Effect of Different Egg Products on Lipid Oxidation of Biscuits
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Samples
2.3. Moisture Determination
2.4. Ash Content
2.5. Lipid Extraction for Fat Composition
2.6. Protein Determination
2.7. Lipid Extraction for Lipid Oxidation Analysis
2.8. Peroxide Determination
2.9. Cholesterol and COPs Determination
2.10. Oxidized Fatty Acids Analysis (OFA)
2.11. Statistical Analysis
3. Results and Discussion
3.1. Chemical Composition and Oxidative Status of Egg Products
3.2. Chemical Composition of Biscuits
3.3. Lipid Oxidation in Biscuits
3.4. Cholesterol and COPs Content in Biscuits
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Cercaci, L.; Conchillo, A.; Rodriguez-Estrada, M.T.; Ansorena, D.; Astiasarán, I.; Lercker, G. Preliminary Study on Health-Related Lipid Components of Bakery Products. J. Food Prot. 2006, 69, 1393–1401. [Google Scholar] [CrossRef] [PubMed]
- Mazalli, M.R.; Bragagnolo, N. Effect of Storage on Cholesterol Oxide Formation and Fatty Acid Alterations in Egg Powder. J. Agric. Food Chem. 2007, 55, 2743–2748. [Google Scholar] [CrossRef] [PubMed]
- Maire, M.; Rega, B.; Cuvelier, M.E.; Soto, P.; Giampaoli, P. Lipid oxidation in baked products: Impact of formula and process on the generation of volatile compounds. Food Chem. 2013, 141, 3510–3518. [Google Scholar] [CrossRef] [PubMed]
- Vicente, S.J.V.; Sampaio, G.R.; Ferrari, C.K.B.; Torres, E.A.F.S. Oxidation of Cholesterol in Foods and Its Importance for Human Health. Food Rev. Int. 2012, 28, 47–70. [Google Scholar] [CrossRef]
- Kulig, W.; Cwiklik, L.; Jurkiewicz, P.; Rog, T.; Vattulainen, I. Cholesterol oxidation products and their biological importance. Chem. Phys. Lipids 2016, 199, 144–160. [Google Scholar] [CrossRef]
- Otaegui-Arrazola, A.; Menéndez-Carreño, M.; Ansorena, D.; Astiasarán, I. Oxysterols: A world to explore. Food Chem. Toxicol. 2010, 48, 3289–3303. [Google Scholar] [CrossRef]
- Medina-Meza, I.G.; Barnaba, C. Kinetics of Cholesterol Oxidation in Model Systems and Foods: Current Status. Food Eng. Rev. 2013, 5, 171–184. [Google Scholar] [CrossRef]
- Lercker, G.; Rodriguez-Estrada, M.T. Chapter 1: Cholesterol Oxidation Mechanisms. In Cholesterol and Phytosterol Oxidation Products: Analysis, Occurrence, and Biological Effects; Guardiola, F., Dutta, P.C., Codony, R., Savage, G.P., Eds.; AOCS Press: Champaign, IL, USA, 2002. [Google Scholar]
- Cardenia, V.; Rodriguez-Estrada, M.T.; Boselli, E.; Lercker, G. Cholesterol photosensitized oxidation in food and biological systems. Biochimie 2013, 95, 473–481. [Google Scholar] [CrossRef]
- Boselli, E.; Velazco, V.; Caboni, M.F.; Lercker, G. Pressurized liquid extraction of lipids for the determination ofoxysterols in egg containing food. J. Chromatogr. A 2001, 917, 239–244. [Google Scholar] [CrossRef]
- Hur, S.J.; Park, G.B.; Joo, S.T. Formation of cholesterol oxidation products (COPs) in animal products. Food Control 2007, 18, 939–947. [Google Scholar] [CrossRef]
- Sales de Oliveira, V.; Silva Ferreira, F.; Ramos Cople, M.C.; da Silva Labre, T.; Augusta, I.M.; Domingues Gamallo, O.; Saldanha, T. Use of Natural Antioxidants in the Inhibition of Cholesterol Oxidation: A Review. Compr. Rev. Food Sci. Food Saf. 2018, 17, 1465–1483. [Google Scholar] [CrossRef] [Green Version]
- Galanakis, C.M. The Food Systems in the Era of the Coronavirus (COVID-19) Pandemic Crisis. Foods 2020, 9, 523. [Google Scholar] [CrossRef] [PubMed]
- Harlina, P.W.; Ma, M.; Shahzad, R.; Gouda, M.M.; Qiu, N. Effect of clove extract on lipid oxidation, antioxidant activity, volatile compounds and fatty acid composition of salted duck eggs. J. Food Sci. Technol. 2018, 55, 4719–4734. [Google Scholar] [CrossRef] [PubMed]
