Physicochemical and Microbiological Properties of Synbiotic Yogurt Made with Probiotic Yeast Saccharomyces boulardii in Combination with Inulin
Abstract
:1. Introduction
2. Materials and Methods
2.1. Microorganisms and Culture Condition
2.2. Preparation of Yogurt
2.3. Physiochemical Parameters
2.4. Texture Profile Analysis of Yogurt Samples
2.5. Microbial Enumeration
2.6. Volatile Analysis
2.7. Sensory Evaluation
2.8. Microstructural Analysis
2.9. Microrheological Analysis
2.10. Statistical Analysis
3. Results and Discussion
3.1. Physiochemical Parameters of Synbiotic Yogurt
3.2. Texture Profile
3.3. Survivability of S. boulardii and LAB in Synbiotic Yogurt
3.4. Volatile Compounds of Synbiotic Yogurt
3.5. Sensory Evaluation
3.6. Microstructure and Microrheology of Synbiotic Yogurt
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Hussain, I.; Atkinson, N. Quality Comparison of probiotic and natural yogurt. Pak. J. Nutr. 2009, 8, 9–12. [Google Scholar] [CrossRef]
- Adolfsson, O.; Meydani, S.N.; Russel, R.M. Yogurt and gut function. Am. J. Clin. Nutr. 2004, 80, 245–256. [Google Scholar] [CrossRef] [PubMed]
- Gad, A.S.; Kholif, A.M.; Sayad, A.F. Evaluation of the Nutritional Value of Functional Yogurt Resulting from Combination of Date Palm Syrup and Skin Milk. Am. J. Food Tech. 2010, 5, 250–259. [Google Scholar]
- Ghiassi. Moulded Fruit-Flavored Yogurt Formulation Using Natural Pigments and Evaluating Its Features. Master’s Thesis, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran, 2011. [Google Scholar]
- Guerra, N.P.; Rua, M.L.; Pastrana, L. Nutritional factors affecting the production of two bacteriocins from lactic acid bacteria on whey. Int. J. Food Microbiol. 2001, 70, 267–281. [Google Scholar] [CrossRef]
- Sarwar, A.; Aziz, T.; Din, J.; Khalid, A.; Rahman, T.; Daudzai, Z. Pros of Lactic Acid Bacteria in Microbiology: A Review. Biomed. Lett. 2018, 4, 59–66. [Google Scholar]
- Tomasik, P.J.; Tomasik, P. Probiotics and prebiotics. Cereal Chem. 2003, 80, 113–117. [Google Scholar] [CrossRef]
- Allgeyer, L.C.; Miller, M.J.; Lee, S.Y. Drivers of liking for yogurt drinks with prebiotics and probiotics. J. Food Sci. 2010, 75, 212–219. [Google Scholar] [CrossRef]
- Food and Agricultural Organization/World Health Organization Working Group. FAO/WHO Report. In Guidelines for the Evaluation of Probiotics in Food; FAO/WHO: London, ON, Canada, 2002. [Google Scholar]
- Waitzberg, D.L.; Pereira, C.C.; Logullo, L.; Jacintho, T.M.; Almeida, D.; Silva, M.; Torrinhas, R.S. Microbiota benefits after inulin and partially hydrolized guar gum supplementation—A randomized clinical trial in constipated women. Nutr. Hosp. 2012, 27, 123–129. [Google Scholar]
- Mazloomi, S.M.; Shekarforoush, S.S.; Ebrahimnejad, H.; Sajedianfard, J. Effect of adding inulin on microbial and physiochemical properties of low fat probiotic yogurt. Indian J. Vater. Res. 2011, 12, 35. [Google Scholar]
- Jeannette, S.M.; Eugene, B. Chang, in Physiology of the Gastrointestinal Tract, 6th ed.; Elsevier Inc.: Amsterdam, The Netherlands, 2018; pp. 795–810. [Google Scholar]
