Effect of Different Yeast Strains and Temperature of Fermentation on Basic Enological Parameters, Polyphenols and Volatile Compounds of Aurore White Wine
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Vinification Protocols
2.3. Physicochemical Analyses
2.4. Analysis of Phenolic Compounds by Ultra Performance Liquid Chromatography–Photodiode Array (UPLC–PDA)
2.5. Determination of Antioxidant Capacity
2.6. Analysis of Volatile Compound Measurement by Gas Chromatography–Mass Spectrometry (GC–MS)
2.7. Statistical Data Processing
3. Results and Discussion
3.1. Ethanol pH, Total Acidity, Sugars Content and Color of Must and Wine
3.2. Quantification of Phenolic Compounds in Must and Wine
3.3. Antioxidant Capacity of Must and Wine
3.4. Content of Volatile Compounds in Must and Wine
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Rodriquez, M.E.; Infante, J.J.; Molina, M.; Dominguez, M.; Rebordinos, L.; Cantoral, J.M. Genomic characterization and selection of wine yeast to conduct industrial fermentations of a white wine produced in a SW Spain winery. J. Appl. Microbiol. 2010, 108, 1292–1302. [Google Scholar] [CrossRef]
- Lima, M.D.; Dutra, M.D.P.; Toaldo, I.M.; Correa, L.C.; Pereira, G.E.; de Oliveira, D.; Bordignon-Luiz, M.T.; Ninow, J.L. Phenolic compounds, organic acids and antioxidant activity of grape juices produced in industrial scale by different processes of maceration. Food Chem. 2015, 188, 384–392. [Google Scholar] [CrossRef] [PubMed]
- Dobrowolska-Iwanek, J.; Gąstoł, M.; Wanat, A.; Krośniak, M.; Jancik, M.; Zagrodzki, P. Wine of cool-climate areas in south Poland. S. Afr. J. Enol. Vitic. 2014, 35, 1–9. [Google Scholar] [CrossRef]
- Tarko, T.; Duda-Chodak, A.; Satora, P.; Sroka, P.; Gojniczek, I. Chemical composition of cool-climate grapes and enological parameters of cool-climate wines. Fruits 2014, 69, 75–86. [Google Scholar] [CrossRef]
- Wojdyło, A.; Samoticha, J.; Nowicka, P.; Chmielewska, J. Characterisation of (poly) phenolic constituents of two interspecific red hybrids of Rondo and Regent (Vitis vinifera) by LC–PDA–ESI-MS QTof. Food Chem. 2018, 239, 94–101. [Google Scholar] [CrossRef] [PubMed]
- Jordao, A.M.; Vilela, A.; Cosme, F. From sugar of grape to alcohol of wine: Sensorial impact of alcohol in wine. Beverages 2015, 4, 292–310. [Google Scholar] [CrossRef]
- Fischer, U.; Noble, A.C. The effect of ethanol, catechin concentration, and pH on sourness and bitterness of wine. Am. J. Enol. Vitic. 1994, 45, 6–10. [Google Scholar]
- Goldner, M.C.; Zamora, M.C.; di Leo Lira, P.; Gianninoto, H.; Bandoni, A. Effect of ethanol level in the perception of aroma attributes and the detection of volatile compounds in red wine. J. Sens. Stud. 2009, 24, 243–257. [Google Scholar] [CrossRef]
