The High Content of Ent-11α-hydroxy-15-oxo-kaur- 16-en-19-oic Acid in Adenostemma lavenia (L.) O. Kuntze Leaf Extract: With Preliminary in Vivo Assays
Abstract
:1. Introduction
2. Materials and Methods
2.1. Propagation of A. lavenia
2.2. Purification of 11αOH-KA from Water Extracts and Its Analysis
2.3. Analysis of 11αOH-KA in Mouse Serum
2.4. Melanogenesis Assay
2.5. Statistical Analysis
3. Results
3.1. A. lavenia Contains a High Amount of 11αOH-KA
3.2. Suitable Extraction of 11αOH-KA from A. lavenia
3.2.1. αOH-KA Is the Compound in A. lavenia Water Extract Responsible for Anti-Melanogenic Activity in B16F10 Cells
3.2.2. αOH-KA Is the Compound in A. lavenia Extract Responsible for Anti-Melanogenic Activity in Mice
4. Discussion
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Lee, C.C.; Dudonne, S.; Kim, J.H.; Kim, J.S.; Dube, P.; Kim, J.E.; Desjardins, Y.; Park, J.H.Y.; Lee, K.W.; Lee, C.Y. A major daidzin metabolite 7,8,4’-trihydroxyisoflavone found in the plasma of soybean extract-fed rats attenuates monocyte-endothelial cell adhesion. Food Chem. 2018, 240, 607–614. [Google Scholar] [CrossRef]
- Li, J.H.; He, C.W.; Liang, N.C.; Mo, L.E.; Zhang, X. Effects of antitumor compounds isolated from Pteris semipinnata L on DNA topoisomerases and cell cycle of HL-60 cells. Zhongguo Yao Li Xue Bao 1999, 20, 541–545. [Google Scholar]
- Wang, F.; Li, Y.J.; Ren, F.C.; Wei, G.Z.; Liu, J.K. Pterisolic acids A-F, new ent-kaurane diterpenoids from the fern Pteris semipinnata. Chem. Pharm. Bull. (Tokyo) 2011, 59, 484–487. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qiu, M.; Yang, B.; Cao, D.; Zhu, J.; Jin, J.; Chen, Y.; Lian, Z.; Luo, X.; Zhao, Z. Two new hydroxylated ent-kauranoic acids from Pteris semipinnata. Phytochem. Lett. 2016, 16, 156–162. [Google Scholar] [CrossRef]
- Kuroi, A.; Sugimura, K.; Kumagai, A.; Kohara, A.; Nagaoka, Y.; Kawahara, H.; Yamahara, M.; Kawahara, N.; Takemori, H.; Fuchino, H. The Importance of 11alpha-OH, 15-oxo, and 16-en Moieties of 11alpha-Hydroxy-15-oxo-kaur-16-en-19-oic Acid in Its Inhibitory Activity on Melanogenesis. Skin Pharmacol. Physiol. 2017, 30, 205–215. [Google Scholar] [CrossRef] [Green Version]
- Tanaka, N.; Murakami, T.; Saiki, Y.; Chen, C.-M.; Luis, D.; Gomez, P. Chemical and chemotaxonomical studies of ferns. Chem. Pharm. Bull. (Tokyo) 1981, 29, 3455–3463. [Google Scholar] [CrossRef] [Green Version]
- Zhang, M.; Zhao, C.; Dai, W.; He, J.; Jiao, S.; Li, B. Anti-inflammatory ent-kaurenoic acids and their glycosides from Gochnatia decora. Phytochemistry 2017, 137, 174–181. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.G.; Liang, N.C.; Lee, J.F.; Chan, U.P.; Wang, S.H.; Leung, B.C.; Leung, K.L. Over-expression of Bcl-2 against Pteris semipinnata L-induced apoptosis of human colon cancer cells via a NF-kappa B-related pathway. Apoptosis 2004, 9, 619–627. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, Z.M.; Chen, G.G.; Vlantis, A.C.; Liang, N.C.; Deng, Y.F.; van Hasselt, C.A. Cell death induced by ent-11alpha-hydroxy-15-oxo-kaur-16-en-19-oic-acid in anaplastic thyroid carcinoma cells is via a mitochondrial-mediated pathway. Apoptosis 2005, 10, 1345–1356. [Google Scholar] [CrossRef]