- Tuohy, K.M.; Probert, H.M.; Smejkal, C.W.; Gibson, G.R. Using probiotics and prebiotics to improve gut health. Drug Discov. Today 2003, 8, 692–700. [Google Scholar] [CrossRef]
- Zbar, N.S.; Nashi, L.F.; Saleh, S.M. Saccharomyces boulardii as effective probiotic against Shigella flexneri in mice. Int. J. Mater. Meth. Technol. 2013, 1, 17–21. [Google Scholar]
- Lynne, V. Evidence-based review of probiotic for antibiotic-associated diarrhea and Clostridium difficile infections. J. Clin. Microbiol. 2009, 15, 274–280. [Google Scholar]
- Zamora-Vega, R.; Montañez-Soto, J.L.; Martínez-Flores, H.E.; Flores-Magallón, R.; Muñoz- Ruiz, C.V.; Venegas-González, J.; Ariza, O.T.D.J. Effect of incorporating prebiotics in coating materials for the microencapsulation of Saccharomyces boulardii. Int. J. Food Sci. Nutr. 2012, 63, 930–935. [Google Scholar] [CrossRef] [PubMed]
- Gary, W. Probiotics: Living drugs. Am. J. Health Syst. Pharm. 2002, 58, 111–1109. [Google Scholar]
- Chowdhury, R.; Samanta, S.; Banerjee, D.; Bhattacharya, P. Studies on prebiotic food additive (Inulin) in Indian dietary fiber sources Garlic (Allium sativum), Wheat (Triticum Spp.), Oat (Avena sativa), and Dalia (Bulgur). Int. J. Pharm. Pharm. Sci. 2014, 6, 278–282. [Google Scholar]
- Paseephol, T.; Small, D.M.; Sharkat, F. Rheological and texture of set yogurt as affected by inulin addition. J. Texture Study 2008, 39, 617–634. [Google Scholar] [CrossRef]
- Periera, E.; Barros, L.; Ferreira, I. Relevance of the mention of Antioxidant Properties in yoghurt labels: In Vitro Evaluation and Chromatographic Analysis. Antioxidants 2013, 2, 62–76. [Google Scholar] [CrossRef]
- Cardarelli, H.R.; Buriti, F.C.A.; Castro, I.A.; Saad, S.M.I. Inulin and oligofructose improve sensory quality and increase the probiotic viable count in potentially symbiotic petit-suisse cheese. LWT-Food Sci. Technol. 2008, 41, 1037–1046. [Google Scholar] [CrossRef]
- Rezaei, R.; Khomeiri, M.; Aalami, M.; Kashaninejad, M. Effect of inulin on the physiochemical properties, flow behavior and probiotic survival of frozen yogurt. J. Food Sci. Technol. 2014, 51, 2809–2814. [Google Scholar] [CrossRef]
- Rodriguez, E.T.; Flores, H.E.M.; Lopez, J.O.R.; Vega, R.Z.; Garciglia, R.S.; Sanchez, R.E.P. Survival rate of Saccharomyces boulardii adapted to a functional freeze-dried yogurt: Experimental study related to processing, storage and digestion by Wistar rats. Funct. Foods Health Dis. 2017, 7, 98–114. [Google Scholar]
- Lee, W.J.; Lucey, J.A. Formation and Physical Properties of Yoghurt. Asian-Australas. J. Anim. Sci. 2010, 23, 1127–1130. [Google Scholar] [CrossRef]
- AOAC. Official Method of Analysis, 15th ed.; Association of Official Analytical Chemists: Arlington, VA, USA, 2000. [Google Scholar]
- AOAC. Official Methods of Analysis of the AOAC, 15th ed.; Association of Official Analytical Chemists: Arlington, VA, USA, 2002. [Google Scholar]
- Rodarte, P.; Biliaderis, C.G.; Vamvakas, C.; Zerfiridis, G.K. Effect of a commercial .oat-b-glucan concentrate on the chemical, physico-chemical and sensory attributes of a low-fat white-brined cheese product. Food Res. Int. 2004, 37, 83–94. [Google Scholar]
