Food Consumption and Emotions at a Salad Lunch Buffet in a Multisensory Environment
Abstract
:1. Introduction
2. Methods
2.1. Subjects
2.2. Buffet Foods
2.3. Multisensory Laboratory Conditions
2.4. Questionnaire
2.5. Procedure
2.6. Statistics
3. Results
4. Discussion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Roos, E.; Sarlio-Lähteenkorva, S.; Lallukka, T. Having lunch at a staff canteen is associated with recommended food habits. Public Health Nutr. 2004, 7, 53–61. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thorsen, A.V.; Lassen, A.D.; Tetens, I.; Hels, O.; Mikkelsen, B.E. Long-term sustainability of a worksite canteen intervention of serving more fruit and vegetables. Public Health Nutr. 2010, 13, 1647–1652. [Google Scholar] [CrossRef] [PubMed]
- Broers, V.J.V.; De Breucker, C.; Van den Broucke, S.; Luminet, O. A systematic review and meta-analysis of the effectiveness of nudging to increase fruit and vegetable choice. Eur. J. Public Health 2017, 27, 912–920. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bellini, D.; Hartig, T.; Bonaiuto, M. Social support in the company canteen: A restorative resource buffering the relationship between job demands and fatigue. Work 2019, 63, 375–387. [Google Scholar] [CrossRef] [PubMed]
- Kontukoski, M.; Paakki, M.; Thureson, J.; Uimonen, H.; Hopia, A. Imagined salad and steak restaurants: Consumers’ colour, music and emotion associations with different dishes. Int. J. Gastron. Food Sci. 2016, 4, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Barrett, D.M.; Beaulieu, J.C.; Shewfelt, R. Color, flavor, texture, and nutritional quality of fresh-cut fruits and vegetables: Desirable levels, instrumental and sensory measurement, and the effects of processing. Crit. Rev. Food Sci. Nutr. 2010, 50, 369–389. [Google Scholar] [CrossRef]
- Van Stokkom, V.L.; Blok, A.E.; van Kooten, O.; de Graaf, C.; Stieger, M. The role of smell, taste, flavour and texture cues in the identification of vegetables. Appetite 2018, 121, 69–76. [Google Scholar] [CrossRef]
- Spence, C. Multisensory flavor perception. Cell 2015, 161, 24–35. [Google Scholar] [CrossRef] [Green Version]
- Stelick, A.; Dando, R. Thinking outside the booth—The eating environment, context and ecological validity in sensory and consumer research. Curr. Opin. Food Sci. 2018, 21, 26–31. [Google Scholar] [CrossRef]
- Hathaway, D.; Simons, C.T. The impact of multiple immersion levels on data quality and panelist engagement for the evaluation of cookies under a preparation-based scenario. Food Qual. Prefer. 2017, 57, 114–125. [Google Scholar] [CrossRef] [Green Version]
- Bangcuyo, R.G.; Smith, K.J.; Zumach, J.L.; Pierce, A.M.; Guttman, G.A.; Simons, C.T. The use of immersive technologies to improve consumer testing: The role of ecological validity, context and engagement in evaluating coffee. Food Qual. Prefer. 2015, 41, 84–95. [Google Scholar] [CrossRef]
- Worch, T.; Sinesio, F.; Moneta, E.; Abba, S.; Dreyfuss, L.; McEwan, J.A.; Porcherot-Lassallette, C. Influence of different test conditions on the emotional responses elicited by beers. Food Qual. Prefer. 2020, 83, 103895. [Google Scholar] [CrossRef]
- Delarue, J.; Brasset, A.-C.; Jarrot, F.; Abiven, F. Taking control of product testing context thanks to multi-sensory immersive room. A case study on alcohol-free beer. Food Qual. Prefer. 2019, 75, 78–86. [Google Scholar] [CrossRef]