- Harlina, P.W.; Shahzad, R.; Ma, M.; Wang, N.; Qiu, N. Effects of galangal extract on lipid oxidation, antioxidant activity and fatty acid profiles of salted duck eggs. J. Food Meas. Charact. 2019, 13, 1820–1830. [Google Scholar] [CrossRef]
- Abreu, V.K.G.; Pereira, A.L.F.; Freitas, E.R.; Trevisan, M.; Costa, J.; de Melo Braz, N. Cashew Nut Shell Liquid Supplementation and the Effect on Lipid Oxidation and Color in Fresh and Spray-Dried Eggs. J. Food Process. Preserv. 2017, 41, e13001. [Google Scholar] [CrossRef]
- Galanakis, C.M. Phenols recovered from olive mill wastewater as additives in meat products. Trends Food Sci. Technol. 2018, 79, 98–105. [Google Scholar] [CrossRef]
- ICC Method 110/1. Standard Methods of the International Association for Cereal Science and Technology; International Association for Cereal Science and Technology: Vienna, Austria, 1995. [Google Scholar]
- ICC Method 104/1. Standard Methods of the International Association for Cereal Science and Technology; International Association for Cereal Science and Technology: Vienna, Austria, 1995. [Google Scholar]
- AOAC 14.088-14.089. Official Methods of Analysis of the Association of Official Analytical Chemists, 13th ed.; Association of Official Analytical Chemists: Arlington, VA, USA, 1980. [Google Scholar]
- Shantha, N.C.; Decker, E.A. Rapid, sensitive, iron-based spectophotometric methods for determination of peroxide values of food lipids. J. AOAC Int. 1994, 77, 421–424. [Google Scholar] [CrossRef]
- Sander, B.D.; Addis, P.B.; Park, S.W.; Smith, D.E. Quantification of cholesterol oxidation products in a variety of foods. J. Food Prot. 1989, 52, 109–114. [Google Scholar] [CrossRef]
- Rose-Sallin, C.; Hugget, A.C.; Bosset, J.O.; Tabacchi, R.; Fay, L.B. Quantification of cholesterol oxidation products in milk powders using [2H7] cholesterol to monitor cholesterol autoxidation artefacts. J. Agric. Food Chem. 1995, 43, 935–941. [Google Scholar] [CrossRef]
- Sweeley, C.C.; Bentley, R.; Makita, M.; Wells, W.W. Gas-liquid chromatography of trimethylsilyl derivatives of sugars and related substances. J. Am. Oil Chem. Soc. 1963, 85, 2497–2507. [Google Scholar] [CrossRef]
- Rovellini, P.; Cortesi, N. Oxidative status of extra virgin olive oils: HPLC evaluation. Ital. J. Food Sci. 2004, 16, 335–344. [Google Scholar]
- Reale, A.; Di Renzo, T.; Preziuso, M.; Panfili, G.; Cipriano, L.; Messia, M.C. Stabilization of sourdough starter by spray drying technique: New breadmaking perspective. LWT-Food Sci. Technol. 2019, 99, 468–475. [Google Scholar] [CrossRef]
- Verardo, V.; Riciputi, Y.; Messia, M.C.; Marconi, E.; Caboni, M.F. Influence of drying temperatures on the quality of pasta formulated with different egg products. Eur. Food Res. Technol. 2017, 243, 817–825. [Google Scholar] [CrossRef]
- Caboni, M.F.; Boselli, E.; Messia, M.C.; Velazco, V.; Fratianni, A.; Panfili, G.; Marconi, E. Effect of processing and storage on the chemical quality markers of spray-dried whole egg. Food Chem. 2005, 92, 293–303. [Google Scholar] [CrossRef]
- Cardenia, V.; Olivero, G.; Rodriguez-Estrada, M.T. Thermal oxidation of cholesterol: Preliminary evaluation of 2-methyl-6-heptanone and 3-methylbutanal as volatile oxidation markers. Steroids 2015, 99, 161–171. [Google Scholar] [CrossRef] [PubMed]
- Verardo, V.; Pasini, F.; Iafelice, G.; Messia, M.C.; Marconi, E.; Caboni, M.F. Influence of storage conditions on cholesterol oxidation in dried egg pasta. J. Agric. Food Chem. 2010, 58, 3586–3590. [Google Scholar] [CrossRef]
- Chien, J.T.; Wang, H.C.; Chen, B.H. Kinetic Model of the Cholesterol Oxidation during Heating. J. Agric. Food Chem. 1998, 46, 2572–2577. [Google Scholar] [CrossRef]
