Effect of Breed and Gender on Meat Quality of M. longissimus thoracis et lumborum Muscle from Crossbred Beef Bulls and Steers
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animals and Sample Preparation
2.2. Warner–Bratzler Shear Force and Cook-Loss%
2.3. Intramuscular Fat%
2.4. Ultimate pH
2.5. Drip-Loss%
2.6. Colour
2.7. Statistical Analysis
3. Results
3.1. Correlations between Traits
3.2. Effect of Breed and Gender on Meat Quality
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Gagaoua, M.; Terlouw, E.M.C.; Micol, D.; Hocquette, J.F.; Moloney, A.P.; Nuernberg, K.; Picard, B. Sensory quality of meat from eight different types of cattle in relation with their biochemical characteristics. J. Integr. Agric. 2016, 15, 1550–1563. [Google Scholar] [CrossRef] [Green Version]
- Cuvelier, C.; Clinquart, A.; Hocquette, J.F.; Cabaraux, J.F.; Dufrasne, I.; Istasse, L.; Hornick, J.L. Comparison of composition and quality traits of meat from young finishing bulls from Belgian Blue, Limousin and Aberdeen Angus breeds. Meat Sci. 2006, 74, 522–531. [Google Scholar] [CrossRef]
- Mateescu, R.G. Genetics of meat quality. In The Genetics of Cattle, 2nd ed.; Garrick, D., Ruvinsky, A., Eds.; CABI: Oxfordshire, UK, 2015; pp. 544–562. [Google Scholar]
- Dransfield, E.; Martin, J.F.; Bauchart, D.; Abouelkaram, S.; Lepetit, J.; Culioli, J.; Picard, B. Meat quality and composition of three muscles from French cull cows and young bulls. Anim. Sci. 2003, 76, 387–399. [Google Scholar] [CrossRef]
- Hopkins, D.L.; Mortimer, S.I. Effect of genotype, gender and age on sheep meat quality and a case study illustrating integration of knowledge. Meat Sci. 2014, 98, 544–555. [Google Scholar] [CrossRef] [PubMed]
- Thompson, J.M. The effects of marbling on flavour and juiciness scores of cooked beef, after adjusting to a constant tenderness. Aust. J. Exp. Agric. 2004, 44, 645–652. [Google Scholar] [CrossRef]
- Melucci, L.M.; Panarace, M.; Feula, P.; Villarreal, E.L.; Grigioni, G.; Carduza, F.; Miquel, M.C. Genetic and management factors affecting beef quality in grazing Hereford steers. Meat Sci. 2012, 92, 768–774. [Google Scholar] [CrossRef] [PubMed]
- O’Riordan, E.; Crosson, P.; McGee, M. Finishing male cattle from the beef suckler herd. Irish Grassl. Assoc. J. 2011, 45, 131–146. [Google Scholar]
- Seideman, S.C.; Cross, H.R. Utilization of the Intact Male for Red Meat Production: A Review. J. Anim. Sci. 1982, 55, 826–840. [Google Scholar] [CrossRef] [Green Version]
- Moran, L.; O’Sullivan, M.G.; Kerry, J.P.; Picard, B.; McGee, M.; O’Riordan, E.G.; Moloney, A.P. Effect of a grazing period prior to finishing on a high concentrate diet on meat quality from bulls and steers. Meat Sci. 2017, 125, 76–83. [Google Scholar] [CrossRef]
- Guerrero, A.; Valero, M.V.; Campo, M.M.; Sañudo, C. Some factors that affect ruminant meat quality: From the farm to the fork. Review. Acta Sci. 2013, 335–347. [Google Scholar] [CrossRef]
- Park, S.J.; Beak, S.H.; Jung, D.J.S.; Kim, S.Y.; Jeong, I.H.; Piao, M.Y.; Baik, M. Genetic, management, and nutritional factors affecting intramuscular fat deposition in beef cattle—A review. Asian-Australas. J. Anim. Sci. 2018, 31, 1043–1061. [Google Scholar] [CrossRef] [PubMed]