- Kourkoutas, Y.; Koutinas, A.A.; Kanellaki, M.; Banat, I.M.; Marchant, R. Continuous wine fermentation using a psychrophilic yeast immobilized on apple cuts at different temperatures. Food Microbiol. 2002, 19, 127–134. [Google Scholar] [CrossRef]
- Swiegers, J.H.; Bartkowsky, E.J.; Henschke, P.A.; Pretorius, I.S. Yeast and bacterial modulation of wine aroma and flavor. Aust. J. Grape Wine Res. 2005, 11, 139–173. [Google Scholar] [CrossRef]
- Suklje, K.; Antalick, G.; Buica, A.; Coetzee, Z.A.; Brand, J.; Schmidtke, L.M.; Vivier, M.A. Inactive dry yeast application on grapes modify Sauvignon Blanc wine aroma. Food Chem. 2016, 197, 1073–1084. [Google Scholar] [CrossRef] [PubMed]
- Pozo-Bayón, M.Á.; Andújar-Ortiz, I.; Moreno-Arribas, M.V. Scientific evidences beyond the application of inactive dry yeast preparations in winemaking. Food Res. Int. 2009, 42, 754–761. [Google Scholar]
- Samoticha, J.; Wojdyło, A.; Golis, T. Phenolic composition, physicochemical properties and antioxidant activity of interspecific hybrids of grapes growing in Poland. Food Chem. 2016, 215, 263–273. [Google Scholar] [CrossRef] [PubMed]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Benzie, I.F.F.; Strain, J.J. Ferric reducing ability of plasma (FRAP) as a measure of antioxidant power: The FRAP assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef]
- Wen Chua, L.Y.; Chua, B.L.; Figiel, A.; Chong, C.H.; Wojdyło, A.; Szumny, A.; Shean Yaw Choong, T. Antioxidant activity, and volatile and phytosterol contents of Strobilanthes crispus dehydrated using conventional and vacuum microwave drying methods. Molecules 2019, 24, 1397. [Google Scholar] [CrossRef]
- Versari, A.; Parpinello, G.P.; Scazzina, F.; Del Rio, D.D. Prediction of total antioxidant capacity of red wine by Fourier transform infrared spectroscopy. Food Control 2010, 21, 786–789. [Google Scholar] [CrossRef]
- Lukić, I.; Radeka, S.; Grozaj, N.; Staver, M.; Peršurić, D. Changes in physico-chemical and volatile aroma compound composition of Gewürztraminer wine as a result of late and ice harvest. Food Chem. 2016, 196, 1048–1057. [Google Scholar] [CrossRef]
- Cliff, M.; Yuksel, D.; Girard, B.; King, M. Characterization of Canadian ice wines by sensory and compositional analyses. Am. J. Enol. Vitic. 2002, 53, 46–53. [Google Scholar]
- Wollan, D.; Pham, D.-T.; Wilkinson, K.L. Changes in wine ethanol content due to evaporation from wine glasses and implications for sensory analysis. J. Agric. Food Chem. 2016, 64, 7569–7575. [Google Scholar] [CrossRef]