- Li, M.Y.; Leung, J.; Kong, A.W.; Liang, N.C.; Wu, K.; Hsin, M.K.; Deng, Y.F.; Gong, X.; Lv, Y.; Mok, T.S.; et al. Anticancer efficacy of 5F in NNK-induced lung cancer development of A/J mice and human lung cancer cells. J. Mol. Med. (Berl) 2010, 88, 1265–1276. [Google Scholar] [CrossRef]
- Ye, H.; Wu, Q.; Guo, M.; Wu, K.; Lv, Y.; Yu, F.; Liu, Y.; Gao, X.; Zhu, Y.; Cui, L.; et al. Growth inhibition effects of ent-11alpha-hydroxy-15-oxo-kaur-16-en-19-oic-acid on colorectal carcinoma cells and colon carcinoma-bearing mice. Mol. Med. Rep. 2016, 13, 3525–3532. [Google Scholar] [CrossRef] [PubMed]
- Kondoh, M.; Suzuki, I.; Sato, M.; Nagashima, F.; Simizu, S.; Harada, M.; Fujii, M.; Osada, H.; Asakawa, Y.; Watanabe, Y. Kaurene diterpene induces apoptosis in human leukemia cells partly through a caspase-8-dependent pathway. J. Pharmacol. Exp. Ther. 2004, 311, 115–122. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Niu, C.; Aisa, H.A. Upregulation of Melanogenesis and Tyrosinase Activity: Potential Agents for Vitiligo. Molecules 2017, 22, 1303. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Panzella, L.; Napolitano, A. Natural and Bioinspired Phenolic Compounds as Tyrosinase Inhibitors for the Treatment of Skin Hyperpigmentation: Recent Advances. Cosmetics 2019, 6, 57. [Google Scholar] [CrossRef] [Green Version]
- Wu, J.; Meng, L.; Long, M.; Ruan, Y.; Li, X.; Huang, Y.; Qiu, W. Inhibition of breast cancer cell growth by the Pteris semipinnata extract ent-11alpha-hydroxy-15-oxo-kaur-16-en-19-oic-acid. Oncol. Lett. 2017, 14, 6809–6814. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cheng, P.C.; Hufford, C.D.; Doorenbos, N.J. Isolation of 11-Hydroxyated Kauranic Acids From Adenostemma lavenia. J. Nat. Prod. 1979, 42, 183–186. [Google Scholar] [CrossRef]
- Salvo, A.; La Torre, G.L.; Mangano, V.; Casale, K.E.; Bartolomeo, G.; Santini, A.; Granata, T.; Dugo, G. Toxic inorganic pollutants in foods from agricultural producing areas of Southern Italy: Level and risk assessment. Ecotoxicol. Environ. Saf. 2018, 148, 114–124. [Google Scholar] [CrossRef]
- Mikusova, P.; Srobarova, A.; Sulyok, M.; Santini, A. Fusarium fungi and associated metabolites presence on grapes from Slovakia. Mycotoxin Res. 2013, 29, 97–102. [Google Scholar] [CrossRef] [Green Version]
- Santini, A.; Ferracane, R.; Meca, G.; Ritieni, A. Overview of analytical methods for beauvericin and fusaproliferin in food matrices. Anal. Bioanal. Chem. 2009, 395, 1253–1260. [Google Scholar] [CrossRef] [Green Version]