- Xie, X.; Meng, Q.; Cui, Z.; Ren, L. Effect of cattle breed on meat quality, muscle fiber characteristics, lipid oxidation and fatty acids in China. Asian-Australas. J. Anim. Sci. 2012, 25, 824–831. [Google Scholar] [CrossRef]
- Chambaz, A.; Scheeder, M.R.L.; Kreuzer, M.; Dufey, P.A. Meat quality of Angus, Simmental, Charolais and Limousin steers compared at the same intramuscular fat content. Meat Sci. 2003, 63, 491–500. [Google Scholar] [CrossRef]
- Coleman, L.W.; Hickson, R.E.; Schreurs, N.M.; Martin, N.P.; Kenyon, P.R.; Lopez-Villalobos, N.; Morris, S.T. Carcass characteristics and meat quality of Hereford sired steers born to beef-cross-dairy and Angus breeding cows. Meat Sci. 2016, 121, 403–408. [Google Scholar] [CrossRef]
- Papaleo Mazzucco, J.; Goszczynski, D.E.; Ripoli, M.V.; Melucci, L.M.; Pardo, A.M.; Colatto, E.; Villarreal, E.L. Growth, carcass and meat quality traits in beef from Angus, Hereford and cross-breed grazing steers, and their association with SNPs in genes related to fat deposition metabolism. Meat Sci. 2016, 114, 121–129. [Google Scholar] [CrossRef] [PubMed]
- Samootkwam, K.; Jaturasitha, S.; Tipnate, B.; Waritthitham, A.; Wicke, M.; Kreuzer, M. Effect of Improving Lamphun Cattle with Black Angus on Carcass and Meat Quality. Agric. Agric. Sci. Procedia 2015, 5, 145–150. [Google Scholar] [CrossRef] [Green Version]
- Hanrahan, K. The Significance of Beef. In Teagasc Beef Manual; Available online: https://www.teagasc.ie/media/website/publications/2016/Beef-Manual-Section1.pdf (accessed on 10 December 2018).
- Ilian, M.A.; Morton, J.D.; Bekhit, A.E.D.; Roberts, N.; Palmer, B.; Sorimachi, H.; Bickerstaffe, R. Effect of preslaughter feed withdrawal period on longissimus tenderness and the expression of calpains in the ovine. J. Agric. Food Chem. 2001, 49, 1990–1998. [Google Scholar] [CrossRef] [PubMed]
- Warner, R.D.; Greenwood, P.L.; Pethick, D.W.; Ferguson, D.M. Genetic and environmental effects on meat quality. Meat Sci. 2010, 86, 171–183. [Google Scholar] [CrossRef] [Green Version]
- Troy, D.J.; Kerry, J.P. Consumer perception and the role of science in the meat industry. Meat Sci. 2010, 86, 214–226. [Google Scholar] [CrossRef]
- Troy, D.J.; Ojha, K.S.; Kerry, J.P.; Tiwari, B.K. Sustainable and consumer-friendly emerging technologies for application within the meat industry: An overview. Meat Sci. 2016, 120, 2–9. [Google Scholar] [CrossRef]
- McCarthy, S.N.; Henchion, M.; White, A.; Brandon, K.; Allen, P. Evaluation of beef eating quality by Irish consumers. Meat Sci. 2017, 132, 118–124. [Google Scholar] [CrossRef]
- Merlino, V.M.; Borra, D.; Girgenti, V.; Dal Vecchio, A.; Massaglia, S. Beef meat preferences of consumers from Northwest Italy: Analysis of choice attributes. Meat Sci. 2018, 143, 119–128. [Google Scholar] [CrossRef] [PubMed]
- Ngapo, T.M.; Braña Varela, D.; Rubio Lozano, M.S. Mexican consumers at the point of meat purchase. Beef choice. Meat Sci. 2017, 134, 34–43. [Google Scholar] [CrossRef]
- American Meat Science Association. Research Guidelines for Cookery, Sensory Evaluation, and Instrumental Tenderness Measurements of Meat. Available online: https://www.meatscience.org/docs/default-source/publications-resources/amsa-sensory-and-tenderness-evaluation-guidelines/research-guide/2015-amsa-sensory-guidelines-1-0.pdf?sfvrsn=6 (accessed on 14 January 2019).
