Bioactive Compounds, Nutritional Value, and Potential Health Benefits of Indigenous Durian (Durio Zibethinus Murr.): A Review
Abstract
:1. Introduction
2. Nutritional Composition of Different Durian Varieties
3. Bioactive Compounds and Antioxidant Capacity
4. Volatile Components
5. Health Benefits of Durian
5.1. Effects of Durian on Blood Glucose
5.2. Cholesterol-Lowering Properties of Durian
5.3. Anti-Proliferative Activity
5.4. Probiotic Effects
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Idris, S. Durio of Malaysia, 1st ed.; Malaysian Agricultural Research and Development Institute (MARDI): Kuala Lumpur, Malaysia, 2011; pp. 1–130. ISBN 9789679675726. [Google Scholar]
- Brown, M.J. Durio—A Bibliographic Review, 1st ed.; The International Plant Genetic Resources Institute (IPGRI): New Delhi, India, 1997; pp. 2–87. ISBN 92-9043-3-18-3. [Google Scholar]
- Husin, N.A.; Rahman, S.; Karunakaran, R.; Bhore, S.J. A review on the nutritional, medicinal, molecular and genome attributes of Durian (Durio zibethinus L.), the King of fruits in Malaysia. Bioinformation 2018, 14, 265–270. [Google Scholar] [CrossRef]
- Tirtawinata, M.R.; Santoso, P.J.; Apriyanti, L.H. DURIAN. Pengetahuan dasar untuk pencinta durian, 1st ed.; Agriflo (Penebar Swadaya Grup): Jakarta, Indonesia, 2016; p. 31. ISBN 978-979-002-703-9. [Google Scholar]
- Ho, L.; Bhat, R. Exploring the potential nutraceutical values of durian (Durio zibethinus L.)—An exotic tropical fruit. Food Chem. 2015, 168, 80–89. [Google Scholar] [CrossRef]
- Belgis, M.; Wijaya, C.H.; Apriyantono, A.; Kusbiantoro, B.; Yuliana, N.D. Physicochemical differences and sensory profiling of six lai (Durio kutejensis) and four durian (Durio zibethinus) cultivars indigenous Indonesia. Int. Food Res. J. 2016, 23, 1466–1473. [Google Scholar]
- Chin, S.T.; Nazimah, S.A.H.; Quek, S.Y.; Man, Y.B.C.; Rahman, R.A.; Hashim, D.M. Analysis of volatile compounds from Malaysian durians (Durio zibethinus) using headspace SPME coupled to fast GC-MS. J. Food Compost. Anal. 2007, 20, 31–44. [Google Scholar] [CrossRef]
- Alhabeeb, H.; Chambers, E.S.; Frost, G.; Morrison, D.J.; Preston, T. Inulin propionate ester increases satiety and decreases appetite but does not affect gastric emptying in healthy humans. Proc. Nutr. Soc. 2014, 73. [Google Scholar] [CrossRef] [Green Version]
- Chambers, E.S.; Viardot, A.; Psichas, A.; Morrison, D.J.; Murphy, K.G.; Zac-Varghese, S.E.K.; McDougall, K.; Preston, T.; Tedford, C.; Finlayson, G.S.; et al. Effects of targeted delivery of propionate to the human colon on appetite regulation, body weight maintenance and adiposity in overweight adults. Gut 2015, 64, 1744–1754. [Google Scholar] [CrossRef] [PubMed]
- Haruenkit, R.; Poovarodom, S.; Leontowicz, M.; Sajewicz, M.; Kowalska, T.; Delgado-Licon, E.; Delgado-Licon, E.; Rocha-Guzman, N.E.; Gallegos-Infante, J.; Trakhtenberg, S.; et al. Comparative study of health properties and nutritional value of durian, mangosteen, and snake fruit: Experiments In Vitro and In Vivo. J. Agric. Food Chem. 2007, 55, 5842–5849. [Google Scholar] [CrossRef] [PubMed]
- Gorinstein, S.; Poovarodom, S.; Leontowicz, H.; Leontowicz, M.; Namiesnik, J.; Vearasilp, S.; Haruenkit, R.; Ruamsuke, P.; Katrich, E.; Tashma, Z. Antioxidant properties and bioactive constituents of some rare exotic Thai fruits and comparison with conventional fruits. In vitro and in vivo studies. Food Res. Int. 2011, 44, 2222–2232. [Google Scholar] [CrossRef]
- Gorinstein, S.; Haruenkit, R.; Poovarodom, S.; Vearasilp, S.; Ruamsuke, P.; Namiesnik, J.; Leontowicz, M.; Leontowicz, H.; Suhaj, M.; Sheng, G.P. Some analytical assays for the determination of bioactivity of exotic fruits. Phytochem. Anal. 2010, 21, 355–362. [Google Scholar] [CrossRef] [PubMed]
- Charoenkiatkul, S.; Thiyajai, P.; Judprasong, K. Nutrients and bioactive compounds in popular and indigenous durian (Durio zibethinus murr.). Food Chem. 2015, 193, 181–186. [Google Scholar] [CrossRef] [PubMed]
- Haruenkit, R.; Poovarodom, S.; Vearasilp, S.; Namiesnik, J.; Sliwka-Kaszynska, M.; Park, Y.; Heo, B.; Cho, J.; Jang, H.G.; Gorinstein, S. Comparison of bioactive compounds, antioxidant and antiproliferative activities of Mon Thong durian during ripening. Food Chem. 2010, 118, 540–547. [Google Scholar] [CrossRef]
- Isabelle, M.; Lee, B.L.; Koh, W.; Huang, D.; Ong, C.N. Antioxidant activity and profiles of common fruits in Singapore. Food Chem 2010, 123, 77–84. [Google Scholar] [CrossRef]
