Screening of Antifungal and Antibacterial Activity of 90 Commercial Essential Oils against 10 Pathogens of Agronomical Importance
Abstract
:1. Introduction
2. Materials and Methods
2.1. Essential Oils
2.2. Fungal and Bacterial Strains
2.3. Making of a Stable EO Emulsion
2.4. In Vitro Screening Procedure
2.4.1. Determination of the Pathogens Kinetic Growth
2.4.2. Screening
3. Results
3.1. Evaluation of the Effect of the 90 EOs on the 10 Pathogens
3.1.1. P. expansum
3.1.2. B. cinerea
3.1.3. C. beticola
3.1.4. F. culmorum
3.1.5. F. graminearum
3.1.6. P. ultimum
3.1.7. C. lindemuthianum
3.1.8. P. infestans
3.1.9. P. carotovorum (PCC)
3.1.10. P. atrosepticum (PCA)
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Antunes, M.D.C.; Cavaco, A.M. The use of essential oils for postharvest decay control. A review. Flavour Fragr. J. 2010, 25, 351–366. [Google Scholar] [CrossRef]
- Andersen, E.J.; Ali, S.; Byamukama, E.; Yen, Y.; Nepal, M.P. Disease Resistance Mechanisms in Plants. Genes (Basel) 2018, 9, 339. [Google Scholar] [CrossRef] [Green Version]
- World Health Organization; FAO. Global Situation of Pesticide Management in Agriculture and Public Health: Report of A 2018 WHO-FAO Survey; World Health Organization: Geneva, Switzerland, 2019; ISBN 9789241516884. [Google Scholar]
- Bajpai, V.K.; Kang, S.; Xu, H.; Lee, S.G.; Baek, K.H.; Kang, S.C. Potential roles of essential oils on controlling plant pathogenic bacteria Xanthomonas species: A review. Plant Pathol. J. 2011, 27, 207–224. [Google Scholar] [CrossRef] [Green Version]
- Bakkali, F.; Averbeck, S.; Averbeck, D.; Idaomar, M. Biological effects of essential oils—A review. Food Chem. Toxicol. 2008, 46, 446–475. [Google Scholar] [CrossRef]
- Nazzaro, F.; Fratianni, F.; Coppola, R.; Feo, V. De Essential Oils and Antifungal Activity. Pharmaceuticals (Basel) 2017, 10, 86. [Google Scholar] [CrossRef] [Green Version]
- Ben Hsouna, A.; Ben Halima, N.; Smaoui, S.; Hamdi, N. Citrus lemon essential oil: Chemical composition, antioxidant and antimicrobial activities with its preservative effect against Listeria monocytogenes inoculated in minced beef meat. Lipids Health Dis. 2017, 16, 146. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Himed, L.; Merniz, S.; Monteagudo-Olivan, R.; Barkat, M.; Coronas, J. Antioxidant activity of the essential oil of citrus limon before and after its encapsulation in amorphous SiO2. Sci. Afr. 2019, 6, e00181. [Google Scholar] [CrossRef]
- Morsy, N.F.S. Chapter 11-Chemical Structure, Quality Indices and Bioactivity of Essential Oil Constituents, Active Ingredients from Aromatic and Medicinal Plants. In Active Ingredients from Aromatic and Medicinal Plant; El-Shemy, H.A., Ed.; IntechOpen: London, UK, 2017; pp. 175–206. ISBN 978-953-51-2976-9. [Google Scholar]
- Baser, K.H.C.; Buchbauer, G. Handbook of Essential Oils: Science, Technology, and Applications, 2nd ed.; CRC Press: New York, NY, USA, 2015; ISBN 9781466590472. [Google Scholar]
- Ali, B.; Al-Wabel, N.A.; Shams, S.; Ahamad, A.; Khan, S.A.; Anwar, F. Essential oils used in aromatherapy: A systemic review. Asian Pac. J. Trop. Biomed. 2015, 5, 601–611. [Google Scholar] [CrossRef] [Green Version]
- Raveau, R.; Fontaine, J.; Lounès-Hadj Sahraoui, A. Essential Oils as Potential Alternative Biocontrol Products against Plant Pathogens and Weeds: A Review. Foods 2020, 9, 365. [Google Scholar] [CrossRef] [Green Version]
- Prasad, M.N.N.; Bhat, S.S.; Sreenivasa, M.Y. Antifungal activity of essential oils against Phomopsis azadirachtae—The causative agent of die-back disease of neem. Int. J. Agric. Technol. 2010, 6, 127–133. [Google Scholar]