- Wen, Y.; Kong, B.; Zhao, X. Quality indices of the set-yoghurt prepared from bovine milk treated with horseradish peroxidase. J. Food Sci. Technol. 2014, 51, 1525–1532. [Google Scholar] [CrossRef] [PubMed]
- Guven, M.; Yasar, K.; Karaca, O.; Hayaloglu, A. The effect of inulin as a fat replacer on the quality of set-type yogurt manufacture. Int. J. Dairy Tech. 2005, 58, 180–184. [Google Scholar] [CrossRef]
- Cruz, A.G.; Cavalcanti, R.N.; Guerreiro, L.M.R.; Sant’Ana, A.S.; Nogueira, L.C.; Oliveira, C.A.F.; Deliza, R.; Cunha, R.L.; Faria, J.A.F.; Bolini, H.M.A. Developing a prebiotic yogurt: Rheological, physic chemical and microbiological aspects and adequacy of survival analysis methodology. J. Food Eng. 2013, 114, 323–330. [Google Scholar] [CrossRef]
- Panesar, P.S.; Shinde, C. Effect of storage on synersis, pH, Lactobacillus acidophilus count, Bifidobacterium bifidum count of Aloe vera fortified probiotic yoghurt. Curr. Res. Dairy Sci. 2012, 4, 17–23. [Google Scholar] [CrossRef]
- Christopher, M.D.; Reddy, V.P.; Venkateswarlu, K. Viability during storage of two Bifidobacterium bifidum strains in set and stirred flavored yoghurt containing whey protein concentrates. Nat. Prod. Radiance 2009, 8, 25–31. [Google Scholar]
- Salvador, A.; Fiszman, S.M. Textural and sensory characteristics of whole and skimmed flavored set-type yogurt during long storage. J. Dairy Sci. 2004, 87, 4033–4041. [Google Scholar] [CrossRef]
- Fadela, C.; Abderrahim, C.; Ahmed, B. Sensorial and Physico-Chemical characteristics of yogurt manufactured with ewe’s and skim milk. World J. Food Dairy Sci. 2009, 4, 136–140. [Google Scholar]
- Mudgila, P.; Jumaha, B.; Ahmad, M.; Hamed, F.; Maqsood, S. Rheological, micro-structural and sensorial properties of camel milk yogurt as influenced by gelatin. LWT-Food Sci. Technol. 2018, 98, 646–653. [Google Scholar] [CrossRef]
- Pang, Z.; Deeth, H.; Bansal, N. Effect of polysaccharides with different ionic charge on the rheological, microstructural and textural properties of acid milk gels. Food Res. Int. 2015, 72, 62–73. [Google Scholar] [CrossRef]
- Mariano, J.C.; Merced, J.H.M.; Miranda, A.J.F.; Marcelo, P.A. Improvement of textural properties of yogurt made from reduced-fat carabao milk by whey protein content adjustment and heat treatment of the milk. Acta Manil. 2011, 59, 19–30. [Google Scholar]
- Sandoval-Castilla, O.; Lobato-Calleros, C.; Aguirre-Mandujano, E.; Vernon-Carter, E.J. Microstructure and texture of yogurt as influenced by fat replacers. Int. Dairy J. 2004, 14, 151–159. [Google Scholar] [CrossRef]
- Supavititpatana, P.; Wirjantoro, T.I.; Apichartsrangkoon, A.; Raviyan, P. Addition of gelatin enhanced gelation of corn–milk yogurt. Food Chem. 2008, 106, 211–216. [Google Scholar] [CrossRef]
- Carvalho, A.; Silva, J.; Ho, P.; Teixeira, P.; Malcata, F.; Gibbs, P. Relevant factors for the preparation of freeze-dried lactic acid bacteria. Int. Dairy J. 2004, 14, 835–847. [Google Scholar] [CrossRef]
- Capela, P.; Hay, T.; Shah, N. Effect of cryoprotectants, prebiotics, and microencapsulation on the survival of probiotic organisms in yogurt and freeze-dried yogurt. Food Res. Int. 2006, 39, 203–211. [Google Scholar] [CrossRef]