- Kongkachuichai, R.; Charoensiri, R.; Sungpuag, P. Carotenoid, flavonoid profiles and dietary fiber contents of fruits commonly consumed in Thailand. Int. J. Food Sci. Nutr. 2010, 61, 536–548. [Google Scholar] [CrossRef]
- Ashraf, M.A.; Maah, M.J.; Yusoff, I. Study of antioxidant potential of tropical fruit durian. Asian J. Chem. 2011, 23, 3357–3361. [Google Scholar]
- Toledo, F.; Arancibia-Avila, P.; Park, Y.; Jung, S.; Kang, S.; Heo, B.G.; Drzewiecki, J.; Zachwieja, Z.; Zagrodzki, P.; Pasko, P.; et al. Screening of the antioxidant and nutritional properties, phenolic contents and proteins of five durian cultivars. Int. J. Food Sci. Nutr. 2008, 59, 415–427. [Google Scholar] [CrossRef]
- Arancibia-avila, P.; Toledo, F.; Park, Y.; Jung, S.; Kang, S.; Heo, B.G.; Lee, S.; Sajewicz, M.; Kowalska, T.; Gorinstein, S. Antioxidant properties of durian fruit as influenced by ripening. Food Sci. Technol. 2008, 41, 2118–2125. [Google Scholar] [CrossRef]
- Leontowicz, H.; Leontowicz, M.; Jesion, I.; Bielecki, W.; Poovarodom, S.; Vearasilp, S.; Gonzalez-Aguilar, G.; Robles-Sanchez, M.; Trakhtenberg, S.; Gorinstein, S. Positive effects of durian fruit at different stages of ripening on the hearts and livers of rats fed diets high in cholesterol. Eur. J. Integr. Med. 2011, 3, e169–e181. [Google Scholar] [CrossRef]
- Park, Y.; Cvikrova, M.; Martincova, O.; Ham, K.; Kang, S.; Park, Y.; Namiesnik, J.; Rambola, A.D.; Jastrzebski, Z.; Gorinstein, S. In vitro antioxidative and binding properties of phenolics in traditional, citrus and exotic fruits. Food Res. Int. 2015, 74, 37–47. [Google Scholar] [CrossRef] [PubMed]
- Poovarodom, S.; Haruenkit, R.; Vearasilp, S.; Ruamsuke, P.; Leontowicz, H.; Leontowicz, M.; Namiesnik, J.; Trakhtenberg, S.; Gorinstein, S. Nutritional and pharmaceutical applications of bioactive compounds in tropical fruits. In International Symposium on Mineral Nutrition of Fruit Crops, 9th ed.; Poovarodom, S., Yingjajaval, Eds.; International Society for Horticultural Science: Korbeek-Lo, Belgium, 2013; Volume 1, pp. 77–86. ISBN 978-90-66052-99-4. [Google Scholar]
- Fu, L.; Xu, B.; Gan, R.; Zhang, Y.; Xia, E.; Li, H. Antioxidant capacities and total phenolic contents of 62 fruits. Food Chem. 2011, 129, 345–350. [Google Scholar] [CrossRef]
- Wisutiamonkul, A.; Ampomah-Dwamena, C.; Allan, A.C.; Ketsa, S. Carotenoid accumulation and gene expression during durian (Durio zibethinus) fruit growth and ripening. Sci. Hortic. 2017, 220, 233–242. [Google Scholar] [CrossRef]
- Wistutiamonkul, A.; Promdang, S.; Ketsa, S.; Doorn, W.G.V. Carotenoids in durian fruit pulp during growth and postharvest ripening. Food Chem. 2015, 180, 301–305. [Google Scholar] [CrossRef]
- Costa, C.; Tsatsakis, A.; Mamoulakis, C.; Teodoro, M.; Briguglio, G.; Caruso, E.; Tsoukalas, D.; Margina, D.; Efthimious, D.; Kouretas, D.; et al. Current evidence on the effect of dietary polyphenols intake on chronic diseases. Food Chem. Toxicol. 2017, 110, 286–299. [Google Scholar] [CrossRef] [PubMed]
- Leifert, W.R.; Abeywardena, M.Y. Grape seed and red wine polyphenol extracts inhibit cellular cholesterol uptake, cell proliferation, and 5-lipoxygenase activity. Nutr. Res. 2008, 28, 842–850. [Google Scholar] [CrossRef] [PubMed]
- Mostofsky, E.; Johansen, M.B.; Tjønneland, M.A.; Chahal, H.S.; Mittleman, M.A.; Overvad, K. Chocolate intake and risk of clinically apparent atrial fibrillation: The Danish Diet, Cancer, and Health Study. Heart 2017, 103, 1163–1167. [Google Scholar] [CrossRef] [PubMed]
- Schmit, S.L.; Rennert, H.S.; Gruber, S.B. Coffee consumption and the risk of colorectal cancer. Cancer Epidemiol. Biomark. Prev. 2016, 25, 634–639. [Google Scholar] [CrossRef] [PubMed]
- Oba, S.; Nagata, C.; Nakamura, K.; Fujii, K.; Kawachi, T.; Takatsuka, N.; Shimizu, H. Consumption of coffee, green tea, oolong tea, black tea, chocolate snacks and the caffeine content in relation to risk of diabetes in Japanese men and women. Br. J. Nutr. 2010, 103, 453–459. [Google Scholar] [CrossRef] [PubMed]
- United States Department of Agriculture. Agricultural Research Service. USDA Food Composition Data. Available online: https://ndb.nal.usda.gov/ndb/search/list?home=true (accessed on 19 September 2018).
- MyFCD, Malaysian Food Composition Database. Available online: http://myfcd.moh.gov.my/index.php/1997-food-compositon-database (accessed on 19 September 2018).
- Data Komposisi Pangan Indonesia. Available online: http://www.panganku.org/id-ID/beranda (accessed on 19 September 2018).
- Merrill, A.L.; Watt, B.K. Energy Value of Foods: Basis and Derivation; United States Government Publishing Office: Washington, WA, USA, 1973.