- Hardy, G. Nutraceuticals and functional foods: Introduction and meaning. Nutrition 2000, 16, 688–689. [Google Scholar] [CrossRef]
- Santini, A.; Novellino, E. To Nutraceuticals and Back: Rethinking a Concept. Foods 2017, 6, 74. [Google Scholar] [CrossRef] [Green Version]
- Daliu, P.; Santini, A.; Novellino, E. A decade of nutraceutical patents: Where are we now in 2018? Expert Opin. Ther. Pat. 2018, 28, 875–882. [Google Scholar] [CrossRef] [PubMed]
- Maeda, K.; Naganuma, M. Topical trans-4-aminomethylcyclohexanecarboxylic acid prevents ultraviolet radiation-induced pigmentation. J Photochem. Photobiol. B. 1998, 47, 136–141. [Google Scholar] [CrossRef]
- Wang, J.V.; Jhawar, N.; Saedi, N. Tranexamic Acid for Melasma: Evaluating the Various Formulations. J Clin. Aesthet. Dermatol. 2019, 12, E73–E74. [Google Scholar]
- Kanwal, N.; Siddiqui, A.J.; Haq, F.U.; El-Seedi, H.R.; Musharraf, S.G. Two-stage mass spectrometry approach for the analysis of triterpenoid glycosides in Fagonia indica. RSC Adv. 2018, 8, 41023–41031. [Google Scholar] [CrossRef] [Green Version]
- Jiang, X.; Shen, Y.; Wang, H.; Wang, C.; Ye, X.; Xiang, Z. Determination of kaurenoic acid in rat plasma using UPLC-MS/MS and its application to a pharmacokinetic study. J. Pharm. Biomed. Anal. 2019, 164, 27–31. [Google Scholar] [CrossRef]
- Muller-Rover, S.; Handjiski, B.; van der Veen, C.; Eichmuller, S.; Foitzik, K.; McKay, I.A.; Stenn, K.S.; Paus, R. A comprehensive guide for the accurate classification of murine hair follicles in distinct hair cycle stages. J. Invest. Dermatol. 2001, 117, 3–15. [Google Scholar] [CrossRef] [Green Version]
- Kumagai, A.; Horike, N.; Satoh, Y.; Uebi, T.; Sasaki, T.; Itoh, Y.; Hirata, Y.; Uchio-Yamada, K.; Kitagawa, K.; Uesato, S.; et al. A Potent Inhibitor of SIK2, 3, 3’, 7-Trihydroxy-4’-Methoxyflavon (4’-O-Methylfisetin), Promotes Melanogenesis in B16F10 Melanoma Cells. PLoS ONE 2011, 6, e26148. [Google Scholar] [CrossRef] [Green Version]
- Shimizu, S.; Miyase, T.; Umehara, K.; Ueno, A. Kaurane-type diterpenes from Adenostemma lavenia O. Kuntze. Chem. Pharm. Bull. (Tokyo) 1990, 38, 1308–1312. [Google Scholar] [CrossRef] [Green Version]
- Fauzan, A.; Praseptiangga, D.; Hartanto, R.; Pujiasmanto, B. Characterization of the chemical composition of Adenostemma lavenia (L.) Kuntze and Adenostemma platyphyllum Cass. Earth Environ. Sci. 2018, 102, 012029. [Google Scholar] [CrossRef]
- Davi Prasad, A.G.; Shyma, T.B.; Raghavendra, M.P. Plants used by the tribes for the treatment of digestive system disorders in Wayanad district, Kerala. J. Appl. Pharm. Sci. 2013, 3, 171–175. [Google Scholar]
- Ye, H.; Yang, X.; Wu, K.; Li, L.; Lv, Y.; Liu, Y.; Zheng, X. Inhibitory effect of 5F on development of lung cancer in A/J mice. Int. J. Clin. Exp. Pathol. 2015, 8, 4138–4142. [Google Scholar] [PubMed]
