J.M.; Tardin, F.D. Nutritional composition of sorghum (Sorghum bicolor L. Moench) genotypes cultivated without and with water stress. J. Cereal Sci. 2015, 65, 103–111. [Google Scholar] [CrossRef]
- Yu, X.; Li, B.; Wang, L.; Chen, X.; Wang, W.; Gu, Y.; Wang, Z.; Xiong, F. Effect of drought stress on the development of endosperm starch granules and the composition and physicochemical properties of starches from soft and hard wheat. J. Sci. Food Agric. 2016, 96, 2746–2754. [Google Scholar] [CrossRef]
- Wang, X.; He, M.; Li, F.; Liu, Y.; Zhang, H.; Liu, C. Coupling effects of irrigation and nitrogen fertilization on grain protein and starch quality of strong-gluten winter wheat. Front. Agric. China 2008, 2, 274–280. [Google Scholar] [CrossRef]
- Liu, L.; Klocke, N.; Yan, S.; Rogers, D.; Schlegel, A.; Lamm, F.; Wang, D. Impact of deficit irrigation on maize physical and chemical properties and ethanol yield. Cereal Chem. 2013, 90, 453–462. [Google Scholar] [CrossRef]
- Da Ge, T.; Sui, F.G.; Nie, S.A.; Sun, N.B.; Xiao, H.A.; Tong, C.L. Differential responses of yield and selected nutritional compositions to drought stress in summer maize grains. J. Plant Nutr. 2010, 33, 1811–1818. [Google Scholar] [CrossRef]
- Kresović, B.; Gajić, B.; Tapanarova, A.; Dugalic, G. How irrigation water affects the yield and nutritional quality of maize (Zea mays L.) in a temperate climate. Pol. J. Environ. Stud. 2018, 27, 1123–1131. [Google Scholar] [CrossRef]
- Akram, N.A.; Shafiq, F.; Ashraf, M. Peanut (Arachis hypogaea L.): A prospective legume crop to offer multiple health benefits under changing climate. Compr. Rev. Food Sci. Food Saf. 2018, 17, 1325–1338. [Google Scholar] [CrossRef]
- Pavlista, A.D.; Hergert, G.W.; Margheim, J.M.; Isbell, T.A. Growth of spring camelina (Camelina sativa) under deficit irrigation in Western Nebraska. Ind. Crops Prod. 2016, 83, 118–123. [Google Scholar] [CrossRef]
- Ferreira, V.M.; Magalhães, P.C.; Durães, F.O.; Vasconcellos, C.A.; Neto, J.C.D.A. Concentration and partitioning of macronutrients in two maize genotypes as related to soil water availability. Rev. Bras. De Milho E Sorgo 2008, 7, 1–17. [Google Scholar] [CrossRef]
- Datta, D.; Chandra, S.; Nath, C.P.; Kar, G.; Ghosh, S.; Chaturvedi, S.; Bhatnagar, A.; Singh, G.; Singh, V. Soil-plant water dynamics, yield, quality and profitability of spring sweet corn under variable irrigation scheduling, crop establishment and moisture conservation practices. Field Crops Res. 2022, 279, 108450. [Google Scholar] [CrossRef]