- AOAC 985.14. Moisture in meat and poultry products-rapid microwave drying method. In Official Methods of Analysis of AOAC International, 15th ed.; Cuniff, P., Ed.; AOAC: Arlington, VA, USA, 1991. [Google Scholar]
- Honikel, K.; Hamm, R. Measurement of water holding capacity and juiciness. In Advances in Meat Research, 9th ed.; Pearson, A.M., Dutson, T.R., Eds.; Blackie Academic and Professional: London, UK, 1994; pp. 125–161. [Google Scholar]
- Monteiro, A.C.G.; Gomes, E.; Barreto, A.S.; Silva, M.F.; Fontes, M.A.; Bessa, R.J.B.; Lemos, J.P.C. Eating quality of ‘Vitela Tradicional do Montado’-PGI veal and Mertolenga-PDO veal and beef. Meat Sci. 2013, 94, 63–68. [Google Scholar] [CrossRef] [PubMed]
- Ryan, M.T.; Hamill, R.M.; O’Halloran, A.M.; Davey, G.C.; McBryan, J.; Mullen, A.M.; McGee, C.; Gisbert, M.; Southwood, O.I.; Sweeney, T. SNP variation in the promoter of the PRKAG3 gene and association with meat quality traits in pigs. BMC Gen. 2012, 13, 66. [Google Scholar] [CrossRef]
- Huff-Lonergan, E.; Baas, T.J.; Malek, M.; Dekkers, J.C.M.; Prusa, K.; Rothschild, M.F. Correlations among selected pork quality traits. J. Anim. Sci. 2001, 80, 617–627. [Google Scholar] [CrossRef]
- Nian, Y.; Allen, P.; Harrison, S.M.; Kerry, J.P. Effect of castration and carcass suspension method on the quality and fatty acid profile of beef from male dairy cattle. J. Sci. Food Agric. 2018, 98, 4339–4350. [Google Scholar] [CrossRef]
- Eichhorn, J.; Bailey, C.; Blomquist, G. Fatty acid composition of muscle and adipose tissue from crossbred bulls and steers. J. Anim. Sci. 1985, 61, 892–904. [Google Scholar] [CrossRef]
- Ronge, H.; Blum, J. Original article growth factor I during growth. Reprod. Nutr. Dev. 1989, 29, 105–111. [Google Scholar] [CrossRef] [PubMed]
- Daix, M.; Pirotte, C.; Bister, J.L.; Wergifosse, F.; Cuvelier, C.; Cabaraux, J.F.; Paquay, R. Relationship between leptin content, metabolic hormones and fat deposition in three beef cattle breeds. Vet. J. 2008, 177, 273–278. [Google Scholar] [CrossRef]
- Davis, M.; Boyles, S.; Moeller, S.; Simmen, R.C. Genetic Parameter Estimates for Serum Insulin-Like Growth Factor I Concentration and Performance Traits in Angus Beef Cattle. Am. Soc. Anim. Sci. 2003, 81, 2164–2170. [Google Scholar] [CrossRef] [PubMed]
- Venkata Reddy, B.; Sivakumar, A.S.; Jeong, D.W.; Woo, Y.B.; Park, S.J.; Lee, S.Y.; Hwang, I. Beef quality traits of heifer in comparison with steer, bull and cow at various feeding environments. Anim. Sci. J. 2015, 86, 1–16. [Google Scholar] [CrossRef]
- Lee, H.K.; Lee, J.K.; Cho, B. The Role of Androgen in the Adipose Tissue of Males. World J. Mens. Health. 2013, 31, 136. [Google Scholar] [CrossRef]
- Xu, X.; De Pergola, G.; Björntorp, P. The Effects of Androgens on the Regulation of Lipolysis in Adipose Precursor Cells. Endocrinology 1990, 126, 1229–1234. [Google Scholar] [CrossRef]