- Zandstra, E.H.; Kaneko, D.; Dijksterhuis, G.B.; Vennik, E.; De Wijk, R.A. Implementing immersive technologies in consumer testing: Liking and Just-About-Right ratings in a laboratory, immersive simulated café and real café. Food Qual. Prefer. 2020, 84, 103934. [Google Scholar] [CrossRef]
- Pennanen, K.; Närväinen, J.; Vanhatalo, S.; Raisamo, R.; Sozer, N. Effect of virtual eating environment on consumers’ evaluations of healthy and unhealthy snacks. Food Qual. Prefer. 2020, 82, 103871. [Google Scholar] [CrossRef]
- Kong, Y.; Sharma, C.; Kanala, N.; Thakur, M.; Li, L.; Xu, D.; Harrison, R.; Torrico, D.D. Virtual reality and immersive environments on sensory perception of chocolate products: A preliminary study. Foods 2020, 9, 515. [Google Scholar] [CrossRef] [Green Version]
- Lagast, S.; Gellynck, X.; Schouteten, J.J.; De Herdt, V.; De Steur, H. Consumers’ emotions elicited by food: A systematic review of explicit and implicit methods. Trends. Food. Sci. Technol. 2017, 69, 172–189. [Google Scholar] [CrossRef]
- Kaneko, D.; Toet, A.; Brouwer, A.M.; Kallen, V.; van Erp, J.B.F. Methods for evaluating emotions evoked by food experiences: A literature review. Front. Psychol. 2018, 9, 911. [Google Scholar] [CrossRef] [Green Version]
- Toet, A.; Kaneko, D.; Ushiama, S.; Hoving, S.; de Kruijf, I.; Brouwer, A.; Kallen, V.; van Erp, J.B.F. EmojiGrid: A 2D pictorial scale for the assessment of food elicited emotions. Front. Psychol. 2018, 9, 2396. [Google Scholar] [CrossRef] [Green Version]
- Dalenberg, J.R.; Gutjar, S.; ter Horst, G.J.; de Graaf, K.; Renken, R.J.; Jager, G. Evoked emotions predict food choice. PLoS ONE 2014, 9, e115388. [Google Scholar] [CrossRef] [PubMed]
- Gutjar, S.; de Graaf, C.; Kooijman, V.; de Wijk, R.A.; Nys, A.; ter Horst, G.J.; Jager, G. The role of emotions in food choice and liking. Food Res. Int. 2015, 76, 216–223. [Google Scholar] [CrossRef]
- Xu, Y.; Hamid, N.; Shepherd, D.; Kantono, K.; Spence, C. Changes in flavour, emotion, and electrophysiological measurements when consuming chocolate ice cream in different eating environments. Food Qual. Prefer. 2019, 77, 191–205. [Google Scholar] [CrossRef]
- Puputti, S.; Aisala, H.; Hoppu, U.; Sandell, M. Multidimensional measurement of individual differences in taste perception. Food Qual. Prefer. 2018, 65, 10–17. [Google Scholar] [CrossRef]
- King, S.C.; Meiselman, H.L. Development of a method to measure consumer emotions associated with foods. Food Qual. Prefer. 2010, 21, 168–177. [Google Scholar] [CrossRef]
- King, S.C.; Snow, J.; Meiselman, H.L.; Sainsbury, J.; Carr, B.T.; McCafferty, D.; Serranao, D.; Gillette, M.; Millard, L.; Li, Q. Development of a questionnaire to measure consumer wellness associated with foods: The WellSense profile. Food Qual. Prefer. 2015, 39, 82–94. [Google Scholar] [CrossRef]
- Wang, E.; Cakmak, Y.O.; Peng, M. Eating with eyes—Comparing eye movements and food choices between overweight and lean individuals in a real-life buffet setting. Appetite 2018, 125, 152–159. [Google Scholar] [CrossRef]
- Shafaie, Y.; Koelliker, Y.; Hoffman, D.J.; Tepper, B.J. Energy intake and diet selection during buffet consumption in women classified by the 6-n-propylthiouracil bitter taste phenotype. Am. J. Clin. Nutr. 2013, 98, 1583–1591. [Google Scholar] [CrossRef]
- Han, P.; Keast, R.; Roura, E. TAS1R1 and TAS1R3 polymorphisms relate to energy and protein-rich food choices from a buffet meal respectively. Nutrients 2018, 10, 1906. [Google Scholar] [CrossRef] [Green Version]