- Akcura, M.; Taner, S.; Kaya, Y. Evaluation of bread wheat genotypes under irrigated multi-environment conditions using GGE biplot analyses. Zemdirb. Agric. 2011, 98, 35–40. [Google Scholar]
- Kaplan, M.; Akar, T.; Kamalak, A.; Bulut, S. Use of diploid and tetraploid hulled wheat genotypes for animal feeding. Turk. J. Agric. For. 2014, 38, 838–846. [Google Scholar] [CrossRef]
- Akçura, S.; Taş, I.; Kökten, K.; Kaplan, M.; Bengü, A.Ş. Effects of irrigation intervals and irrigation levels on oil content and fatty acid composition of peanut cultivars. Not. Bot. Horti Agrobot. Cluj-Napoca 2021, 49, 12224. [Google Scholar] [CrossRef]
- Yan, W.; Kang, M.S. GGE-Biplot Analysis: A Graphical Tool for Breeders, Geneticists and Agronomists; CRC Press: Boca Raton, FL, USA, 2003. [Google Scholar]
- Kardeş, Y.M.; Kaplan, M.; Kale, H.; Yılmaz, M.F.; Karaman, K.; Temizgül, R.; Akar, T. Biochemical composition of selected lines from sorghum (Sorghum bicolor L.) landraces. Planta 2021, 254, 1–13. [Google Scholar] [CrossRef]
- Yan, W.; Tinker, N.A. Biplot analysis of multi-environment trial data: Principles and applications. Can. J. Plant Sci. 2006, 86, 623–645. [Google Scholar] [CrossRef]
Crude Oil | Crude Protein | ||||||||
Cultivars | I75 | I100 | I125 | Means | Cultivars | I75 | I100 | I125 | Means |
Syngenta Inove | 3.11 cd | 3.23 bc | 3.50 ab | 3.28 a | Syngenta Inove | 9.15 cd | 9.26 c | 9.35 c | 9.25 b |
Tareks OSSK644 | 2.58 e | 3.31 abc | 3.56 a | 3.15 a | Tareks OSSK644 | 7.78 e | 10.36 b | 11.91 a | 10.02 a |
Pioneer PR31G98 | 2.16 f | 3.56 a | 3.24 bc | 2.99 b | Pioneer PR31G98 | 8.09 e | 9.47 c | 10.40 b | 9.32 b |
Syngenta Dracma | 2.81 de | 3.42 ab | 3.23 bc | 3.15 a | Syngenta Dracma | 7.71 e | 7.63 e | 8.67 d | 8.01 c |
Pioneer PR31Y43 | 2.59 e | 3.29 abc | 3.57 a | 3.15 a | Pioneer PR31Y43 | 7.70 e | 10.31 b | 11.54 a | 9.85 a |
Means | 2.65 b | 3.36 a | 3.42 a | Means | 8.08 c | 9.41 b | 10.37 a | ||
Total Dietary Fiber | Phytic Acid | ||||||||
Cultivars | I75 | I100 | I125 | Means | Cultivars | I75 | I100 | I125 | Means |
Syngenta Inove | 7.62 a | 7.37 a | 2.40 ij | 5.80 a | Syngenta Inove | 1.29 b | 1.17 c | 1.06 d | 1.17 b |
Tareks OSSK644 | 3.61 de | 2.81 gh | 2.22 ij | 2.88 d | Tareks OSSK644 | 1.57 a | 0.96 de | 0.94 e | 1.15 b |
Pioneer PR31G98 | 6.41 b | 4.28 c | 3.01 fg | 4.56 c | Pioneer PR31G98 | 1.31 b | 1.22 bc | 0.54 f | 1.03 c |
Syngenta Dracma | 7.32 a | 4.22 c | 3.74 d | 5.09 b | Syngenta Dracma | 0.99 de | 0.98 de | 0.92 e | 0.96 d |