- Arancibia, C.; Castro, C.; Jublot, L.; Costell, E.; Bayarri, S. Colour, rheology, flavour release and sensory perception of dairy desserts. Influence of thickener and fat content. LWT Food Sci. Technol. 2015, 62, 408–416. [Google Scholar] [CrossRef]
- Chaves, A.C.S.D.; Fernandez, M.; Lerayer, A.L.S.; Mierau, I.; Kleerebezem, M.; Hugenholtz, J. Metabolic engineering of acetaldehyde production by Streptococcus thermophilus. Appl. Environ. Microbiol. 2002, 68, 5656–5662. [Google Scholar] [CrossRef]
- Zha, M.; Yu, J.; Zhang, Y.; Wang, H.; Bai, N.; Qin, Y.; Liangliang, D.; Liu, W.; Zhang, H.; Bilige, M. Study on Streptococcus thermophilus isolated from Qula and associated characteristic of acetaldehyde and diacetyl in their fermented milk. J. Gen. Appl. Microbiol. 2015, 61, 50–56. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Güler, Z. Changes in salted yoghurt during storage. Int. J. Food Sci. Technol. 2007, 42, 235–245. [Google Scholar] [CrossRef]
- Li, N.; Zheng, F.-P.; Chen, H.-T.; Liu, S.-Y.; Chen, G.; Song, Z.-Y.; Sun, B.-G. Identification of volatile components in chinese sinkiang fermented camel milk using SAFE, SDE, and HS-410 SPME-GC/MS. Food Chem. 2011, 129, 1242–1252. [Google Scholar]
- Alemayehu, D.; Hannon, J.A.; Mcauliffe, O.; Ross, R.P. Characterization of plant-derived lactococci on the basis of their volatile compounds profile when grown in milk. Int. J. Food Microbiol. 2014, 172, 57–61. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pan, D.D.; Wu, Z.; Peng, T.; Zeng, X.Q.; Li, H. Volatile organic compounds profile during milk fermentation by Lactobacillus pentosus and correlations between volatiles flavor and carbohydrate metabolism. J. Dairy Sci. 2014, 97, 624–631. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dan, T.; Wang, D.; Jin, R.L.; Zhang, H.P.; Zhou, T.T.; Sun, T.S. Characterization of volatile compounds in fermented milk using solid-phase microextraction methods coupled with gas chromatography-mass spectrometry. J. Dairy Sci. 2017, 100, 2488–2500. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Golob, T.; Micovic, E.; Bertoncely, J.; Jamnik, M. Sensory acceptability of chocolate with inulin. Acta Agriculture Slovenia 2004, 83, 221–231. [Google Scholar]
- Wang, S.Y.; Chen, H.C.; Liu, J.R.; Lin, Y.C.; Chen, M.J. Identification of yeasts and evaluation of their distribution in Taiwanese kefir and viili starters. J. Dairy Sci. 2008, 91, 3798–3805. [Google Scholar] [CrossRef] [PubMed]
- Donkor, O.N.; Nilmini, S.L.I.; Stolic, P.; Vasilgevic, T.; Shah, N.P. Survival and activity of selected probiotic organism in set– type yogurt during cold storage. Int. Dairy J. 2007, 17, 92–151. [Google Scholar] [CrossRef]
- Brennan, C.S.; Tudorica, C.M. Carbohydrate-based fat replacers in the modification of the rheological, textural and sensory quality of yoghurt: Comparative study of the utilization of barley beta-glucan, guar gum and inulin. Int. J. Food Sci. Technol. 2008, 43, 824–833. [Google Scholar] [CrossRef]