- Sinesio, F.; Saba, A.; Peparaio, M.; Saggia Civitelli, E.; Paoletti, F.; Moneta, E. Capturing consumer perception of vegetable freshness in a simulated real-life taste situation. Food Res. Int. 2018, 105, 764–771. [Google Scholar] [CrossRef]
- Friis, R.; Skov, L.R.; Olsen, A.; Appleton, K.M.; Saulais, L.; Dinnella, C.; Hartwell, H.; Depezay, L.; Monteleone, E.; Giboreau, A.; et al. Comparison of three nudge interventions (priming, default option, and perceived variety) to promote vegetable consumption in a self-service buffet setting. PLoS ONE 2017, 12, e0176028. [Google Scholar] [CrossRef]
- Gaillet-Torrent, M.; Sulmont-Rossé, C.; Issanchou, S.; Chabanet, C.; Chambaron, S. Impact of a non-attentively perceived odour on subsequent food choices. Appetite 2014, 76, 17–22. [Google Scholar] [CrossRef] [PubMed]
- Mors, M.R.; Polet, I.A.; Vingerhoeds, M.H.; Perez-Cueto, F.J.A.; de Wijk, R.A. Can food choice be influenced with priming with food odours? Food Qual. Prefer. 2018, 66, 148–152. [Google Scholar] [CrossRef] [Green Version]
- Spence, C.; Reinoso-Carvalho, F.; Velasco, C.; Wang, Q.J. Extrinsic auditory contributions to food perception & consumer behaviour: An interdisciplinary review. Multisens. Res. 2019, 32, 275–318. [Google Scholar] [CrossRef] [PubMed]
- Fiegel, A.; Meullenet, J.F.; Harrington, R.J.; Humble, R.; Seo, H.S. Background music genre can modulate flavor pleasantness and overall impression of food stimuli. Appetite 2014, 76, 144–152. [Google Scholar] [CrossRef]
- Ratcliffe, E.; Gatersleben, B.; Sowden, P.T. Bird sounds and their contributions to perceived attention restoration and stress recovery. J. Environ. Psychol. 2013, 36, 221–228. [Google Scholar] [CrossRef] [Green Version]
- Paakki, M.; Sandell, M.; Hopia, A. Visual attractiveness depends on colorfulness and color contrasts in mixed salads. Food Qual. Prefer. 2019, 76, 81–90. [Google Scholar] [CrossRef]
- Spence, C. Background color & its impact on food perception & behavior. Food Qual. Prefer. 2018, 68, 156–166. [Google Scholar] [CrossRef]
- Hoppu, U.; Puputti, S.; Aisala, H.; Laaksonen, O.; Sandell, M. Individual differences in the perception of color solutions. Foods 2018, 7, 154. [Google Scholar] [CrossRef] [Green Version]
- Schifferstein, H.N.J.; Howell, B.F.; Pont, S.C. Colored backgrounds affect the attractiveness of fresh produce but not it’s perceived color. Food Qual. Prefer. 2017, 56, 173–180. [Google Scholar] [CrossRef] [Green Version]
- Hasenbeck, A.; Cho, S.; Meullenet, J.F.; Tokar, T.; Yang, F.; Huddleston, E.A.; Seo, H.S. Color and illuminance level of lighting can modulate willingness to eat bell peppers. J. Sci. Food Agric. 2014, 94, 2049–2056. [Google Scholar] [CrossRef]
- Edwards, J.S.A.; Hartwell, H.J.; Brown, L. The relationship between emotions, food consumption and meal acceptability when eating out of the home. Food Qual. Prefer. 2013, 30, 22–32. [Google Scholar] [CrossRef]
- Piqueras-Fiszman, B.; Jaeger, S.R. Emotions associated to mealtimes: Memorable meals and typical evening meals. Food Res. Int. 2015, 76, 243–252. [Google Scholar] [CrossRef]
- Maksimainen, J.; Wikgren, J.; Eerola, T.; Saarikallio, S. The effect of memory in inducing pleasant emotions with musical and pictorial stimuli. Sci. Rep. 2018, 8, 17638. [Google Scholar] [CrossRef] [PubMed]