Pioneer PR31Y43 | 3.34 ef | 2.60 hi | 2.21 j | 2.71 d | Pioneer PR31Y43 | 1.61 a | 1.26 bc | 1.25 bc | 1.37 a |
Means | 5.66 a | 4.26 b | 2.72 c | Means | 1.35 a | 1.12 b | 0.94 c | ||
Amylose | Amylopectin | ||||||||
Cultivars | I75 | I100 | I125 | Means | Cultivars | I75 | I100 | I125 | Means |
Syngenta Inove | 32.78 cde | 28.61 fgh | 27.21 gh | 29.53 b | Syngenta Inove | 67.51 | 72.41 | 72.74 | 70.89 a |
Tareks OSSK644 | 37.29 a | 32.43 cde | 31.75 de | 33.82 a | Tareks OSSK644 | 62.97 | 67.83 | 69.35 | 66.72 b |
Pioneer PR31G98 | 33.68 bcd | 34.81 abc | 32.21 cde | 33.56 a | Pioneer PR31G98 | 66.43 | 72.13 | 68.08 | 68.88 ab |
Syngenta Dracma | 33.55 bcd | 27.65 gh | 26.63 h | 29.28 b | Syngenta Dracma | 66.69 | 72.90 | 74.39 | 71.33 a |
Pioneer PR31Y43 | 36.36 ab | 31.18 def | 30.11 efg | 32.55 a | Pioneer PR31Y43 | 64.74 | 68.93 | 70.16 | 67.94 b |
Means | 34.73 a | 30.94 b | 29.58 c | Means | 65.67 b | 70.84 a | 70.94 a | ||
Resistant Starch | Non-Resistant Starch | ||||||||
Cultivars | I75 | I100 | I125 | Means | Cultivars | I75 | I100 | I125 | Means |
Syngenta Inove | 0.16 e | 0.23 d | 0.37 b | 0.25 a | Syngenta Inove | 65.20 de | 69.75 bcd | 76.21 ab | 70.39 b |
Tareks OSSK644 | 0.12 f | 0.15 e | 0.40 a | 0.22 b | Tareks OSSK644 | 66.11 de | 66.89 d | 69.13 cd | 67.37 c |
Pioneer PR31G98 | 0.15 e | 0.26 c | 0.26 c | 0.23 b | Pioneer PR31G98 | 65.71 de | 74.98 abc | 76.20 ab | 72.30 ab |
Syngenta Dracma | 0.16 e | 0.26 c | 0.28 c | 0.23 b | Syngenta Dracma | 66.62 d | 75.26 abc | 78.13 a | 73.33 a |
Pioneer PR31Y43 | 0.08 g | 0.15 e | 0.17 e | 0.13 c | Pioneer PR31Y43 | 59.96 e | 65.21 de | 73.64 abc | 66.27 c |
Means | 0.13 c | 0.21 b | 0.30 a | 0.21 | Means | 64.72 c | 70.42 b | 74.66 a | |
Total Starch | Crude Ash | ||||||||
Cultivars | I75 | I100 | I125 | Means | Cultivars | I75 | I100 | I125 | Means |
Syngenta Inove | 65.36 de | 69.98 bcd | 76.58 a | 70.64 a | Syngenta Inove | 1.70 d | 1.82 cd | 2.60 a | 2.04 a |
Tareks OSSK644 | 66.23 de | 67.04 d | 69.52 cd | 67.60 b | Tareks OSSK644 | 1.50 e | 1.50 e | 2.11 b | 1.70 b |
Pioneer PR31G98 | 65.86 de | 75.24 abc | 76.47 ab | 72.52 a | Pioneer PR31G98 | 1.89 c | 2.23 e | 2.11 b | 2.08 a |
Syngenta Dracma | 66.77 d | 75.52 abc | 78.41 a | 73.57 a | Syngenta Dracma | 1.40 e | 1.41 e | 1.41 e | 1.41 d |
Pioneer PR31Y43 | 60.03 e | 65.37 de | 73.81 abc | 66.40 b | Pioneer PR31Y43 | 1.36 e | 1.89 c | 1.42 e | 1.56 c |
Means | 64.85 c | 70.63 b | 74.96 a | Means | 1.57 c | 1.77 b | 1.93 a |
Ca (ppm) | Na (ppm) | ||||||||