- Wasnin, R.M.; Karim, M.S.A.; Ghazali, H.M. Effect of temperature-controlled fermentation on physico-chemical properties and lactic acid bacterial count of durian (Durio zibethinus Murr.) pulp. J. Food Sci. Technol. 2014, 51, 2977–2989. [Google Scholar] [CrossRef] [PubMed]
- Voon, Y.Y.; Sheikh, A.H.N.; Rusul, G.; Osman, A.; Quek, S.Y. Characterisation of Malaysian durian (Durio zibethinus Murr.) cultivars: Relationship of physicochemical and flavour properties with sensory properties. Food Chem. 2007, 103, 1217–1227. [Google Scholar] [CrossRef] [Green Version]
- Salter, A.M.; Tarling, E.J. Regulation of gene transcription by fatty acids. Animal 2007, 1314–1320. [Google Scholar] [CrossRef] [PubMed]
- Weaver, K.L.; Ivester, P.; Seeds, M.; Case, L.D.; Arm, J.P.; Chilton, F. Effect of Dietary Fatty Acids on Inflammatory Gene Expression in Healthy Humans. J. Biol. Chem. 2009, 284, 15400–15407. [Google Scholar] [CrossRef] [PubMed]
- Denardin, C.C.; Hirsch, G.E.; Rocha, R.F.D.; Vizzotto, M.; Henriques, A.T.; Moreira, J.C.F.; Guma, F.T.C.R.; Emanuellli, T. Antioxidant capacity and bioactive compounds of four Brazilian native fruits. J. Food Drug Anal. 2015, 23, 387–398. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leontowicz, H.; Leontowicz, M.; Haruenkit, R.; Poovarodom, S.; Jastrzebski, Z.; Drzewiecki, J.; Ayala, A.L.M.; Jesion, I.; Trakhtenberg, S.; Gorinstein, S. Durian (Durio zibethinus Murr.) cultivars as nutritional supplementation to rat’s diets. Food Chem. Toxicol. 2008, 46, 581–589. [Google Scholar] [CrossRef] [PubMed]
- Leontowicz, M.; Leontowicz, H.; Jastrzebski, Z.; Jesion, I.; Haruenkit, R.; Poovarodom, S.; Katrich, E.; Tashma, Z.; Drzewiecki, J.; Trakhtenberg, S.; et al. The nutritional and metabolic indices in rats fed cholesterol-containing diets supplemented with durian at different stages of ripening. BioFactors 2007, 29, 123–136. [Google Scholar] [CrossRef] [PubMed]
- Belgis, M.; Hanny, C.; Apriyantono, A.; Kusbiantoro, B.; Dewi, N. Volatiles and aroma characterization of several lai (Durio kutejensis) and durian (Durio zibethinus) cultivars grown in Indonesia. Sci. Hortic. 2017, 220, 291–298. [Google Scholar] [CrossRef]
- Li, J.; Schieberle, P.; Steinhaus, M. Insights into the key compounds of durian (Durio zibethinus L. ‘Monthong’) pulp odor by odorant quantitation and aroma simulation experiments. J. Agric. Food Chem. 2017, 65, 639–647. [Google Scholar] [CrossRef]
- Weenen, H.; Koolhaas, W.E.; Apriyantono, A. Sulfur-containing volatiles of durian fruits (Durio zibethinus Murr.). J. Agric. Food Chem. 1996, 44, 3291–3293. [Google Scholar] [CrossRef]
- Voon, Y.Y.; Sheikh, A.H.N.; Rusul, G.; Osman, A.; Quek, S.Y. Volatile flavour compounds and sensory properties of minimally processed durian (Durio zibethinus cv. D24) fruit during storage at 4 °C. Postharvest Biol. Technol. 2007, 46, 76–85. [Google Scholar] [CrossRef]
- Chin, S.T.; Nazimah, S.A.H.; Quek, S.Y.; Man, Y.C.; Rahman, R.A.; Dzulkifly, M.H. Changes of volatiles’ attribute in durian pulp during freeze- and spray-drying process. Int. J. Food Sci. Technol. 2008, 41, 1899–1905. [Google Scholar] [CrossRef]
- Xiao, Z.; Lu, J.R. Generation of acetoin and its derivatives in foods. J. Agric. Food Chem. 2014, 62, 6487–6497. [Google Scholar] [CrossRef] [PubMed]
- Chang, Y.; Hou, H.; Li, B. Identification of Volatile Compounds in Codfish (Gadus) by a Combination of Two Extraction Methods Coupled with GC-MS Analysis. J. Ocean Univ. China 2016, 15, 509–514. [Google Scholar] [CrossRef]
- Li, J.; Schieberle, P.; Steinhaus, M. Characterization of the Major Odor-Active Compounds in Thai Durian (Durio zibethinus L. ‘Monthong’) by Aroma Extract Dilution. Analysis and Headspace Gas Chromatography−Olfactometry. J. Agric. Food Chem. 2012, 60, 11253–11262. [Google Scholar] [CrossRef]
- The Metabolomics Innovation Centre. The Human Metabolome Database. Available online: http://www.hmdb.ca/ (accessed on 19 September 2018).