- Rajkovic, M.B.; Novakovic, I.D.; Petrovic, A. Determination of titratable acidity in white wine. J. Agric. Sci. 2007, 52, 169–184. [Google Scholar] [CrossRef]
- Costa, E.; da Silva, J.F.; Cosme, F.; Jordão, A.M. Adaptability of some French red grape varieties cultivated at two different Portuguese terroirs: Comparative analysis with two Portugese red grape varieties using physicochemical and phenolic parameters. Food Res. Int. 2015, 78, 302–312. [Google Scholar] [CrossRef] [PubMed]
- Prenesti, E.; Berto, S.; Toso, S.; Daniele, P.D. Acid-Base chemistry of white wine: Analytical characterisation and chemical modelling. Sci. World J. 2012, 2012, 249041. [Google Scholar] [CrossRef] [PubMed]
- Berenguer, M.; Vegara, S.; Barrajón, E.; Saura, D.; Valero, M.; Martí, N. Physicochemical characterization of pomegranate wines fermented with three different Saccharomyces cerevisiae yeast strains. Food Chem. 2016, 190, 848–855. [Google Scholar] [CrossRef] [PubMed]
- Maury, C.; Clark, A.C.; Scollary, G.R. Determination of the impact of bottle colour and phenolic concentration on pigment development in white wine stored under external conditions. Anal. Chim. Acta 2010, 660, 81–86. [Google Scholar] [CrossRef]
- Stratil, P.; Kubáň, V.; Fojtová, J. Comparison of the phenolic content and total antioxidant activity in wines as determined by spectrophotometric methods. Czech J. Food Sci. 2018, 26, 242–253. [Google Scholar] [CrossRef]
- Markoski, M.M.; Garavaglia, J.; Oliveira, A.; Olivaes, J.; Marcadenti, A. Molecular properties of red wine compounds and cardiometabolic benefits. Nutr. Metab. Insights 2016, 9, 51–57. [Google Scholar] [CrossRef]
- Foo, L.Y.; Mcgraw, G.W.; Hemingway, R.W. Condensed tannins—Preferential substitution at the interflavanoid bond by sulfite ion. J. Chem. Soc. Chem. Commum. 1983, 12, 672–673. [Google Scholar] [CrossRef]
- Recamales, A.F.; Sayago, A.M.; Gonzalez-Miret, L.; Hernanz, D. The effect of time and storage conditions on the phenolic composition and colour of white wine. Food Res. Int. 2006, 39, 220–229. [Google Scholar] [CrossRef]
- Ferreira-Lima, N.E.; Burin, V.M.; Caliari, V.; Bordignon-Luiz, M.T. Impact of pressing conditions on the phenolic composition, radical scavenging activity and glutathione content of brazilian Vitis vinifera white wines and evolution during bottle. FABT Food Bioprocess Technol. 2016, 9, 944–957. [Google Scholar] [CrossRef]
- Ma, L.; Watrelot, A.A.; Addison, B.; Waterhouse, A.L. Condensed tannin reacts with SO2 during wine aging, yielding flavan-3-ol sulfonates. J. Agric. Food Chem. 2018, 66, 9259–9268. [Google Scholar] [CrossRef] [PubMed]
- Mattivi, F.; Arapitsas, P.; Perenzoni, D.; Guella, G. Influence of storage conditions on the composition of red wines. ACS Symp. Ser. 2015, 1203, 29–49. [Google Scholar]