Cultivars | I75 | I100 | I125 | Mean | Cultivars | I75 | I100 | I125 | Mean |
Syngenta Inove | 208.67 c | 271.52 a | 171.87 e | 217.35 a | Syngenta Inove | 142.28 e | 298.75 ab | 320.96 a | 254.00 b |
Tareks OSSK644 | 177.85 e | 138.67 f | 122.95 gh | 146.49 d | Tareks OSSK644 | 279.36 b | 279.69 b | 288.41 b | 282.49 a |
Pioneer PR31G98 | 113.82 h | 188.02 d | 214.28 c | 172.04 b | Pioneer PR31G98 | 199.93 cd | 289.30 b | 301.85 ab | 263.69 b |
Syngenta Dracma | 247.77 b | 179.42 de | 74.17 i | 167.12 c | Syngenta Dracma | 143.71 e | 281.41 b | 295.61 ab | 240.24 c |
Pioneer PR31Y43 | 123.97 g | 125.45 g | 144.55 f | 131.32 e | Pioneer PR31Y43 | 178.13 d | 219.28 c | 298.38 ab | 231.93 c |
Mean | 174.42 b | 180.62 a | 145.57 c | Mean | 188.68 c | 273.69 b | 301.04 a | ||
K (ppm) | S (ppm) | ||||||||
Cultivars | I75 | I100 | I125 | Mean | Cultivars | I75 | I100 | I125 | Mean |
Syngenta Inove | 3063.14 c | 2730.96 de | 1261.90 j | 2352.00 c | Syngenta Inove | 694.88 f | 790.28 e | 448.58 i | 644.58 d |
Tareks OSSK644 | 2497.82 ef | 3021.65 c | 1623.67 hi | 2381.05 c | Tareks OSSK644 | 940.78 ab | 808.24 de | 613.90 gh | 787.64 c |
Pioneer PR31G98 | 1831.47 h | 3801.85 a | 3700.12 a | 3111.15 b | Pioneer PR31G98 | 921.08 ab | 876.41 bcd | 702.80 f | 833.43 b |
Syngenta Dracma | 3404.94 b | 3814.09 a | 2898.15 cd | 3372.39 a | Syngenta Dracma | 951.53 a | 889.03 abc | 827.81 cde | 889.46 a |
Pioneer PR31Y43 | 2168.26 g | 2265.50 fg | 1556.02 i | 1996.59 d | Pioneer PR31Y43 | 671.72 fg | 640.18 fgh | 597.94 h | 636.62 d |
Mean | 2593.13 b | 3126.81 a | 2207.97 c | Mean | 836.00 a | 800.83 b | 638.21 c | ||
Mg (ppm) | P (ppm) | ||||||||
Cultivars | I75 | I100 | I125 | Mean | Cultivars | I75 | I100 | I125 | Mean |
Syngenta Inove | 593.06 j | 1116.07 de | 1118.05 de | 942.39 c | Syngenta Inove | 1731.43 g | 3431.68 cd | 3478.34 cd | 2880.48 b |
Tareks OSSK644 | 683.26 j | 1070.75 ef | 907.41 gh | 887.14 d | Tareks OSSK644 | 2314.60 f | 3072.91 e | 3639.55 bc | 3009.02 b |
Pioneer PR31G98 | 795.76 i | 1108.93 e | 1330.66 ab | 1078.45 b | Pioneer PR31G98 | 2410.95 f | 3966.64 ab | 3930.66 ab | 3436.08 a |
Syngenta Dracma | 1288.61 bc | 1395.73 a | 1217.76 cd | 1300.70 a | Syngenta Dracma | 1253.28 h | 3401.40 cde | 4140.64 a | 2931.77 b |
Pioneer PR31Y43 | 822.31 hi | 856.95 hi | 969.80 fg | 883.02 d | Pioneer PR31Y43 | 2216.07 f | 2515.94 f | 3249.98 de | 2660.67 c |
Mean | 836.60 b | 1109.69 a | 1108.73 a | Mean | 1985.27 c | 3277.71 b | 3687.84 a | ||
Cu (ppm) | Fe (ppm) | ||||||||