- Robert, S.D.; Ismail, A.A.; Winn, T.; Wolever, T.M. Glycemic index of common Malaysian fruits. Asia Pac. Clin. Nutr. 2008, 17, 35–39. [Google Scholar]
- Maćkowiak, K.; Torlińska-Walkowiak, N.; Torlińska, B. Dietary fibre as an important constituent of the diet. Postȩpy Hig. Med. Dośw. 2016, 70, 104–109. [Google Scholar] [CrossRef]
- Hu, F.B.; Dam, R.M.V.; Liu, S. Diet and risk of Type II diabetes: The role of types of fat and carbohydrate. Diabetologia 2001, 44, 805–817. [Google Scholar] [CrossRef]
- Peng, Y.; Zhong, G.; Mi, Q.; Li, K.; Wang, A.; Li, L.; Liu, H. Potassium measurements and risk of type 2 diabetes : A dose-response meta-analysis of prospective cohort studies. Oncotarget 2017, 8, 100603–100613. [Google Scholar] [CrossRef]
- Chatterjee, R.; Slentz, C.; Davenport, C.A.; Johnson, J.; Lin, P.; Muehlbauer, M.; D’Alessio, D.; Svetkey, L.P.; Edelman, D. Effects of potassium supplements on glucose metabolism in African Americans with prediabetes: A pilot trial. Am. J. Clin. Nutr. 2017, 1–8. [Google Scholar] [CrossRef]
- Lakkis, J.I.; Weir, R.W. Hyperkalemia in the Hypertensive Patient. Curr. Cardiol. Rep. 2018, 20, 12. [Google Scholar] [CrossRef]
- Demigne, B.C.; Morand, C.; Levrat, M.; Besson, C.; Moundras, C.; Remesy, C. Effect of propionate on fatty acid and cholesterol synthesis and on acetate metabolism in isolated rat hepatocytes. Br. J. Nutr. 1995, 74, 209–219. [Google Scholar] [CrossRef] [Green Version]
- Gorzynik-Debicka, M.; Przychodzen, P.; Cappello, F.; Kuban-Jankowska, A.; Gammazza, A.M.; Knap, N.; Wozniak, M.; Gorska-Ponikowska, M. Potential health benefits of olive oil and plant polyphenols. Int. J. Mol. Sci. 2018, 19, 547. [Google Scholar] [CrossRef]
- Clifford, M.N. Chlorogenic acids and other cinnamates—nature, occurrence, dietary burden, absorption and metabolism. J. Sci. Food Agric. 2000, 80, 1033–1043. [Google Scholar] [CrossRef]
- Borska, S.; Chmielewska, M.; Wysocka, T.; Drag-Zalesinska, M.; Zabel, M.; Dziegiel, P. In vitro effect of quercetin on human gastric carcinoma: Targeting cancer cells death and MDR. Food Chem. Toxicol. 2012, 50, 3375–3383. [Google Scholar] [CrossRef] [PubMed]
- Brown, E.M.; Gill, C.I.R.; McDougall, G.J.; Stewart, D. Mechanisms underlying the anti-proliferative effects of berry components in In vitro models of colon cancer. Curr. Pharm. Biotechnol. 2012, 13, 200–209. [Google Scholar] [CrossRef] [PubMed]
- Sergediene, E.; Jonsson, K.; Syzmsusiak, H.; Tyrakowska, B.; Rietjens, I.M.C.M.; Cenas, N. Prooxidant toxicity of polyphenolic antioxidants to HL-60 cells: Description of quantitative structure-activity relationships. FEBS Lett. 1999, 462, 392–396. [Google Scholar] [CrossRef]
- Singh, M.; Singh, R.; Bhui, K.; Tyagi, S.; Mahmood, Z.; Shukla, Y. Tea polyphenols induce apoptosis through mitochondrial pathway and by inhibiting nuclear factor-κB and Akt activation in human cervical cancer cells. Oncol. Res. 2011, 19, 245–257. [Google Scholar] [CrossRef] [PubMed]
- Stefanska, B.; Karlic, H.; Varga, F.; Fabianowska-Majeska, K.; Haslberger, A.G. Epigenetic mechanisms in anti-cancer actions of bioactive food components—The implications in cancer prevention. Br. J. Pharmacol. 2012, 167, 279–297. [Google Scholar] [CrossRef] [PubMed]
- Jayakumar, R.; Kanthimathi, M.S. Inhibitory effects of fruit extracts on nitric oxide-induced proliferation in MCF-7 cells. Food Chem. 2011, 126, 956–960. [Google Scholar] [CrossRef]
- Chuah, L.; Shamila-Syuhada, A.K.; Liong, M.T.; Rosma, A.; Thong, K.L.; Rusul, G. Physio-chemical, microbiological properties of tempoyak and molecular characterisation of lactic acid bacteria isolated from tempoyak. Food Microbiol. 2016, 58, 95–104. [Google Scholar] [CrossRef]
- Leisner, J.J.; Vancanneyt, M.; Rusul, G.; Pot, B.; Lefebvre, K.; Fresi, A.; Tee, L.K. Identification of lactic acid bacteria constituting the predominating microflora in an acid-fermented condiment (tempoyak) popular in Malaysia. Int. J. Food Microbiol. 2001, 63, 149–157. [Google Scholar] [CrossRef]
- Leisner, J.J.; Vancanneyt, M.; Lefebvre, K.; Vandemeulebroecke, K.; Hoste, B.; Euras Vilalta, N.; Rusul, G.; Swings, J. Lactobacillus durianis sp. nov., isolated from an acid-fermented condiment (tempoyak) in Malaysia. Int. J. Syst. Evol. Microbiol. 2002, 52, 927–931. [Google Scholar] [CrossRef]