- Moretti, M.D.L.; Sanna-Passino, G.; Demontis, S.; Bazzoni, E. Essential oil formulations useful as a new tool for insect pest control. AAPS PharmSciTech 2002, 3, E13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kouassi, K.H.S.; Bajji, M.; Brostaux, Y.; Zhiri, A.; Samb, A.; Lepoivre, P.; Jijakli, H. Development and application of a microplate method to evaluate the efficacy of essential oils against Penicillium italicum Wehmer, Penicillium digitatum Sacc. and Colletotrichum musea (Berk. & M.A. Curtis) Arx, three postharvest fungal pathogens of fruits. Biotechnol. Agron. Société Environ. 2012, 16, 325–336. [Google Scholar]
- Kouassi, K.H.S.; Bajji, M.; Jijakli, H. The control of postharvest blue and green molds of citrus in relation with essential oil–wax formulations, adherence and viscosity. Postharvest Biol. Technol. 2012, 73, 122–128. [Google Scholar] [CrossRef]
- Dianez, F.; Santos, M.; Parra, C.; Navarro, M.J.; Blanco, R.; Gea, F.J. Screening of antifungal activity of 12 essential oils against eight pathogenic fungi of vegetables and mushroom. Lett. Appl. Microbiol. 2018, 67, 400–410. [Google Scholar] [CrossRef]
- Palfi, M.; Konjevoda, P.; Karolina Vrandečić, J.Ć. Antifungal activity of essential oils on mycelial growth of Fusarium oxysporum and Bortytis cinerea. Emirates J. Food Agric. 2019, 31, 544–554. [Google Scholar] [CrossRef]
- Gakuubi, M.M.; Maina, A.W.; Wagacha, J.M. Antifungal Activity of Essential Oil of Eucalyptus camaldulensis Dehnh. against Selected Fusarium spp. Int. J. Microbiol. 2017, 2017, 8761610. [Google Scholar] [CrossRef] [Green Version]
- Hood, J.R.; Wilkinson, J.M.; Cavanagh, H.M.A. Evaluation of Common Antibacterial Screening Methods Utilized in Essential Oil Research. J. Essent. Oil Res. 2003, 15, 428–433. [Google Scholar] [CrossRef]
- Osée Muyima, N.Y.; Nziweni, S.; Mabinya, L.V. Antimicrobial and antioxidative activities of Tagetes minuta, Lippia javanica and Foeniculum vulgare essential oils from the Eastern Cape Province of South Africa. J. Essent. Oil Bear. Plants 2004, 7, 68–78. [Google Scholar] [CrossRef]
- Chavan, P.S.; Tupe, S.G. Antifungal activity and mechanism of action of carvacrol and thymol against vineyard and wine spoilage yeasts. Food Control 2014, 46, 115–120. [Google Scholar] [CrossRef]
- Leite, M.C.A.; Bezerra, A.P.d.B.; de Sousa, J.P.; Guerra, F.Q.S.; Lima, E.d.O. Evaluation of Antifungal Activity and Mechanism of Action of Citral against Candida albicans. Evid. Based. Complement. Alternat. Med. 2014, 2014, 378280. [Google Scholar] [CrossRef] [Green Version]
- Schmidt, E.; Jirovetz, L.; Wlcek, K.; Buchbauer, G.; Gochev, V.; Girova, T.; Stoyanova, A.; Geissler, M. Antifungal Activity of Eugenol and Various Eugenol-Containing Essential Oils against 38 Clinical Isolates of Candida albicans. J. Essent. Oil Bear. Plants 2007, 10, 421–429. [Google Scholar] [CrossRef]
- OuYang, Q.; Duan, X.; Li, L.; Tao, N. Cinnamaldehyde Exerts Its Antifungal Activity by Disrupting the Cell Wall Integrity of Geotrichum citri-aurantii. Front. Microbiol. 2019, 10, 55. [Google Scholar] [CrossRef] [PubMed]
- Li, W.-R.; Shi, Q.-S.; Dai, H.-Q.; Liang, Q.; Xie, X.-B.; Huang, X.-M.; Zhao, G.-Z.; Zhang, L.-X. Antifungal activity, kinetics and molecular mechanism of action of garlic oil against Candida albicans. Sci. Rep. 2016, 6, 22805. [Google Scholar] [CrossRef] [PubMed]
- González-Mas, M.C.; Rambla, J.L.; López-Gresa, M.P.; Blázquez, M.A.; Granell, A. Volatile Compounds in Citrus Essential Oils: A Comprehensive Review. Front. Plant Sci. 2019, 10, 12. [Google Scholar] [CrossRef]