Cultivars | I75 | I100 | I125 | Mean | Cultivars | I75 | I100 | I125 | Mean |
Syngenta Inove | 0.76 j | 1.66 h | 2.23 def | 1.55 d | Syngenta Inove | 9.74 e | 13.39 d | 15.42 c | 12.85 b |
Tareks OSSK644 | 1.14 i | 2.43 cd | 2.95 a | 2.17 b | Tareks OSSK644 | 9.30 e | 10.57 e | 15.10 c | 11.66 c |
Pioneer PR31G98 | 1.69 h | 2.39 de | 2.65 bc | 2.25 b | Pioneer PR31G98 | 4.74 f | 19.17 a | 18.22 ab | 14.05 a |
Syngenta Dracma | 2.80 ab | 2.89 ab | 2.94 a | 2.88 a | Syngenta Dracma | 5.23 f | 17.37 b | 17.31 b | 13.30 b |
Pioneer PR31Y43 | 1.94 g | 2.01 fg | 2.16 efg | 2.04 c | Pioneer PR31Y43 | 5.37 f | 14.83 cd | 14.32 cd | 11.51 c |
Mean | 1.67 c | 2.28 b | 2.59 a | Mean | 6.88 c | 15.07 b | 16.07 a | ||
Zn (ppm) | Mn (ppm) | ||||||||
Cultivars | I75 | I100 | I125 | Mean | Cultivars | I75 | I100 | I125 | Mean |
Syngenta Inove | 9.02 h | 18.82 ef | 23.11 cd | 16.99 c | Syngenta Inove | 4.08 g | 7.87 cd | 8.64 bc | 6.86 d |
Tareks OSSK644 | 12.01 g | 24.37 c | 23.58 c | 19.99 b | Tareks OSSK644 | 7.66 de | 7.84 cd | 9.24 b | 8.25 b |
Pioneer PR31G98 | 17.29 f | 32.52 a | 27.31 b | 25.70 a | Pioneer PR31G98 | 6.65 f | 7.95 cd | 10.48 a | 8.36 ab |
Syngenta Dracma | 17.69 f | 29.49 b | 28.94 b | 25.37 a | Syngenta Dracma | 6.05 f | 8.61 bc | 11.41 a | 8.69 a |
Pioneer PR31Y43 | 17.51 f | 18.62 ef | 20.72 de | 18.95 b | Pioneer PR31Y43 | 6.70 f | 6.72 ef | 8.59 bcd | 7.33 c |
Mean | 14.70 b | 24.76 a | 24.73 a | Mean | 6.23 c | 7.80 b | 9.67 a |
Myristic acid (C14:0) | Palmitic acid (C16:0) | ||||||||
Cultivars | I75 | I100 | I125 | Mean | Cultivars | I75 | I100 | I125 | Mean |
Syngenta Inove | 0.08 bcde | 0.08 cde | 0.06 hi | 0.07 b | Syngenta Inove | 11.35 bcde | 10.78 de | 10.54 e | 10.89 c |
Tareks OSSK644 | 0.06 i | 0.07 ef | 0.09 abc | 0.07 b | Tareks OSSK644 | 10.70 e | 10.83 cde | 10.58 e | 10.70 c |
Pioneer PR31G98 | 0.08 de | 0.09 a | 0.08 de | 0.08 a | Pioneer PR31G98 | 11.74 abcd | 11.83 abc | 12.62 a | 12.06 b |
Syngenta Dracma | 0.07 gh | 0.09 abcd | 0.06 ghi | 0.07 b | Syngenta Dracma | 11.79 abcd | 12.42 a | 12.08 ab | 12.10 ab |
Pioneer PR31Y43 | 0.07 fg | 0.09 ab | 0.09 abc | 0.08 a | Pioneer PR31Y43 | 12.50 a | 12.54 a | 12.63 a | 12.55 a |
Mean | 0.07 c | 0.08 a | 0.08 b | Mean | 11.61 | 11.68 | 11.69 | ||
Stearic acid (C18:0) | Oleic acid (C18:1) | ||||||||
Cultivars | I75 | I100 | I125 | Mean | Cultivars | I75 | I100 | I125 | Mean |
Syngenta Inove | 1.62 e | 1.87 cd | 1.94 c | 1.81 d | Syngenta Inove | 29.82 | 28.51 | 29.26 | 29.20 a |