- Bong, J.J.; Jeong, J.Y.; Rajasekar, P.; Cho, Y.M.; Kwon, E.G.; Kim, H.C.; Baik, M. Differential expression of genes associated with lipid metabolism in longissimus dorsi of Korean bulls and steers. Meat Sci. 2012, 91, 284–293. [Google Scholar] [CrossRef]
- Mberema, C.H.H.; Lietz, G.; Kyriazakis, I.; Sparagano, O.A.E. The effects of gender and muscle type on the mRNA levels of the calpain proteolytic system and beef tenderness during post-mortem aging. Livest. Sci. 2016, 185, 123–130. [Google Scholar] [CrossRef]
- Gerrard, D.E.; Jones, S.J.; Aberle, E.D.; Lemenager, R.P.; Diekman, M.A.; Judge, M.D. Collagen Stability, Testosterone Secretion and Meat Tenderness in Growing Bulls and Steers. J. Anim. Sci. 1987, 65, 1236–1242. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Avilés, C.; Martínez, A.L.; Domenech, V.; Peña, F. Effect of feeding system and breed on growth performance, and carcass and meat quality traits in two continental beef breeds. Meat Sci. 2015, 107, 94–103. [Google Scholar] [CrossRef]
- Peña, F.; Avilés, C.; Domenech, V.; González, A.; Martínez, A.; Molina, A. Effects of stress by unfamiliar sounds on carcass and meat traits in bulls from three continental beef cattle breeds at different ageing times. Meat Sci. 2014, 98, 718–725. [Google Scholar] [CrossRef]
- Marino, R.; Albenzio, M.; Della Malva, A.; Santillo, A.; Loizzo, P.; Sevi, A. Proteolytic pattern of myofibrillar protein and meat tenderness as affected by breed and aging time. Meat Sci. 2013, 95, 281–287. [Google Scholar] [CrossRef] [PubMed]
- Ozawa, S.; Mitsuhashi, T.; Mitsumoto, M.; Matsumoto, S.; Itoh, N.; Itagaki, K.; Dohgo, T. The characteristics of muscle fiber types of longissimus thoracis muscle and their influences on the quantity and quality of meat from Japanese Black steers. Meat Sci. 2000, 54, 65–70. [Google Scholar] [CrossRef]
- Mandell, I.B.; Gullett, E.A.; Wilton, J.W.; Kemp, R.A.; Allen, O.B. Effects of gender and breed on carcass traits, chemical composition, and palatability attributes in Hereford and Simmental bulls and steers. Livest. Prod. Sci. 1997, 49, 235–248. [Google Scholar] [CrossRef]
- Waritthitham, A.; Lambertz, C.; Langholz, H.J.; Wicke, M.; Gauly, M. Muscle fiber characteristics and their relationship to water holding capacity of longissimus dorsi muscle in brahman and charolais crossbred bulls. Asian-Australas. J. Anim. Sci. 2010, 23, 665–671. [Google Scholar] [CrossRef]
- Knight, T.W.; Cosgrove, G.P.; Death, A.F.; Anderson, C.B. Effect of interval from castration of bulls to slaughter on carcass characteristics and meat quality. N. Z. J. Agric. Res. 1999, 42, 269–277. [Google Scholar] [CrossRef]
- Raes, K.; Balcaen, A.; Dirinck, P.; De Winne, A.; Claeys, E.; Demeyer, D.; De Smet, S. Meat quality, fatty acid composition and flavour analysis in Belgian retail beef. Meat Sci. 2003, 65, 1237–1246. [Google Scholar] [CrossRef]
IMF (%) | upH | Cook-Loss (%) | Drip-Loss (%) | L* | a* | b* | |