- Sharif, Z.M.; Kamal, A.F.; Jalil, N.J. Chemical composition of melaleuca cajuputi powell. Int. J. Eng. Adv. Technol. 2019, 9, 3479–3483. [Google Scholar]
- Sun, R.; Sacalis, J.N.; Chin, C.K.; Still, C.C. Bioactive aromatic compounds from leaves and stems of Vanilla fragrans. J. Agric. Food Chem. 2001, 49, 5161–5164. [Google Scholar] [CrossRef]
- Simas, D.L.R.; de Amorim, S.H.B.M.; Goulart, F.R.V.; Alviano, C.S.; Alviano, D.S.; da Silva, A.J.R. Citrus species essential oils and their components can inhibit or stimulate fungal growth in fruit. Ind. Crops Prod. 2017, 98, 108–115. [Google Scholar] [CrossRef]
- Khaledi, N.; Hassani, F. Antifungal activity of Bunium persicum essential oil and its constituents on growth and pathogenesis of Colletotrichum lindemuthianum. J. Plant Prot. Res. 2018, 58, 431–441. [Google Scholar]
- Kumar, A.; Kudachikar, V.B. Antifungal properties of essential oils against anthracnose disease: A critical appraisal. J. Plant Dis. Prot. 2018, 125, 133–144. [Google Scholar] [CrossRef]
- Quintanilla, P.; Rohloff, J.; Iversen, T.-H. Influence of essential oils onPhytophthora infestans. Potato Res. 2002, 45, 225–235. [Google Scholar] [CrossRef]
- Clavaud, C.; Aimanianda, V.; Latge, J.-P. Chapter 4.3—Organization of Fungal, Oomycete and Lichen (1,3)-β-Glucans. In Chemistry, Biochemistry, and Biology of 1-3 Beta Glucans and Related Polysaccharides; Bacic, A., Fincher, G.B., Stone, B.A., Eds.; Academic Press: San Diego, CA, USA, 2009; pp. 387–424. ISBN 978-0-12-373971-1. [Google Scholar]
- Hajian-Maleki, H.; Baghaee-Ravari, S.; Moghaddam, M. Efficiency of essential oils against Pectobacterium carotovorum subsp. carotovorum causing potato soft rot and their possible application as coatings in storage. Postharvest Biol. Technol. 2019, 156, 110928. [Google Scholar] [CrossRef]
- Werrie, P.-Y.; Durenne, B.; Delaplace, P.; Fauconnier, M.-L. Phytotoxicity of Essential Oils: Opportunities and Constraints for the Development of Biopesticides. A Review. Foods 2020, 9, 1291. [Google Scholar] [CrossRef] [PubMed]
Num. Code | Plant Species | Num. Code | Plant Species | Num. Code | Plant Species |
---|---|---|---|---|---|
1 | Allium sativum | 31 | Eucalyptus citriodora Ct citronnellal | 61 | Corydothymus capitatus |
2 | Trachyspermum amni | 32 | Eucalyptus globulus | 62 | Origanum heracleoticum |
3 | Anethum graveolens | 33 | Eucalyptus dives CT. Piperitone | 63 | Origanum compactum |
4 | Illicum verum | 34 | Eucalyptus smithii | 64 | Cymbopogon martini var. motia |
5 | Pimpinella anisum | 35 | Eucalyptus radiata ssp radiata | 65 | Citrus paradisi |
6 | Melaleuca alternifolia | 36 | Foeniculum vulgare | 66 | Citrus aurantium ssp amara |
7 | Ocimum basilicum ssp basilicum | 37 | Gaultheria fragrantissima | 67 | Pinus pinaster |
8 | Ocimum sanctum | 38 | Pelargonium x asperum | 68 | Pinus pinaster térébenthine |
9 | Copaifera officinalis | 39 | Zingiber officinale | 69 | Pinus sylvestris |
10 | Pimenta racemosa | 40 | Laurus nobilis | 70 | Piper nigrum |
11 | Styrax benzoe | 41 | Lavendula angustifolia ssp angustifolia | 71 | Cinnamomum camphora ct cinéole |
12 | Citrus bergamia | 42 | Lavendula x burnatii clone grosso | 72 | Rosmarinus officinalis ct camphre |
13 | Fokienia hodginsii | 43 | Cymbopogon citratus | 73 | Rosmarinus officinalis ct cinéole |
14 | Aniba rosaeodora var. amazonica | 44 | Leptospermum petersonii | 74 | Rosmarinus officinalis ct verbenone |
15 | Melaleuca cajputii | 45 | Citrus aurantifolia | 75 | Amyris balsamifera |
16 | Cinnamomum cassia | 46 | Litsea citrata | 76 | Abies alba |