Tareks OSSK644 | 1.75 de | 1.92 c | 2.17 b | 1.94 c | Tareks OSSK644 | 29.05 | 29.76 | 30.15 | 29.65 a |
Pioneer PR31G98 | 2.30 b | 2.50 a | 1.93 c | 2.24 a | Pioneer PR31G98 | 28.49 | 28.49 | 29.10 | 28.69 ab |
Syngenta Dracma | 1.87 cd | 1.96 c | 1.88 cd | 1.90 c | Syngenta Dracma | 27.59 | 28.01 | 27.36 | 27.65 b |
Pioneer PR31Y43 | 1.99 c | 1.99 c | 2.19 b | 2.06 b | Pioneer PR31Y43 | 29.17 | 28.91 | 29.12 | 29.07 a |
Mean | 1.91 b | 2.05 a | 2.02 a | Mean | 28.83 | 28.74 | 29.00 | ||
Linoleic acid (C18:2) | Linolenic acid (C18:3) | ||||||||
Cultivars | I75 | I100 | I125 | Mean | Cultivars | I75 | I100 | I125 | Mean |
Syngenta Inove | 61.99 | 58.17 | 56.55 | 58.90 a | Syngenta Inove | 1.40 g | 1.70 bcd | 1.75 bc | 1.62 d |
Tareks OSSK644 | 56.15 | 56.76 | 55.47 | 56.13 bc | Tareks OSSK644 | 1.71 bcd | 1.76 bc | 2.25 a | 1.91 b |
Pioneer PR31G98 | 55.03 | 55.14 | 54.51 | 54.90 c | Pioneer PR31G98 | 2.19 a | 2.29 a | 1.81 b | 2.09 a |
Syngenta Dracma | 57.19 | 57.51 | 57.79 | 57.50 ab | Syngenta Dracma | 1.47 fg | 1.49 efg | 1.62 de | 1.53 e |
Pioneer PR31Y43 | 55.07 | 54.47 | 54.98 | 54.84 c | Pioneer PR31Y43 | 1.58 def | 1.81 b | 1.66 cd | 1.68 c |
Mean | 57.09 | 56.41 | 55.86 | Mean | 1.67 b | 1.81 a | 1.82 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ciftci, B.; Varol, I.S.; Kaymaz, E.; Saylak, S.; Kaplan, M. Assessment of Biochemical Composition, Mineral Content, and Fatty Acid Profile in Maize (Zea mays) Cultivars Under Water Stress and Excessive Water Using Biplot Analysis. Foods 2025, 14, 1432. https://doi.org/10.3390/foods14081432
Ciftci B, Varol IS, Kaymaz E, Saylak S, Kaplan M. Assessment of Biochemical Composition, Mineral Content, and Fatty Acid Profile in Maize (Zea mays) Cultivars Under Water Stress and Excessive Water Using Biplot Analysis. Foods. 2025; 14(8):1432. https://doi.org/10.3390/foods14081432
Chicago/Turabian StyleCiftci, Beyza, Ihsan Serkan Varol, Engin Kaymaz, Sevgi Saylak, and Mahmut Kaplan. 2025. "Assessment of Biochemical Composition, Mineral Content, and Fatty Acid Profile in Maize (Zea mays) Cultivars Under Water Stress and Excessive Water Using Biplot Analysis" Foods 14, no. 8: 1432. https://doi.org/10.3390/foods14081432
APA StyleCiftci, B., Varol, I. S., Kaymaz, E., Saylak, S., & Kaplan, M. (2025). Assessment of Biochemical Composition, Mineral Content, and Fatty Acid Profile in Maize (Zea mays) Cultivars Under Water Stress and Excessive Water Using Biplot Analysis. Foods, 14(8), 1432. https://doi.org/10.3390/foods14081432