- Chen, G.G.; Leung, J.; Liang, N.C.; Li, L.; Wu, K.; Chan, U.P.; Leung, B.C.; Li, M.; Du, J.; Deng, Y.F.; et al. Ent-11alpha-hydroxy-15-oxo-kaur-16-en-19-oic-acid inhibits hepatocellular carcinoma in vitro and in vivo via stabilizing IkBalpha. Invest. New Drugs 2012, 30, 2210–2218. [Google Scholar] [CrossRef] [PubMed]
- Ruiz, Y.; Rodrigues, J.; Arvelo, F.; Usubillaga, A.; Monsalve, M.; Diez, N.; Galindo-Castro, I. Cytotoxic and apoptosis-inducing effect of ent-15-oxo-kaur-16-en-19-oic acid, a derivative of grandiflorolic acid from Espeletia schultzii. Phytochemistry 2008, 69, 432–438. [Google Scholar] [CrossRef]
- Li, D.; Du, Z.; Li, C.; Goodin, S.; Huang, H.; He, Y.; Zhang, Y.; Wang, H.; Zheng, X.; Zhang, K. Potent inhibitory effect of terpenoids from Acanthopanax trifoliatuson growth of PC-3 prostate cancer cellsin vitroandin vivo is associated with suppression of NF-κB and STAT3 signalling. J. Funct. Foods 2015, 15, 274–283. [Google Scholar] [CrossRef]
- Kim, K.H.; Sadikot, R.T.; Joo, M. Therapeutic effect of ent-kaur-16-en-19-oic acid on neutrophilic lung inflammation and sepsis is mediated by Nrf2. Biochem. Biophys. Res. Commun. 2016, 474, 534–540. [Google Scholar] [CrossRef]
- Hiramoto, K.; Yamate, Y.; Takishita, Y.; Sato, E.F. The Role of gp91phox and the Effect of Tranexamic Acid Administration on Hair Color in Mice. Int. J. Mol. Sci. 2019, 20, 2665. [Google Scholar] [CrossRef] [Green Version]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hamamoto, A.; Isogai, R.; Maeda, M.; Hayazaki, M.; Horiyama, E.; Takashima, S.; Koketsu, M.; Takemori, H. The High Content of Ent-11α-hydroxy-15-oxo-kaur- 16-en-19-oic Acid in Adenostemma lavenia (L.) O. Kuntze Leaf Extract: With Preliminary in Vivo Assays. Foods 2020, 9, 73. https://doi.org/10.3390/foods9010073
Hamamoto A, Isogai R, Maeda M, Hayazaki M, Horiyama E, Takashima S, Koketsu M, Takemori H. The High Content of Ent-11α-hydroxy-15-oxo-kaur- 16-en-19-oic Acid in Adenostemma lavenia (L.) O. Kuntze Leaf Extract: With Preliminary in Vivo Assays. Foods. 2020; 9(1):73. https://doi.org/10.3390/foods9010073
Chicago/Turabian StyleHamamoto, Akie, Ryosuke Isogai, Miwa Maeda, Masumi Hayazaki, Eito Horiyama, Shigeo Takashima, Mamoru Koketsu, and Hiroshi Takemori. 2020. "The High Content of Ent-11α-hydroxy-15-oxo-kaur- 16-en-19-oic Acid in Adenostemma lavenia (L.) O. Kuntze Leaf Extract: With Preliminary in Vivo Assays" Foods 9, no. 1: 73. https://doi.org/10.3390/foods9010073
APA StyleHamamoto, A., Isogai, R., Maeda, M., Hayazaki, M., Horiyama, E., Takashima, S., Koketsu, M., & Takemori, H. (2020). The High Content of Ent-11α-hydroxy-15-oxo-kaur- 16-en-19-oic Acid in Adenostemma lavenia (L.) O. Kuntze Leaf Extract: With Preliminary in Vivo Assays. Foods, 9(1), 73. https://doi.org/10.3390/foods9010073