- Khalil, E.S.; Manap, M.Y.A.; Mustafa, S.; Alhelli, A.M.; Shokryazdan, P. Probiotic properties of exopolysaccharide-producing lactobacillus strains isolated from tempoyak. Molecules 2018, 23, 398. [Google Scholar] [CrossRef]
- Ahmad, A.; Yap, W.B.; Kofli, N.T.; Ghazali, A.R. Probiotic potentials of Lactobacillus plantarum isolated from fermented durian (Tempoyak), a Malaysian traditional condiment. Food Sci. Nutr. 2018, 6, 1370–1377. [Google Scholar] [CrossRef]
- Korcz, E.; Kerényi, Z.; Varga, L. Dietary fibers, prebiotics, and exopolysaccharides produced by lactic acid bacteria: Potential health benefits with special regard to cholesterol-lowering effects. Food Funct. 2018, 9, 3057–3068. [Google Scholar] [CrossRef]
Durian Variety | Indonesian Variety | Thailand Variety | Unknown Variety [31] | Unknown Variety [32] | Unknown Variety [33] | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Ajimah | Hejo | Matahari | Sukarno | Monthong | Chanee | Kradum | Kobtakam | ||||
Nutrients | |||||||||||
Energy (kcal) [6] * [31,32,33] | 151 | 84 | 163 | 134 | 134–162 | 145 | 185 | 145 | 147 | 153 | 134 |
Carbohydrate (g) [6] * [12,13,31,32,33] | 28.90 | 15.65 | 34.65 | 27.30 | 21.70–27.10 | 20.13 | 29.15 | 21.15 | 27.09 | 27.90 | 28.00 |
Protein (g) [6] * [12,13,31,32,33] | 2.36 | 1.76 | 2.33 | 2.13 | 1.40–2.33 | 3.10 | 3.50 | 2.86 | 1.47 | 2.70 | 2.50 |
Fat (g) [6] * [12,13,31,32,33] | 2.92 | 1.59 | 1.69 | 1.86 | 3.10–5.39 | 4.48 | 4.67 | 4.40 | 5.33 | 3.40 | 3.00 |
Sugars | Fructose [13,35,36] | Glucose [13,35,36] | Sucrose [13,35,36] | Maltose [13,35] | Total Sugar [6] * [13,35,36] |
---|---|---|---|---|---|
Malaysian Variety | |||||
Durian Kampung | 1.60 | 2.21 | 12.58 | 0.51 | 16.90 |
D2 | 1.66 | 2.51 | 7.70 | NA | 11.87 |
D24 | 0.76 | 0.73 | 6.03 | NA | 7.52 |
MDUR78 | 1.82 | 2.77 | 8.02 | NA | 12.61 |
D101 | 1.29 | 1.97 | 5.57 | NA | 8.83 |
Chuk | 1.28 | 1.87 | 10.65 | NA | 13.80 |
Thailand Variety | |||||
Monthong | 0.15 | 0.74 | 13.69 | 0.25 | 14.83 |
Chanee | 0.26 | 0.58 | 15.71 | 0.00 | 16.55 |
Kradum | 0.33 | 0.71 | 17.89 | 1.04 | 19.97 |
Kobtakam | 0.10 | 0.45 | 17.30 | 0.26 | 18.11 |
Indonesian Variety | |||||
Ajimah | NA | NA | NA | NA | 14.05 |
Hejo | NA | NA | NA | NA | 3.10 |
Matahari | NA | NA | NA | NA | 8.14 |
Sukarno | NA | NA | NA | NA | 8.12 |
Thailand Variety | Monthong | Chanee | Kradum | Kobtakam | |
---|---|---|---|---|---|
Fatty Acid Name | Nomenclature | Fatty Acids Composition | |||
Decanoic (Capric) [14] | C 10:0 | 0.11–0.19 | NA | NA | NA |
Dodecanoic (Lauric) [13] | C 12:0 | 3.07 | 16.00 | 16.68 | 9.63 |
Tetradecanoic (Myristic) [13,14] | C 14:0 | 1.50–30.70 | 64.00 | 41.70 | 32.10 |
Hexadecanoic (Palmitic) [13,14] | C 16:0 | 84.57–1473.60 | 1696.00 | 1626.30 | 1508.70 |
cis-9-Hexadecenoic (Palmitoleic) [13] | C 16:1 | 122.80 | 192.00 | 125.10 | 160.50 |
Octadecanoic (Stearic) [13,14] | C 18:0 | 3.48–61.40 | 64.00 | 83.40 | 96.30 |
cis-9-Octadecenoic (Oleic) [13,14] | C 18:1 n-9 | 64.89–1074.50 | 1952.00 | 2376.90 | 2343.30 |
cis-9,12-Octadecadienoic (Linoleic) [13,14] | C 18:2 n-6 | 10.78–184.20 | 128.00 | 125.10 | 160.50 |
cis-6,9,12-Octadecatrienoic (γ-Linolenic) [13] | C 18:3 n-6 | 184.20 | 384.00 | 208.50 | 96.30 |
Eicosanoic (arachidic) [14] | C 20:0 | 0.58 | NA | NA | NA |
Saturated FA (SFA) [14] | 1565.70 | 1824.00 | 1751.40 | 1669.20 | |
Monounsaturated FA (MUFA) [14] | 1228.00 | 2144.00 | 2543.70 | 2503.80 | |
Polyunsaturated FA (PUFA) [14] | 337.70 | 480.00 | 375.30 | 256.80 |
Durian Variety | Thailand Variety | Malaysian Variety | Unknown Variety [31] | Unknown Variety [32] | Unknown Variety [33] | |||
---|---|---|---|---|---|---|---|---|
Monthong | Chanee | Kradum | Kobkatam | Unknown [15] | ||||
Macrominerals (mg per 100 g fresh weight) | ||||||||
Calcium [13,14,31,32,33] | 4.298–6.134 | 5.44 | 3.75 | 3.21 | NA | 6.00 | 40.00 | 7.00 |
Phosphorus [13,14,31,32,33] | 25.79–33.59 | 32.96 | 36.70 | 37.56 | NA | 39.00 | 44.00 | 44.00 |
Sodium [13,14,31,32,33] | 6.14–15.66 | 11.84 | 19.60 | 21.51 | NA | 2.00 | 40.00 | 1.00 |
Potassium [13,14,31,32,33] | 377.00–489.42 | 539.20 | 439.52 | 438.17 | NA | 436.00 | 70.00 | 601.00 |