- Bano, P.; Abdullah, M.; Nadeem, M.; Babar, M.E.; Khan, G.A. Preparation of functional yoghurt from sheep and goat milk blends. Pak. J. Agric. Sci. 2011, 48, 211–215. [Google Scholar]
- Mason, T.G.; Weitz, D.A. Optical Measurements of Frequency-Dependent Linear Viscoelastic Moduli of Complex Fluid. Phys. Rev. Lett. 1995, 74, 1250–1253. [Google Scholar] [CrossRef]
- Sun, C.; Wu, T.; Liu, R.; Liang, B.; Tian, Z.; Zhang, E.; Zhang, M. Effects of superfine grinding and microparticulation on the surface hydrophobicity of whey protein concentrate and its relation to emulsions stability. Food Hydrocoll. 2015, 51, 512–518. [Google Scholar] [CrossRef]
- Moschakis, T.; Murrayb, B.S.; Dickinson, E. On the kinetics of acid sodium caseinate gelation using particle tracking to probe the microrheology. J. Colloid. Interf. Sci. 2010, 345, 278–285. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Tan, Y.; Xu, H.; Niu, S.; Yu, J. Effect of 2, 2-azobis (2-amidinopropane) dihydrochloride oxidized casein on the microstructure and microrheology properties of emulsions. Food Sci. Biotechnol. 2016, 25, 1283–1290. [Google Scholar] [CrossRef] [PubMed]
- Tisserand, C.; Fleury, M.; Brunel, L.; Bru, P.; Meunier, G. Passive micro-rheology for measurement of the concentrated dispersions stability. In UK Colloids 2011; Springer: Berlin/Heidelberg, Germany, 2012; pp. 101–105. [Google Scholar]
- Yang, Y.L.; Zhou, G.H.; Xu, X.L.; Wang, Y. Rheological properties of myosin-gelatin mixtures. J. Food Sci. 2007, 72, C270–C275. [Google Scholar] [CrossRef] [PubMed]
- Corredig, M.; Alexander, M. Food emulsions studied by DWS: Recent advances. Trends Food Sci. Technol. 2008, 19, 67–75. [Google Scholar] [CrossRef]
Samples | pH | Acidity (%) | Fat (%) | Total Solid (%) | Total Protein (%) |
---|---|---|---|---|---|
S1 | 4.50 ± 0.04 a | 0.89 ± 0.05 a | 3.11 ± 0.12 a | 16.48 ± 0.13 b | 3.71 ± 0.07 a |
S2 | 4.49 ± 0.07 a | 0.90 ± 0.03 a | 3.10 ± 0.09 a | 16.45 ± 0.15 b | 3.49 ± 0.04 d |
S3 | 4.51 ± 0.05 a | 0.88 ± 0.07 a | 3.09 ± 0.10 a | 16.57 ± 0.12 ab | 3.55 ± 0.06 cd |
S4 | 4.50 ± 0.02 a | 0.89 ± 0.04 a | 3.07 ± 0.11 a | 16.64 ± 0.10 ab | 3.59 ± 0.09 bc |
S5 | 4.52 ± 0.08 a | 0.87 ± 0.08 a | 3.05 ± 0.07 a | 16.83 ± 0.18 a | 3.65 ± 0.05 ab |
Concentration (µg/L) | |||||||||
---|---|---|---|---|---|---|---|---|---|
Volatiles | RT a | RI b | CAS | Identification | S1 | S2 | S3 | S4 | S5 |
Acids | |||||||||
Acetic acid | 2.05 | 610 | 64-19-7 | RI, MS | n.d | n.d | 88.19 | n.d | n.d |
Octanoic acid | 12.18 | 1178 | 124-07-2 | RI, MS | 28.41 | 25.80 | n.d | n.d | n.d |
Hexanoic acid | 6.35 | 937 | 142-62-1 | RI, MS | 26.27 | 51.13 | 80.66 | 305.09 | 46.26 |
Esters | |||||||||
Formic acid, isopentyl ester | 2.39 | 831 | 110-45-2 | RI, MS | n.d | 99.30 | n.d | n.d | n.d |
Butanoic acid, 3-methyl-, 3-methylbutyl ester | 9.82 | 1105 | 659-70-1 | RI, MS | n.d | n.d | n.d | n.d | 29.09 |
Octanoic acid, methyl ester | 10.42 | 1123 | 111-11-5 | RI, MS | n.d | n.d | n.d | 22.93 | 20.22 |
Octanoic acid, ethyl ester | 12.8 | 1197 | 106-32-1 | RI, MS | 34.48 | 53.46 | 101.09 | 207.18 | 180.43 |
Decanoic acid, ethyl ester | 19.2 | 1395 | 110-38-3 | RI, MS | n.d | n.d | n.d | n.d | 29.01 |