- Baderschneider, B.; Winterhalter, P. Isolation and characterization of novel benzoates, cinnamates, flavonoids, and lignans from Riesling wine and screening for antioxidant activity. J. Agric. Food Chem. 2001, 49, 2788–2798. [Google Scholar] [CrossRef] [PubMed]
- Soleas, G.J.; Diamandis, E.P.; Goldberg, D.M. Wine as a biological fluid: History, production, and role in disease prevention. J. Clin. Lab. Anal. 1997, 11, 287–313. [Google Scholar] [CrossRef]
- Fuhrman, B.; Lavy, A.; Avlram, M. Consumption of red wine with meals reduces the susceptibility of human plasma low-density-lipoprotein to lipid peroxidation. Am. J. Clin. Nutr. 1995, 61, 549–554. [Google Scholar] [CrossRef] [PubMed]
- Vinson, J.A.; Hontz, B.A. Phenol antioxidant Index: Comparative antioxidant effectiveness of red and white wines. J. Agric. Food Chem. 1995, 43, 401–403. [Google Scholar] [CrossRef]
- Ou, K.; Gu, L. Absorption and metabolism of proanthocyanidins. J. Funct. Foods 2014, 7, 43–53. [Google Scholar] [CrossRef]
- Scrimgeour, N.; Nordestgaard, S.; Lloyd, N.D.R.; Wilkes, E.N. Exploring the effect of elevated storage temperature on wine composition. Aust. J. Grape Wine Res. 2015, 21, 713–722. [Google Scholar] [CrossRef]
- Cejudo-Bastante, M.J.; Hermosín-Gutiérrez, I.; Pérez-Coello, M.S. Accelerated aging against conventional storage: Effects on the volatile composition of chardonnay white wines. J. Food Sci. 2013, 78, 507–513. [Google Scholar] [CrossRef]
- Palomo, E.S.; Gonzalez-Vinas, M.A.; Diaz-Maroto, M.C.; Soriano-Perez, A.; Perez-Coello, M.S. Aroma potential of Albillo wines and effect of skin-contact treatment. Food Chem. 2007, 103, 631–640. [Google Scholar] [CrossRef]
- De la Roza, C.; Laca, A.; Garcia, L.A.; Diaz, M. Ethanol and ethyl acetate production during the cider fermentation from laboratory to industrial scale. Process Biochem. 2003, 38, 1451–1456. [Google Scholar] [CrossRef]
- Herrero, M.; Garcia, L.A.; Diaz, M. Volatile compounds in cider: Inoculation time and fermentation temperature effects. J. Inst. Brew. 2006, 112, 210–214. [Google Scholar] [CrossRef]
- Molina, A.M.; Swiegers, J.H.; Varela, C.; Pretorius, I.S.; Agosin, E. Influence of wine fermentation temperature on the synthesis of yeast-derived volatile aroma compounds. Appl. Microbiol. Biotechnol. 2007, 77, 675–687. [Google Scholar] [CrossRef] [PubMed]
- Beltran, G.; Novo, M.; Leberre, V.; Sokol, S.; Labourdette, D.; Guillamon, J.M.; Mas, A.; François, J.; Rozes, N. Integration of transcriptomic and metabolic analyses for understanding the global responses of low-temperature winemaking fermentations. FEMS Yeast Res. 2006, 6, 1167–1183. [Google Scholar] [CrossRef] [Green Version]