- Steinemann, A. Health and societal effects from exposure to fragranced consumer products. Prev. Med. Rep. 2016, 5, 45–47. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bucher, T.; Keller, C. The web-buffet--development and validation of an online tool to measure food choice. Public Health Nutr. 2015, 18, 1950–1959. [Google Scholar] [CrossRef] [Green Version]
- König, L.M.; Renner, B. Boosting healthy food choices by meal colour variety: Results from two experiments and a just-in-time Ecological Momentary Intervention. BMC Public Health 2019, 19, 975. [Google Scholar] [CrossRef]
- Nørnberg, T.R.; Houlby, L.; Jørgensen, L.N.; He, C.; Pérez-Cueto, F.J. Do we know how much we put on the plate? Assessment of the accuracy of self-estimated versus weighed vegetables and whole grain portions using an Intelligent Buffet at the FoodScape Lab. Appetite 2014, 81, 162–167. [Google Scholar] [CrossRef]
- Haugaard, P.; Stancu, C.M.; Brockhoff, P.B.; Thorsdottir, I.; Lähteenmäki, L. Determinants of meal satisfaction in a workplace environment. Appetite 2016, 105, 195–203. [Google Scholar] [CrossRef] [Green Version]
Food Color | Foods | Type, Preparation | Serving Size (g) |
---|---|---|---|
Black | Kalamata olive | canned, strained | 150 |
Black grape | rinsed | 240 | |
Green | Broccoli | frozen, defrosted | 180 |
Ice lettuce | rinsed, ripped to pieces | 100 | |
Red | Cherry tomato | rinsed | 240 |
Red bell pepper | rinsed, chopped | 200 | |
Beige | Chickpeas | canned, rinsed, strained | 240 |
Salted peanuts | 140 | ||
Orange | Orange | peeled, cut | 250 |
Cantaloupe melon | peeled, cut | 200 | |
White | Mozzarella cheese | cut into slices | 240 |
Feta-type cheese | cubes, strained | 210 | |
Pasta | Pesto pasta | cooked pasta, cooled, mixed with pesto sauce 1:7 | 205 |
Aioli pasta | cooked pasta, cooled, mixed with aioli mayonnaise 1:7 | 205 |
Food | Food Intake Control (g) Mean (SD) | Food Intake Multisensory (g) Mean (SD) |
---|---|---|
Kalamata olive | 14 (13) | 14 (14) |
Black grape | 25 (18) | 29 (16) |
Broccoli | 32 (21) | 31 (22) |
Ice lettuce | 22 (13) | 21 (14) |
Cherry tomato | 38 (24) | 35 (22) |
Red bell pepper | 20 (17) | 19 (17) |
Chickpeas | 17 (24) | 15 (19) |
Salted peanuts | 7 (8) | 7 (7) |
Orange | 38 (30) | 33 (27) |
Cantaloupe melon | 43 (25) | 38 (19) |
Mozzarella cheese | 36 (22) | 32 (22) |
Feta-type cheese | 30 (20) | 28 (18) |
Pesto pasta | 34 (27) | 35 (29) |
Aioli pasta | 14 (17) | 16 (25) |
Total weight of the portion | 372 (98) | 354 (100) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hoppu, U.; Puputti, S.; Mattila, S.; Puurtinen, M.; Sandell, M. Food Consumption and Emotions at a Salad Lunch Buffet in a Multisensory Environment. Foods 2020, 9, 1349. https://doi.org/10.3390/foods9101349
Hoppu U, Puputti S, Mattila S, Puurtinen M, Sandell M. Food Consumption and Emotions at a Salad Lunch Buffet in a Multisensory Environment. Foods. 2020; 9(10):1349. https://doi.org/10.3390/foods9101349
Chicago/Turabian StyleHoppu, Ulla, Sari Puputti, Saila Mattila, Marjaana Puurtinen, and Mari Sandell. 2020. "Food Consumption and Emotions at a Salad Lunch Buffet in a Multisensory Environment" Foods 9, no. 10: 1349. https://doi.org/10.3390/foods9101349
APA StyleHoppu, U., Puputti, S., Mattila, S., Puurtinen, M., & Sandell, M. (2020). Food Consumption and Emotions at a Salad Lunch Buffet in a Multisensory Environment. Foods, 9(10), 1349. https://doi.org/10.3390/foods9101349