17 | Cinnamomum zeylanicum | 47 | Citrus reticulata | 77 | Abies balsamea |
18 | Carum carvi | 48 | Cinnamosma fragrans | 78 | Abies sibirica |
19 | Cedrus atlantica | 49 | Origanum majorana ct thujanol | 79 | Salvia lanvandulifolia |
20 | Cedrus deodara | 50 | Thymus mastichina | 80 | Salvia officinalis |
21 | Juniperus virgiana | 51 | Mentha x citrata | 81 | Satureja hortensis |
22 | Apium graveolens var. dulce | 52 | Mentha arvensis | 82 | Satureja montana |
23 | Cymbopogon nardus | 53 | Mentha x piperita | 83 | Thymus satureioides |
24 | Cymbopogon winterianus | 54 | Mentha pulegium | 84 | Thymus vulgaris ct 1 à linalol |
25 | Cymbopogon giganteus | 55 | Monarda fistulosa | 85 | Thymus vulgaris ct thymol |
26 | Citrus limon | 56 | Myristica fragrans | 86 | Thuya occidentalis |
27 | Coriandrum sativum | 57 | Myrtus communis ct cinéole | 87 | Vanilla fragrans Auct |
28 | Cuminum cymincum | 58 | Myrtus communis ct acétate de myrtényle | 88 | Cymbopogon flexuosus |
29 | Cupressus sempervirens var. stricta | 59 | Melaleuca quinquenervia ct cinéole | 89 | Vetiveria zizanoides |
30 | Canarium luzonicum | 60 | Citrus sinensis | 90 | Eugenia caryophyllus |
Host Plant/Environment | Pathogen | Culture Conditions (Medium, Temperature (°C)) |
---|---|---|
Wheat | Fusarium graminearum | PDA, 23 °C |
Fusarium culmorum | V8, 23 °C | |
Sugar beet | Cercospora beticola | V8, 23 °C |
Potato (tuber) | Phytophthora infestans | V8, 16 °C |
Pectobacterium carotovorum | LB-Agar, 23 °C | |
Pectobacterium atrosepticum | LB-Agar, 23 °C | |
Apple and pear (fruit) | Botrytis cinerea | PDA, 23 °C |
Penicillium expansum | PDA, 23 °C | |
Bean | Colletotrichum lindemuthianum | V8, 23 °C |
Soils | Pythium ultimum | PDA, 23 °C |
Pathogen | Selected Growth Conditions |
---|---|
Fusarium graminearum | 3 times diluted PDB/105 spores/mL |
Fusarium culmorum | 3 times diluted V8/105 spores/mL |
Cercospora beticola | 3 times diluted V8/105 spores/mL |
Phytophthora infestans | 300 times diluted V8/0.3 106 spores/mL |
Pectobacterium carotovorum | 3 times diluted LB/107 CFU/mL |
Pectobacterium atrosepticum | 3 times diluted LB/107 CFU/mL |
Penicillium expansum | 3 times diluted PDB/105 spores/mL |
Botrytis cinerea | 3 times diluted PDB/105 spores/mL |
Colletotrichum lindemuthianum | 3 times diluted V8/106 spores/mL |
Pythium ultimum | 3 times diluted PDB/105 spores/mL |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Clerck, C.D.; Maso, S.D.; Parisi, O.; Dresen, F.; Zhiri, A.; Jijakli, M.H. Screening of Antifungal and Antibacterial Activity of 90 Commercial Essential Oils against 10 Pathogens of Agronomical Importance. Foods 2020, 9, 1418. https://doi.org/10.3390/foods9101418
Clerck CD, Maso SD, Parisi O, Dresen F, Zhiri A, Jijakli MH. Screening of Antifungal and Antibacterial Activity of 90 Commercial Essential Oils against 10 Pathogens of Agronomical Importance. Foods. 2020; 9(10):1418. https://doi.org/10.3390/foods9101418
Chicago/Turabian StyleClerck, Caroline De, Simon Dal Maso, Olivier Parisi, Frédéric Dresen, Abdesselam Zhiri, and M. Haissam Jijakli. 2020. "Screening of Antifungal and Antibacterial Activity of 90 Commercial Essential Oils against 10 Pathogens of Agronomical Importance" Foods 9, no. 10: 1418. https://doi.org/10.3390/foods9101418
APA StyleClerck, C. D., Maso, S. D., Parisi, O., Dresen, F., Zhiri, A., & Jijakli, M. H. (2020). Screening of Antifungal and Antibacterial Activity of 90 Commercial Essential Oils against 10 Pathogens of Agronomical Importance. Foods, 9(10), 1418. https://doi.org/10.3390/foods9101418