---|---|---|---|---|---|---|---|
WBSF | −0.26 *** | −0.05 | 0.19 *** | −0.16 *** | 0.06 | −0.15 *** | −0.05 |
IMF (%) | −0.015 | −0.22 *** | −0.08 | −0.07 | 0.1 ** | 0.05 | |
upH | −0.15 *** | 0.03 | −0.01 | −0.01 | −0.01 | ||
Cook-loss (%) | 0.06 | 0.18 *** | 0.23 *** | 0.16 *** | |||
Drip-loss (%) | 0.23 *** | 0.04 | 0.13 ** | ||||
L * | 0.2 *** | 0.42 *** | |||||
a * | 0.83 *** |
Breed | Gender | p-Value | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
AA | HE | LM | CH | SA | SI | BB | PT | Bull | Steer | Breed | Gender | |
n | 64 | 13 | 296 | 168 | 41 | 79 | 77 | 15 | 565 | 188 | - | - |
Trait | ||||||||||||
WBSF | 41.59 (1.2) | 36.96 (3.8) | 42.69 (0.7) | 40.62 (0.9) | 42.57 (1.6) | 44.37 (1.4) | 42.55 (1.7) | 40.97 (2.9) | 44.54 (1.2) | 37.81 (1.1) | 0.3122 | 0.0001 |
IMF (%) | 2.78 (0.2) b | 2.16 (0.5) ab | 2.13 (0.1) ab | 2.05 (0.1) ab | 2.41 (0.2) ab | 2.13 (0.3) ab | 1.7 (0.2) a | 1.12 (0.4) a | 1.27 (0.1) | 2.85 (0.1) | 0.009 | 0.0001 |
upH | 5.55 (0.02) | 5.53 (0.05) | 5.55 (0.01) | 5.54 (0.01) | 5.56 (0.02) | 5.56 (0.02) | 5.6 (0.03) | 5.54 (0.04) | 5.57 (0.01) | 5.54 (0.01) | 0.6594 | 0.286 |
Cook-loss (%) | 30.15 (0.4) ab | 29.09 (1.1) ab | 29.09 (0.2) a | 29.66 (0.2) ab | 29.33 (0.5) ab | 30.59 (0.4) b | 29.63 (0.5) ab | 31.07 (0.8) b | 30.4 (0.3) | 29.25 (0.3) | 0.0032 | 0.005 |
Drip-loss (%) | 2.15 (0.3) a | 2.5 (0.5) ab | 2.97 (0.1) e | 3.22 (0.1) f | 2.72 (0.2) bcd | 2.52 (0.3) abc | 4.37 (0.3) g | 4.11 (0.5) g | 2.73 (0.2) | 3.41 (0.2) | 0.0009 | 0.0950 |
L* | 41.89 (0.5) | 41.68 (1.1) | 42.66 (0.2) | 42.52 (0.3) | 41.75 (0.5) | 42.27 (0.7) | 42.14 (0.5) | 42.11 (0.9) | 42.33 (0.3) | 41.93 (0.3) | 0.5777 | 0.3769 |
a* | 14.37 (0.3) | 14.15 (0.7) | 14.31 (0.1) | 14.56 (0.2) | 14.63 (0.3) | 14.27 (0.4) | 13.61 (0.3) | 14.17 (0.5) | 14.01 (0.2) | 14.52 (0.2) | 0.2665 | 0.0635 |
b* | 11.15 (0.3) | 10.67 (0.6) | 11.41 (0.1) | 11.6 (0.1) | 11.49 (0.3) | 11.12 (0.2) | 10.82 (0.3) | 11.31 (0.5) | 11.33 (0.2) | 11.06 (0.2) | 0.2902 | 0.3130 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cafferky, J.; Hamill, R.M.; Allen, P.; O’Doherty, J.V.; Cromie, A.; Sweeney, T. Effect of Breed and Gender on Meat Quality of M. longissimus thoracis et lumborum Muscle from Crossbred Beef Bulls and Steers. Foods 2019, 8, 173. https://doi.org/10.3390/foods8050173
Cafferky J, Hamill RM, Allen P, O’Doherty JV, Cromie A, Sweeney T. Effect of Breed and Gender on Meat Quality of M. longissimus thoracis et lumborum Muscle from Crossbred Beef Bulls and Steers. Foods. 2019; 8(5):173. https://doi.org/10.3390/foods8050173
Chicago/Turabian StyleCafferky, Jamie, Ruth M. Hamill, Paul Allen, John V. O’Doherty, Andrew Cromie, and Torres Sweeney. 2019. "Effect of Breed and Gender on Meat Quality of M. longissimus thoracis et lumborum Muscle from Crossbred Beef Bulls and Steers" Foods 8, no. 5: 173. https://doi.org/10.3390/foods8050173