Hexadecanoic acid, ethyl ester | 35.43 | 2093 | 628-97-7 | RI, MS | loq | loq | loq | 42.37 | 16.40 |
Aldehydes | |||||||||
3-Furaldehyde | 3.41 | 835 | 498-60-2 | RI, MS | n.d | n.d | 50.57 | 51.43 | 48.52 |
5-Hydroxymethylfurfural | 13.85 | 1224 | 67-47-0 | RI, MS | n.d | n.d | 115.41 | n.d | n.d |
Alcohols | |||||||||
3-Furanmethanol | 3.85 | 864 | 4412-91-3 | RI, MS | n.d | n.d | 80.89 | 85.54 | 82.12 |
Phenylethyl alcohol | 10 | 1110 | 60-12-8 | RI, MS | n.d | n.d | 128.23 | 75.12 | 51.70 |
Maltol | 10.13 | 1115 | 118-71-8 | RI, MS | n.d | n.d | 62.50 | 70.33 | 77.12 |
2-(2-Butoxyethoxy)- ethanol | 12.52 | 1188 | 112-34-5 | RI, MS | n.d | n.d | n.d | 20.32 | 18.01 |
Ketones | |||||||||
2,4-Dihydroxy-2,5-dimethyl-3(2H)-furan-3-one | 6.3 | 989 | 10,230-62-3 | RI, MS | n.d | n.d | 84.78 | 80.09 | 78.22 |
2,3-Dihydro-3,5-dihydroxy--6-methyl-4H-pyran-4-one | 11.16 | 1146 | 28,564-83-2 | RI, MS | n.d | n.d | 258.34 | 21.92 | n.d |
Pyrazole | |||||||||
3-Methoxycarbonylpyrazole | 9.16 | 1083 | 15,366-34-4 | RI, MS | n.d | n.d | 82.43 | 85.44 | 90.23 |
Others | |||||||||
Methoxy-phenyl- oxime | 4.32 | … | … | MS | 45.61 | loq | 228.48 | 229.47 | 40.80 |
Naphthalene | 12.2 | 1178 | 91-20-3 | RI, MS | n.d | n.d | n.d | 136.91 | 140.44 |
Sample | Color and Appearance | Taste and Odor | Texture | Overall Acceptability | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Storage/Day | Storage/Day | Storage/Day | Storage/Day | |||||||||||||||||
0 | 7 | 14 | 21 | 28 | 0 | 7 | 14 | 21 | 28 | 0 | 7 | 14 | 21 | 28 | 0 | 7 | 14 | 21 | 28 | |
S1 | 3 | 8.14 cd ± 1.48 | 7.98 def ± 1.37 | |||||||||||||||||
S2 | 6.30 lmn ± 1.2 | 6.11 no ± 0.71 | ||||||||||||||||||
S3 | 8.08 cde ± 0.56 | 7.91 efg ± 1.28 | ||||||||||||||||||
S4 | 7.83 fgh ± 0.58 | 7.68 h ± 0.84 | ||||||||||||||||||
S5 | 6.70 k ± 1.34 | 6.51 mno ± 1.58 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sarwar, A.; Aziz, T.; Al-Dalali, S.; Zhao, X.; Zhang, J.; ud Din, J.; Chen, C.; Cao, Y.; Yang, Z. Physicochemical and Microbiological Properties of Synbiotic Yogurt Made with Probiotic Yeast Saccharomyces boulardii in Combination with Inulin. Foods 2019, 8, 468. https://doi.org/10.3390/foods8100468
Sarwar A, Aziz T, Al-Dalali S, Zhao X, Zhang J, ud Din J, Chen C, Cao Y, Yang Z. Physicochemical and Microbiological Properties of Synbiotic Yogurt Made with Probiotic Yeast Saccharomyces boulardii in Combination with Inulin. Foods. 2019; 8(10):468. https://doi.org/10.3390/foods8100468
Chicago/Turabian StyleSarwar, Abid, Tariq Aziz, Sam Al-Dalali, Xiao Zhao, Jian Zhang, Jalal ud Din, Chao Chen, Yongqiang Cao, and Zhennai Yang. 2019. "Physicochemical and Microbiological Properties of Synbiotic Yogurt Made with Probiotic Yeast Saccharomyces boulardii in Combination with Inulin" Foods 8, no. 10: 468. https://doi.org/10.3390/foods8100468
APA StyleSarwar, A., Aziz, T., Al-Dalali, S., Zhao, X., Zhang, J., ud Din, J., Chen, C., Cao, Y., & Yang, Z. (2019). Physicochemical and Microbiological Properties of Synbiotic Yogurt Made with Probiotic Yeast Saccharomyces boulardii in Combination with Inulin. Foods, 8(10), 468. https://doi.org/10.3390/foods8100468