Magnesium [13,14,31,32,33] | 19.28–24.87 | 23.36 | 23.35 | 22.79 | NA | 30.00 | NA | NA |
Microminerals (mg per 100 g fresh weight) | ||||||||
Iron [13,14,31,32,33] | 0.18–0.23 | 0.45 | 0.33 | 0.36 | NA | 0.43 | 1.90 | 1.30 |
Copper [13,14,31,32,33] | 0.13–0.15 | 0.27 | 0.23 | 0.17 | NA | NA | NA | 0.12 |
Manganese [14] | 0.23–0.26 | NA | NA | NA | NA | NA | NA | NA |
Zinc [13,14,31,33] | 0.15–0.21 | 0.45 | 0.37 | 0.32 | NA | 0.28 | NA | 0.30 |
Vitamins (μg per 100 g fresh weight) | ||||||||
A (RAE) | NA | NA | NA | NA | NA | 2.00 | NA | NA |
B1/Thiamine | NA | NA | NA | NA | NA | 374.00 | 100.00 | 100.00 |
B2/Riboflavin | NA | NA | NA | NA | NA | 200.00 | 100.00 | 100.00 |
B3/Niacin | NA | NA | NA | NA | NA | 1074.00 | NA | 13650.00 |
B6/Pyridoxine | NA | NA | NA | NA | NA | 316.00 | NA | NA |
E/Tocopherol or Tocotrienol (μg per 100 g fresh weight) | ||||||||
α-tocopherol | NA | NA | NA | NA | 3774.00 | NA | NA | NA |
γ-tocopherol | NA | NA | NA | NA | 1013.00 | NA | NA | NA |
δ-tocopherol | NA | NA | NA | NA | 11.00 | NA | NA | NA |
δ-tocotrienol | NA | NA | NA | NA | 1.00 | NA | NA | NA |
Type of Fibre | Soluble [10,12,16] | Insoluble [10,12,16] | Total Dietary Fibre [10,11,12,13,16,31,32,33] |
---|---|---|---|
Thailand Variety | |||
Monthong | 0.40–1.40 | 0.80–1.92 | 1.20–3.39 |
Chanee | 1.14 | 2.44 | 2.91–3.58 |
Kradum | 0.77 | 1.64 | 2.41–3.17 |
Kan Yao | 1.01 | 0.60 | 1.61 |
Puang Manee | 0.74 | 1.95 | 2.69 |
Kobtakam | NA | NA | 2.41 |
Unknown variety | NA | NA | 3.80 |
Unknown variety | NA | NA | 0.90 |
Unknown variety | NA | NA | 3.50 |
Bioactive Compounds | Durian Variety | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Malaysian Variety | Thailand Variety | Unknown Variety [23] | ||||||||||
Chaer Phoy | Yah Kang | Ang Jin | D11 | Unknown | Chanee | Kan Yao | Puang Manee | Kradum | Monthong | Kobtakam | ||
Polyphenols | ||||||||||||
Total polyphenols [10,11,12,13,16,17,18,19,20,21,22] | 67.12 mg GAE | 80.45 mg GAE | 97.78 mg GAE | 71.13 mg GAE | 99.00 mg GAE | 21.44–321.20 mg GAE | 283.30 mg GAE | 310.50 mg GAE | 94.18–271.50 mg GAE | 56.18–374.30 mg GAE | 94.18 mg GAE | 79.15 mg GAE |
Flavonoids | ||||||||||||
Total flavonoids [10,12,18,29,32,34,35,36,37,38,39] | 22.56 mg CE | 22.22 mg CE | 22.50 mg CE | 20.58 mg CE | NA | 1.90–81.60 mg CE | 3.51–72.10 mg CE | 3.24–18.10 mg CE | 4.48–19.80 mg CE | 4.49–93.90 mg CE | NA | NA |
Flavanone | ||||||||||||
Hesperetin [16] | NA | NA | NA | NA | NA | 321.15 μg | 260.99 μg | 640.79 μg | 1110.23 μg | 562.98 μg | NA | NA |
Hesperidin [19] | NA | NA | NA | NA | NA | NA | NA | NA | NA | 200.00 μg | NA | NA |
Flavonol | ||||||||||||
Quercetin [18,19,20] | NA | NA | NA | NA | NA | 2.22 mg | 2.44 mg | 2.18 mg | NA | 1.20–2549.30 mg | NA | NA |
Morin [19] | NA | NA | NA | NA | NA | NA | NA | NA | NA | 110.00–550.00 μg | NA | NA |
Rutin [18] | NA | NA | NA | NA | NA | 492.41 μg | NA | 733.20 μg | 163.90 μg | 912.05 μg | NA | NA |
Kaempferol [16,19] | NA | NA | NA | NA | NA | 479.09 μg | 644.80 μg | 430.18 μg | 131.64 μg | 830.26–2200.00 μg | NA | 1310.00 mg |
Myricetin [19] | NA | NA | NA | NA | NA | NA | 1559.56 μg | 964.47 μg | 2159.27 μg | 320.00–2087.83 μg | NA | 1010.00 mg |
Bioactive Compounds | Durian Variety | |||||||||||
Malaysian Variety | Thailand Variety | Unknown Variety [23] | ||||||||||
Chaer Phoy | Yah Kang | Ang Jin | D11 | Chanee | Kan Yao | Puang Manee | Kradum | Monthong | Kobtakam | |||
Flavonoids | ||||||||||||
Flavone | ||||||||||||
Luteolin [21] | NA | NA | NA | NA | 364.92 μg | 279.29 μg | 509.09 μg | 287.69 μg | 338.22 μg | NA | NA | |
Apigenin [21] | NA | NA | NA | NA | 739.42 | 763.83 μg | 509.09 μg | 791.94 μg | 620.00–665.89 μg | NA | NA | |
Total flavanols [11,12,14,17,18,19,20] | NA | NA | NA | NA | 0.15 mg CE | 0.13 mg CE | 0.15 mg CE | 0.13 mg CE | 0.18 mg CGE–5.18 mg CE | NA | NA | |
Total anthocyanins [15,17,38] | NA | NA | NA | NA | 0.38 mg CGE | 0.34 mg CGE | 0.37 mg CGE | 0.32 mg CGE | 0.39–633.44mg CGE | NA | NA | |
Phenolic Acids | ||||||||||||
Cinnamic acid [19] | NA | NA | NA | NA | NA | NA | NA | NA | 600.00–660.00 μg | NA | 1510.00 mg | |
Caffeic acid [19,21] | NA | NA | NA | NA | NA | NA | NA | NA | 31.08–490.00 μg | NA | NA | |