- Flamini, R. Volatile and aroma compounds in wines. In Mass Spectrometry in Grape and Wine Chemistry; Flamini, R., Traldi, P., Eds.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2010. [Google Scholar]
- Beltran, G.; Novo, M.; Guillamón, J.M.; Mas, A.; Rozès, N. Effect of fermentation temperature and culture media on the yeast lipid composition and wine volatile compounds. Int. J. Food Microbiol. 2008, 121, 169–177. [Google Scholar] [CrossRef]
- Garde Cerdan, T.; Torrea Goni, D.; Ancin Azpilicueta, C. Changes in the concentration of volatile oak compounds and esters in red wine stored for 18 months in re-used French oak barrels. Aust. J. Grape Wine Res. 2002, 8, 140–145. [Google Scholar] [CrossRef]
- Yilmaztekin, M.; Cabaroglu, T.; Erten, H. Effects of fermentation temperature and aeration on production of natural isoamyl acetate by Williopsis saturnus var. saturnus. BioMed Res. Int. 2013, 2013, 870802. [Google Scholar]
- Rapp, A.; Versini, G. Influence of nitrogen compounds in grapes on aroma compounds in wine. In Proceedings of the International Symposium on Nitrogen in Grapes and Wine, Seattle, WA, USA, 18–19 June 1991; American Society of Enology and Viticulture: Davis, CA, USA, 1991; pp. 156–164. [Google Scholar]
- Zhang, S.; Petersen, M.A.; Liu, J.; Toldam-Andersen, T.B. Influence of pre-fermentation treatments on wine volatile and sensory profile of the new disease tolerant cultivar Solaris. Molecules 2015, 20, 21609–21625. [Google Scholar] [CrossRef] [Green Version]
- Torija, M.J.; Beltran, G.; Novo, M.; Poblet, M.; Guillamon, J.M.; Mas, A.; Rozes, N. Effects of fermentation temperature and Saccharomyces species on the cell fatty acid composition and presence of volatile compounds in wine. Int. J. Food Microbiol. 2003, 85, 127–136. [Google Scholar] [CrossRef]
- Sun, Q.; Gates, M.J.; Lavin, E.H.; Acree, T.E.; Sacks, G.L. Comparison of odor-active compounds in grapes and wines from Vitis vinifera and non-foxy American grape species. J. Agric. Food Chem. 2011, 59, 10657–10664. [Google Scholar] [CrossRef]
- Robinson, J.; Harding, J.; Vouillamoz, J. Wine Grapes—A Complete Guide to 1368 Vine Varieties, Including Their Origins and Flavours; Allen Lane: Lomdon, UK, 2012. [Google Scholar]
- Rombough, L. The Grape Grower: A Guide to Organic Viticulture; Chelsea Green Publishing: White River Junction, VT, USA, 2002. [Google Scholar]
Fermentation Temperature (°C) | Yeast | Ethanol (% v/v) | pH | Total Acidity (g Tartaric Acid/L) | Sugar (g/100 mL) | Color | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
L* | a* | b* | ||||||||||||
Must | - | 3.2 | 11.1 | 19.9 | 34.8 | −0.26 | 1.9 | |||||||