- Lercker, G.; Rodriguez-Estrada, M.T. Cholesterol Oxidation: Presence of 7-ketocholesterol in Different Food Products. J. Food Compos. Anal. 2000, 13, 625–631. [Google Scholar] [CrossRef]
- Calligaris, S.; Pieve, S.D.; Kravina, G.; Manzocco, L.; Nicoli, C.M. Shelf Life Prediction of Bread Sticks Using Oxidation Indices: A Validation Study. J. Food Sci. 2008, 73, E51–E56. [Google Scholar] [CrossRef]
- Koczoń, P.; Lipińka, E.; Czerniawska-Piatkowska, E.; Mikuła, M.; Bartyzel, B.J. The change of fatty acids composition of Polish biscuits during storage. Food Chem. 2016, 202, 341–348. [Google Scholar] [CrossRef]
- Verardo, V.; Riciputi, Y.; Messia, M.C.; Vallicelli, M.; Falasca, L.; Marconi, E.; Caboni, M.F. Dietary fiber and flavan-3-ols in shortbread biscuits enriched with barley flours co-products. Int. J. Food Sci. Nutr. 2011, 62, 262–269. [Google Scholar] [CrossRef] [PubMed]
- Min, J.S.; Lee, S.O.; Khan, M.I.; Yim, D.Y.; Seol, K.H.; Lee, M.; Jo, C. Monitoring the formation of cholesterol oxidation products in model systems using response surface methodology. Lipids Health Dis. 2015, 14, 77. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rodriguez-Estrada, M.T.; Garcia-Llatas, G.; Lagarda, M.J. 7-Ketocholesterol as marker of cholesterol oxidation in model and food systems: When and how. Biochem. Biophys. Res. Commun. 2014, 446, 792–797. [Google Scholar] [CrossRef] [PubMed]
Ingredients | Biscuit with PE (BPE) | Biscuit with SPE (BSPE) |
---|---|---|
Refined wheat flour (g) | 2000 | 2000 |
Butter (g) | 600 | 600 |
Sucrose (g) | 600 | 600 |
Milk (g) | 100 | 100 |
Water (g) | 0 | 300 |
Egg product (g) | 575 | 150 |
Ammonium bicarbonate (g) | 30 | 30 |
Sample | Moisture (f.w.) | Protein (d.w.) | Lipid (d.w.) | Ash (d.w.) |
---|---|---|---|---|
FE | 76.4 ± 0.15 | 51.3 ± 2.78 | 44.9 ± 2.80 | 3.86 ± 0.02 |
PE | 73.8 ± 0.01 | 48.5 ± 2.14 | 45.0 ± 3.32 | 4.20 ± 0.09 |
SPE | 2.3 ± 0.01 | 48.8 ± 0.19 | 48.0 ± 0.20 | 3.65 ± 0.14 |
COPs | FE | PE | SPE |
---|---|---|---|
7-α-HC | <LOD | 6.68 ± 0.09 b | 20.67 ± 0.91 a |
7-β-HC | <LOD | 1.85 ± 0.09 b | 19.18 ± 0.43 a |
β-CE | <LOD | 7.44 ± 0.45 b | 15.04 ± 0.28 a |
α-CE | <LOD | 4.62 ± 0.19 b | 7.38 ± 0.22 a |
7-KC | <LOD | 7.30 ± 0.46 b | 9.03 ± 0.31 a |
Sum | <LOD | 27.89 ± 0.30 b | 71.29 ± 0.86 a |
% cholesterol affected by oxidation | - | 0.12 | 0.30 |
Sample | Moisture | Protein | Lipid | Ash | Carbohydrates * |
---|---|---|---|---|---|
BPE | 8.1 ± 0.05 a | 7.7 ± 0.02 a | 18.3 ± 0.10 a | 0.74 ± 0.02 a | 65.2 |
BSPE | 8.5 ± 0.01 a | 7.8 ± 0.00 a | 18.4 ± 0.15 a | 0.80 ± 0.07 a | 64.5 |
COPs | BPE | BSPE |
---|---|---|
7-α-HC | 3.77 ± 0.46 a | 2.56 ± 0.55 a |
7-β-HC | 9.08 ± 0.30 b | 6.56 ± 0.37 a |
β-CE | 2.02 ± 0.25 b | 4.59 ± 0.39 a |
α-CE | 1.00 ± 0.03 b | 1.57 ± 0.13 a |
7-KC | 7.82 ± 0.13 b | 5.17 ± 0.23 a |
Sum | 23.69 ± 1.11 b | 20.44 ± 0.16 a |
% cholesterol affected by oxidation | 0.40 | 0.35 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Verardo, V.; Messia, M.C.; Marconi, E.; Caboni, M.F. Effect of Different Egg Products on Lipid Oxidation of Biscuits. Foods 2020, 9, 1714. https://doi.org/10.3390/foods9111714
Verardo V, Messia MC, Marconi E, Caboni MF. Effect of Different Egg Products on Lipid Oxidation of Biscuits. Foods. 2020; 9(11):1714. https://doi.org/10.3390/foods9111714
Chicago/Turabian StyleVerardo, Vito, Maria Cristina Messia, Emanuele Marconi, and Maria Fiorenza Caboni. 2020. "Effect of Different Egg Products on Lipid Oxidation of Biscuits" Foods 9, no. 11: 1714. https://doi.org/10.3390/foods9111714
APA StyleVerardo, V., Messia, M. C., Marconi, E., & Caboni, M. F. (2020). Effect of Different Egg Products on Lipid Oxidation of Biscuits. Foods, 9(11), 1714. https://doi.org/10.3390/foods9111714