p-Coumaric acid [19,21] | NA | NA | NA | NA | NA | NA | NA | NA | 29.22-600.00 μg | NA | NA | |
Ferulic acid [18,21] | NA | NA | NA | NA | 215.95 μg | NA | 158.67 μg | NA | 414.40 μg | NA | NA | |
p-Anisic acid [22] | NA | NA | NA | NA | NA | NA | NA | NA | 1.48 μg | NA | NA | |
Gallic acid [18] | NA | NA | NA | NA | 1416.00 μg | NA | 4760.10 μg | NA | 2072.00 μg | NA | NA | |
Vanillic acid [19,22] | NA | NA | NA | NA | NA | NA | NA | NA | 20.72–300.00 μg | NA | NA | |
Bioactive Compounds | Durian Variety | |||||||||||
Malaysian Variety | Thailand Variety | |||||||||||
Chaer Phoy | Yah Kang | Ang Jin | D11 | Unknown [15] | Chanee | Kan Yao | Puang Manee | Kradum | Monthong | Kobtakam | ||
Carotenoids | ||||||||||||
Total carotenoids [11,17,24] | 7.10 μg BCE | 5.13 μg BCE | 6.02 μg BCE | 8.22 μg BCE | NA | 4400.00–6000.00 μg | NA | NA | NA | 222.88–1167.00 μg | NA | |
β-Carotene [13,20,21,24,25] | NA | NA | NA | NA | 201.00 μg | 84.54–4429.00 μg | 54.17 μg | 320.87 μg | 232.44–250.20 μg | 35.92–4250.00 μg | 385.84 μg | |
α-Carotene [13,20,21,24,25] | NA | NA | NA | NA | 37.00 μg | 47.23–1329.00 μg | 8.61 μg | 38.55 μg | 52.54–79.09 μg | 7.79–343.00 μg | 263.54 μg | |
β-Crptoxanthin [13,16] | NA | NA | NA | NA | 7.00 μg | 17.58 μg | 4.87 μg | 17.80 μg | 26.80 μg | 5.85 μg | ND/NA | |
Lycopene [13,16] | NA | NA | NA | NA | 12.00 μg | 11.62 μg | 1.38 μg | 17.47 μg | 6.91 μg | 2.80 μg | ND/NA | |
Lutein [13,16,24,25] | NA | NA | NA | NA | 11.00 μg | 14.00–41.28 μg | 7.21 μg | 18.16 μg | 32.35–54.21 μg | 7.96–41.75 μg | 72.23 μg | |
Zeaxanthin [13,16,24,25] | NA | NA | NA | NA | 37.00 μg | 0.09–37.47 μg | 11.37 μg | 20.21 μg | 49.44 μg | 0.14–11.95 μg | ND/NA | |
Tannins [16,18,21,22] | NA | NA | NA | NA | NA | NA | NA | NA | NA | 29.60–296.00 μg | NA | |
Ascorbic acid [11,14,17,20,21,22] | 2.41 mg | 2.21 mg | 1.93 mg | 2.56 mg | 25.18 mg | NA | NA | NA | NA | 54.76–347.80 mg | NA |
Type of Antioxidant Activity Assay | DPPH [12,13,14,22,40,41] | FRAP [12,13,14,18,22] | ORAC[13] | CUPRAC[12,14,18,22] | ABTS [12,14,18,22,41] | H-ORAC[15] |
---|---|---|---|---|---|---|
Thailand Variety | ||||||
Monthong | 97.93–1366.15 | 71.84–749.08 | 1903.40 | 427.65–1075.60 | 265.86–2352.70 | NA |
Chanee | 128.00–245.60 | 232.10–457.43 | 2304.00 | 955.40 | 2091.40 | NA |
Kradum | 250.20 | 667.20 | 2793.90 | 806.50 | 1773.20 | NA |
Kan Yao | 209.09 | 204.70 | NA | 845.50 | 1843.60 | NA |
Puang Manee | NA | 244.90 | NA | 924.90 | 2020.40 | NA |
Kobtakam | 192.60 | 513.60 | 2343.30 | NA | NA | NA |
Malaysian Variety | ||||||
Unknown | NA | NA | NA | NA | NA | 1838.00 |
Unknown Variety | ||||||
Unknown [23] | NA | NA | NA | NA | 498.00 | NA |
Compounds | Relative Amount in ng per g fresh weight | ||||||
---|---|---|---|---|---|---|---|
Malaysian Variety | Indonesian Variety | ||||||
D101 | D2 | D24 | Hejo | Matahari | Ajimah | Sukarno | |
Sulphur compounds | |||||||
Ethanethiol [7,42] | 5480.00 | 4260.00 | 3550.00 | ND | 5.40 | 50.70 | 36.40 |
Propanethiol [7,42] | 5000.00 | 2720.00 | 2720.00 | ND | 18.00 | 31.10 | ND |
Methyl ethyl disulphide [42] | NA | NA | NA | ND | ND | ND | 11.50 |
Diethyl disulphide [7,42] | 12420.00 | 1585.00 | 18760.00 | 24.40 | 323.90 | 245.20 | 188.40 |
Ethyl propyl disulphide [7,42] | 3630.00 | 3350.00 | 9040.00 | 2.30 | 43.20 | 11.30 | 4.60 |
Bis(ethylthio)methane [42] | NA | NA | NA | 49.30 | 105.40 | 246.10 | 118.20 |
Diethyl trisulphide [7,42] | 5970.00 | 14680.00 | 2520.00 | 10.20 | 185.50 | 213.60 | 72.30 |
3,5-Dimethyl-1,2,4- trithiolane (isomer 1) [7,42] | 470.00 | 1460.00 | 1740.00 | 1.50 | 10.60 | 20.80 | 2.00 |
3,5-Dimethyl-1,2,4- trithiolane (isomer 2) [7,42] | 590.00 | 1470.00 | 1710.00 | 1.00 | 10.60 | 17.70 | 1.10 |
1,1-Bis(methylthio)- ethane [7] | NA | NA | NA | 5.30 | 14.50 | 5.80 | 3.00 |
1,1-Bis(ethylthio)-ethane [7,42] | 420.00 | 490.00 | 710.00 | 1.90 | 15.80 | 5.90 | 10.20 |
3-Mercapto-2- methylpropanol[7] | NA | NA | NA | 2.50 | 21.90 | 2.80 | 4.70 |
Dipropyl trisulphide [7] | 120.00 | 160.00 | 110.00 | NA | NA | NA | NA |
Dipropyl disulphide [7] | 200.00 | 110.00 | 1030.00 | NA | NA | NA | NA |
1-(ethylthio)-1-(methylthio)-Ethane [7] | 660.00 | 140.00 | 660.00 | NA | NA | NA | NA |
S-propyl ethanethioate [7] | 340.00 | 60.00 | 320.00 | NA | NA | NA | NA |