F | F | W | F | W | F | W | F | W | F | W | F | W | ||
12 | Spontaneous fermentation | 10.8 ± 0.8 | 3.1 ± 0.1 | 2.9 ± 0.1 | 10.4 ± 0.2 | 8.3 ± 0.4 | 3.6 ± 0.3 | 2.3 ± 0.7 | 32.9 ± 1.1 | 35.5 ± 1.1 | −0.13 ± 0.0 | −0.52 ± 0.0 | 3.7 ± 0.2 | 3.8 ± 0.3 |
S. cerevisiae SIHA® Cryarome | 12.0 ± 0.6 | 3.1 ± 0.3 | 2.9 ± 0.2 | 10.1 ± 0.5 | 10.0 ± 0.6 | 1.0 ± 0.4 | 1.0 ± 0.1 | 33.8 ± 1.7 | 34.8 ± 1.9 | 0.43 ± 0.1 | −0.09 ± 0.1 | 3.9 ± 0.2 | 4.7 ± 0.2 | |
S. cerevisiae Challenge Aroma White | 12.2 ± 0.7 | 3.1 ± 0.2 | 2.9 ± 0.0 | 9.1 ± 0.5 | 9.1 ± 0.1 | 0.8 ± 0.1 | 0.8 ± 0.0 | 34.0 ± 0.9 | 35.8 ± 1.0 | −0.13 ± 0.0 | −0.56 ± 0.1 | 3.8 ± 0.1 | 3.9 ± 0.3 | |
S. bayanus SIHA® Active Yeast 4 | 11.9 ± 0.8 | 3.1 ± 0.1 | 2.9 ± 0.1 | 8.7 ± 0.4 | 9.1 ± 0.2 | 1.5 ± 0.4 | 1.5 ± 0.2 | 34.0 ± 1.3 | 35.5 ± 1.5 | −0.21 ± 0.1 | −0.49 ± 0.0 | 3.8 ± 0.1 | 4.1 ± 0.4 | |
20 | Spontaneous fermentation | 11.8 ± 0.9 | 3.0 ± 0.2 | 2.8 ± 0.1 | 8.9 ± 0.3 | 8.7 ± 0.1 | 2.2 ± 0.1 | 1.5 ± 0.3 | 32.6 ± 1.0 | 35.5 ± 1.4 | −0.16 ± 0.1 | −0.40 ± 0.0 | 3.6 ± 0.0 | 4.4 ± 0.4 |
S. cerevisiae SIHA® Cryarome | 11.9 ± 1.0 | 3.0 ± 0.1 | 2.8 ± 0.0 | 10.7 ± 0.5 | 10.1 ± 0.4 | 1.1 ± 0.2 | 1.1 ± 0.2 | 32.1 ± 2.0 | 36.1 ± 1.5 | −0.09 ± 0.0 | −0.52 ± 0.0 | 2.8 ± 0.1 | 3.0 ± 0.2 | |
S. cerevisiae Challenge Aroma White | 12.2 ± 1.1 | 3.1 ± 0.1 | 2.8 ± 0.2 | 9.6 ± 0.5 | 9.6 ± 0.9 | 1.3 ± 0.1 | 1.0 ± 0.1 | 32.5 ± 0.7 | 36.1 ± 1.7 | −0.15 ± 0.0 | −0.52 ± 0.1 | 2.6 ± 0.1 | 2.9 ± 0.5 | |
S. bayanus SIHA® Active Yeast 4 | 11.9 ± 0.9 | 3.1 ± 0.1 | 2.9 ± 0.2 | 9.6 ± 0.4 | 9.4 ± 1.1 | 1.5 ± 0.1 | 1.5 ± 0.2 | 34.0 ± 1.2 | 35.8 ± 1.9 | −0.21 ± 0.0 | −0.41 ± 0.0 | 3.0 ± 0.2 | 3.0 ± 0.3 | |
Yeast | Spontaneous fermentation | 11.3 a | 3.0 a | 2.9 a | 9.7 a | 8.5 b | 2.9 a | 1.9 a | 32.8 a | 35.5 a | −0.15 b | −0.46 ab | 3.6 a | 4.1 a |
S. cerevisiae SIHA® Cryarome | 12.0 a | 3.0 a | 2.8 a | 10.4 a | 10.0 a | 1.0 b | 1.1 c | 33.0 a | 35.4 a | 0.17 a | −0.31 a | 3.4 a | 3.9 a | |
S. cerevisiae Challenge Aroma White | 12.2 a | 3.1 a | 2.9 a | 9.4 a | 9.3 ab | 1.1 b | 0.9 c | 33.2 a | 35.9 a | −0.14 b | −0.54 b | 3.2 a | 3.4 a | |
S. bayanus SIHA® Active Yeast 4 | 11.9 a | 3.1 a | 2.9 a | 9.1 a | 9.2 ab | 1.5 b | 1.5 b | 34.0 a | 35.6 a | −0.21 b | −0.45 ab | 3.4 a | 3.6 a | |
Temperature | 12 °C | 11.7 a | 3.1 a | 2.9 a | 9.6 a | 9.1 a | 1.7 a | 1.4 a | 33.7 a | 35.4 a | −0.01 a | −0.42 a | 3.8 a | 4.1 a |
20 °C | 11.9 a | 3.0 a | 2.8 a | 9.7 a | 9.4 a | 1.5 a | 1.3 a | 32.8 a | 35.9 a | −0.15 a | −0.46 a | 3.0 b | 3.3 a |
Fermentation Temperature (°C) | Yeast | Phenolic Acids | Flavonols | Flavan-3-Ols | Ʃ Phenolic Compounds | ||||
---|---|---|---|---|---|---|---|---|---|
Must | - | 75.0 | 1.1 | 236.4 | 312.5 | ||||
12 | F | W | F | W | F | W | F | W | |
Spontaneous fermentation | 9.7 ± 1.1 | 10.6 ± 1.4 | 0.5 ± 0.1 | 0.6 ± 0.3 | 165.6 ± 3.6 | 210.3 ± 2.3 | 175.8 ± 5.2 | 221.6 ± 4.8 | |
S. cerevisiae SIHA® Cryarome | 10.7 ± 1.2 | 10.7 ± 1.8 | 0.3 ± 0.0 | 0.6 ± 0.1 | 248.4 ± 4.9 | 275.9 ± 1.7 | 259.3 ± 6.7 | 287.2 ± 3.9 | |
S. cerevisiae Challenge Aroma White | 14.2 ± 0.9 | 14.8 ± 2.3 | 0.3 ± 0.0 | 0.8 ± 0.2 | 212.1 ± 5.2 | 228.7 ± 1.8 | 226.6 ± 4.4 | 244.3 ± 5.9 | |
S. bayanus SIHA® Active Yeast 4 | 16.6 ± 2.1 | 15.6 ± 2.1 | 0.4 ± 0.0 | 1.0 ± 0.2 | 126.3 ± 2.9 | 191.2 ± 2.6 | 143.3 ± 5.9 | 207.8 ± 6.2 | |
20 | Spontaneous fermentation | 23.0 ± 1.2 | 14.4 ± 1.7 | 0.2 ± 0.0 | 0.6 ± 0.1 | 159.5 ± 1.9 | 186.1 ± 2.8 | 182.7 ± 4.8 | 201.0 ± 6.2 |
S. cerevisiae SIHA® Cryarome | 38.7 ± 2.5 | 24.6 ± 2.8 | 0.4 ± 0.1 | 0.6 ± 0.1 | 304.2 ± 2.4 | 355.1 ± 1.6 | 394.2 ± 5.7 | 329.4 ± 6.4 | |
S. cerevisiae Challenge Aroma White | 40.0 ± 0.9 | 37.2 ± 2.0 | 0.2 ± 0.0 | 0.6 ± 0.0 | 261.1 ± 1.7 | 284.0 ± 1.5 | 301.3 ± 4.6 | 321.9 ± 7.4 | |
S. bayanus SIHA® Active Yeast 4 | 45.6 ± 3.5 | 25.1 ± 1.9 | 0.3 ± 0.0 | 0.4 ± 0.0 | 182.5 ± 1.0 | 175.5 ± 1.3 | 228.4 ± 7.4 | 201.0 ± 3.9 | |
Yeast | Spontaneous fermentation | 16.4 a | 12.5 b | 0.4 a | 0.6 a | 162.5 c | 198.2 b | 179.3 b | 211.3 b |
S. cerevisiae SIHA® Cryarome | 24.7 a | 17.7 ab | 0.3 a | 0.6 a | 290.1 a | 301.7 a | 326.8 a | 308.3 a | |
S. cerevisiae Challenge Aroma White | 27.1 a | 26.0 a | 0.3 a | 0.7 a | 236.6 b | 256.4 ab | 263.9 a | 283.1 a | |
S. bayanus SIHA® Active Yeast 4 | 31.1 a | 20.3 ab | 0.4 a | 0.7 a | 154.4 c | 183.3 b | 185.9 b | 204.4 b | |
Temperature | 12 °C | 12.8 b | 12.9 b | 0.4 a | 0.8 a | 188.1 a | 226.5 a | 201.3 a | 240.2 a |
20 °C | 36.8 a | 25.4 a | 0.3 a | 0.6 a | 239.5 a | 237.4 a | 276.6 a | 263.3 a |
Temperature of Fermentation (°C) | Yeast | Volatile Compounds | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Esters | Alcohols | Aldehydes | Ketones | Terpenes | Other | Total | |||||||||
Must | - | 1.0 | 0.14 | 0.001 | 0.002 | 0.005 | 0.07 | 1.3 | |||||||
F | W | F | W | F | W | F | W | F | W | F | W | F | W | ||
12 | Spontaneous fermentation | 1.4 | 1.4 | 0.13 | 0.16 | 0.001 | 0.0002 | 0.004 | 0.003 | 0.005 | 0.003 | 0.09 | 0.07 | 1.7 | 1.6 |
S. cerevisiae SIHA® Cryarome | 7.6 | 3.9 | 0.19 | 0.27 | 0.004 | 0.003 | 0.005 | 0.004 | 0.009 | 0.005 | 0.15 | 0.10 | 8.0 | 4.2 | |
S. cerevisiae Challenge Aroma White | 4.5 | 3.4 | 0.12 | 0.19 | 0.002 | 0.002 | 0.004 | 0.004 | 0.007 | 0.004 | 0.26 | 0.18 | 4.9 | 3.7 | |
S. bayanus SIHA® Active Yeast 4 | 5.8 | 2.9 | 0.11 | 0.15 | 0.003 | 0.002 | 0.004 | 0.004 | 0.003 | 0.003 | 0.16 | 0.12 | 6.1 | 3.2 | |