S-ethyl ethanethioate [7] | 90.00 | ND | 310.00 | NA | NA | NA | NA |
1-(methylthio)-propane [7] | 270.00 | ND | 130.00 | NA | NA | NA | NA |
Total | 35660.00 | 30485.00 | 43310.00 | 98.40 | 754.80 | 851.00 | 452.40 |
Alcohols | |||||||
Ethanol [7,42] | 720.00 | 1090.00 | 590.00 | 419.90 | 688.80 | 843.40 | 1091.30 |
2-Methyl-1-butanol [42] | NA | NA | NA | ND | ND | 17.40 | ND |
3-Methyl-1-butanol [42] | NA | NA | NA | 10.50 | ND | ND | 14.60 |
2,3-Butanediol [42] | NA | NA | NA | 4.60 | ND | ND | 11.70 |
Total | 720.00 | 1090.00 | 590.00 | 435.00 | 688.80 | 860.80 | 1117.60 |
Ketones | |||||||
3-Hydroxy-2-butanone [42] | NA | NA | NA | 56.20 | 84.20 | 71.30 | 64.10 |
Aldehydes | |||||||
Acetaldehyde [42] | NA | NA | NA | 44.90 | 62.20 | 33.90 | ND |
Esters | |||||||
Ethyl acetate [7,42] | 280.00 | 610.00 | 930.00 | 28.10 | 52.40 | 34.80 | 31.20 |
Methyl propanoate [7,42] | 970.00 | 880.00 | 700.00 | 16.40 | 52.20 | ND | ND |
Ethyl propanoate [7,42] | 3110.00 | 1850.00 | 2530.00 | 386.60 | 719.50 | 742.30 | 0.00 |
Methyl-2-methylbutanoate [7,42] | 4070.00 | 2330.00 | 2290.00 | 86.20 | 105.60 | 85.40 | 24.90 |
Ethyl butanoate [7,42] | 850.00 | 2220.00 | 40.00 | 73.20 | 131.90 | 252.30 | 83.20 |
Propyl propanoate [7,42] | 4630.00 | 1740.00 | 3810.00 | ND | 88.40 | ND | ND |
Ethyl 2-methylbutanoate [7,42] | 460.00 | 510.00 | 500.00 | 2938.40 | 2373.40 | 3846.70 | 1085.90 |
Diethyl carbonate [42] | NA | NA | NA | ND | 9.70 | ND | 7.40 |
Propyl 2-methylbutanoate [7,42] | 126.70 | 4770.00 | 113.00 | 109.30 | 208.50 | 192.0 | 11.80 |
Propyl butanoate [7,42] | 950.00 | 630.00 | 950.00 | 3.50 | 16.30 | ND | ND |
Propyl 3-methylbutanoate [7,42] | 19.00 | ND | 380.00 | 237.90 | ND | ND | ND |
Ethyl 2-butenoate [7,42] | ND | 140.00 | ND | ND | 252.20 | 397.60 | 132.10 |
Methyl hexanoate [7] | 320.00 | 1700.00 | ND | ND | ND | ND | ND |
Ethyl (2E)-2-pentenoate [42] | NA | NA | NA | 4.50 | ND | ND | ND |
Ethyl 3-hexanoate [42] | NA | NA | NA | ND | ND | 93.02 | 32.30 |
Propyl hexanoate [7,42] | 580.00 | 500.00 | 310.00 | 3.10 | 24.20 | 3.90 | ND |
Propyl tiglate [42] | NA | NA | NA | 12.80 | ND | ND | ND |
Ethyl heptanoate [7,42] | 150.00 | 250.00 | 150.00 | 42.40 | 111.20 | 74.80 | ND |
Methyl octanoate [7,42] | 220.00 | 100.00 | ND | 4.30 | 26.90 | ND | ND |
Ethyl octanoate [7,42] | 550.00 | 550.00 | 260.00 | 91.0 | 174.60 | 108.40 | 45.90 |
Ethyl (4Z)-4-octenoate [42] | NA | NA | NA | ND | 17.40 | ND | ND |
Ethyl-2,4-hexadienoate [42] | NA | NA | NA | ND | ND | 3.10 | 2.60 |
Ethyl-3-hydroxybutanoate [42] | NA | NA | NA | 6.10 | 12.20 | 23.40 | 16.80 |
Propyl octanoate [42] | NA | NA | NA | ND | 14.50 | ND | ND |
Ethyl-2-octenoate [42] | NA | NA | NA | 2.20 | ND | ND | ND |
Ethyl decanoate [42] | NA | NA | NA | 10.90 | 8.20 | 10.40 | 11.1 |
Ethyl 2-methylpropanoate [7] | 460.00 | 510.00 | 520.00 | NA | NA | NA | NA |
Propyl acetate [7] | 190.00 | 90.00 | 560.00 | NA | NA | NA | NA |
Methyl butanoate [7] | 300.00 | 450.00 | ND | NA | NA | NA | NA |
Ethyl 3-methylbutanoate [7] | 190.00 | 220.00 | 220.00 | NA | NA | NA | NA |
3-methylbutyl propanoate [7] | 730.00 | ND | 600.00 | NA | NA | NA | NA |
Total | 19155.70 | 20050.00 | 14863.00 | 3947.60 | 4399.30 | 5868.12 | 1429.10 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
A Aziz, N.A.; Mhd Jalil, A.M. Bioactive Compounds, Nutritional Value, and Potential Health Benefits of Indigenous Durian (Durio Zibethinus Murr.): A Review. Foods 2019, 8, 96. https://doi.org/10.3390/foods8030096
A Aziz NA, Mhd Jalil AM. Bioactive Compounds, Nutritional Value, and Potential Health Benefits of Indigenous Durian (Durio Zibethinus Murr.): A Review. Foods. 2019; 8(3):96. https://doi.org/10.3390/foods8030096
Chicago/Turabian StyleA Aziz, Nur Atirah, and Abbe Maleyki Mhd Jalil. 2019. "Bioactive Compounds, Nutritional Value, and Potential Health Benefits of Indigenous Durian (Durio Zibethinus Murr.): A Review" Foods 8, no. 3: 96. https://doi.org/10.3390/foods8030096
APA StyleA Aziz, N. A., & Mhd Jalil, A. M. (2019). Bioactive Compounds, Nutritional Value, and Potential Health Benefits of Indigenous Durian (Durio Zibethinus Murr.): A Review. Foods, 8(3), 96. https://doi.org/10.3390/foods8030096