20 | Spontaneous fermentation | 1.4 | 2.4 | 0.14 | 0.17 | 0.001 | 0.001 | 0.002 | 0.002 | 0.007 | 0.004 | 0.10 | 0.06 | 1.6 | 2.6 |
S. cerevisiae SIHA® Cryarome | 5.3 | 3.5 | 0.20 | 0.29 | 0.004 | 0.003 | 0.003 | 0.002 | 0.004 | 0.003 | 0.09 | 0.07 | 5.6 | 3.9 | |
S. cerevisiae Challenge Aroma White | 5.1 | 3.4 | 0.21 | 0.26 | 0.006 | 0.004 | 0.003 | 0.002 | 0.01 | 0.005 | 0.23 | 0.14 | 5.6 | 3.8 | |
S. bayanus SIHA® Active Yeast 4 | 6.0 | 2.6 | 0.12 | 0.18 | 0.003 | 0.002 | 0.004 | 0.003 | 0.008 | 0.003 | 0.15 | 0.10 | 6.3 | 2.9 | |
Yeast | Spontaneous fermentation | 1.4 c | 1.9 c | 0.13 bc | 0.17 c | 0.001 b | 0.0006 | 0.003 a | 0.002 a | 0.006 ab | 0.004 a | 0.09 c | 0.07 c | 1.6 c | 2.1 c |
S. cerevisiae SIHA® Cryarome | 6.5 a | 3.7 a | 0.20 a | 0.28 a | 0.004 a | 0.003 ab | 0.004 a | 0.003 a | 0.006 ab | 0.004 a | 0.12 c | 0.09 c | 6.8 a | 4.1 a | |
S. cerevisiae Challenge Aroma White | 4.8 b | 3.4 a | 0.16 ab | 0.22 b | 0.004 a | 0.003 a | 0.004 a | 0.003 a | 0.008 a | 0.005 a | 0.25 a | 0.16 a | 5.2 b | 3.8 a | |
S. bayanus SIHA® Active Yeast 4 | 5.9 a | 2.7 b | 0.11 c | 0.16 c | 0.003 a | 0.002 b | 0.004 a | 0.003 a | 0.005 b | 0.003 b | 0.16 b | 0.11 b | 6.2 ab | 3.0 b | |
Temperature | 12 °C | 4.8 a | 2.9 a | 0.14 a | 0.19 a | 0.003 a | 0.002 a | 0.004 a | 0.004 a | 0.006 a | 0.004 a | 0.17 a | 0.12 a | 5.2 a | 3.2 a |
20 °C | 4.4 a | 3.0 a | 0.17 a | 0.22 a | 0.004 a | 0.003 a | 0.003 b | 0.002 b | 0.007 a | 0.004 a | 0.14 a | 0.09 a | 4.8 a | 3.3 a |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Samoticha, J.; Wojdyło, A.; Chmielewska, J.; Nofer, J. Effect of Different Yeast Strains and Temperature of Fermentation on Basic Enological Parameters, Polyphenols and Volatile Compounds of Aurore White Wine. Foods 2019, 8, 599. https://doi.org/10.3390/foods8120599
Samoticha J, Wojdyło A, Chmielewska J, Nofer J. Effect of Different Yeast Strains and Temperature of Fermentation on Basic Enological Parameters, Polyphenols and Volatile Compounds of Aurore White Wine. Foods. 2019; 8(12):599. https://doi.org/10.3390/foods8120599
Chicago/Turabian StyleSamoticha, Justyna, Aneta Wojdyło, Joanna Chmielewska, and Joanna Nofer. 2019. "Effect of Different Yeast Strains and Temperature of Fermentation on Basic Enological Parameters, Polyphenols and Volatile Compounds of Aurore White Wine" Foods 8, no. 12: 599. https://doi.org/10.3390/foods8120599
APA StyleSamoticha, J., Wojdyło, A., Chmielewska, J., & Nofer, J. (2019). Effect of Different Yeast Strains and Temperature of Fermentation on Basic Enological Parameters, Polyphenols and Volatile Compounds of Aurore White Wine. Foods, 8(12), 599. https://doi.org/10.3390/foods8120599