Exploring Potential Bioactive Peptides in Fermented Bactrian Camel’s Milk and Mare’s Milk Made by Mongolian Nomads
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents
2.2. Milk Samples
2.3. Peptide Purification
2.4. Mass Spectrometry
2.5. N-Terminal Sequence Analysis
3. Results
3.1. Peptide Profiles in the Fermented Milks Analyzed by RP-HPLC
3.2. Peptide Analysis by MALDI TOF-MS/MS
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Bonnet, P. Dromadaires et Chameaux, Animaux Laitiers: Actes du Colloque, 24–26 Octobre, Nouakchott, Mauritanie; Éditions Quae: Versailles, France, 1998; pp. 257–261. [Google Scholar]
- Zhang, H.; Yao, J.; Zhao, D.; Liu, H.; Li, J.; Guo, M. Changes in Chemical Composition of Alxa Bactrian Camel Milk During Lactation. J. Dairy Sci. 2005, 88, 3402–3410. [Google Scholar] [CrossRef]
- Korhonen, H.; Pihlanto, A. Bioactive Peptides: Production and Functionality. Int. Dairy J. 2006, 16, 945–960. [Google Scholar] [CrossRef]
- Meisel, H.; Bockelmann, W. Bioactive Peptides Encrypted in Milk Proteins: Proteolytic Activation and Thropho-functional Properties. Antonie Van Leeuwenhoek 1999, 76, 207–215. [Google Scholar] [CrossRef] [PubMed]
- Chang, K.J.; Lillian, A.; Hazum, E.; Cuatrecasas, P.; Chang, J.K. Morphiceptin (NH4-tyr-pro-phe-pro-COHN2): A Potent and Specific Agonist for Morphine (mu) Receptors. Science 1981, 212, 75–77. [Google Scholar] [CrossRef] [PubMed]
- Fiat, A.M.; Migliore-Samour, D.; Jollès, P.; Drouet, L.; Bal dit Sollier, C.; Caen, J. Biologically Active Peptides from Milk Proteins with Emphasis on Two Examples Concerning Antithrombotic and Immunomodulating Activities. J. Dairy Sci. 1993, 76, 301–310. [Google Scholar] [CrossRef]
- Bellamy, W.; Takase, M.; Yamauchi, K.; Wakabayashi, H.; Kawase, K.; Tomita, M. Identification of the Bactericidal Domain of Lactoferrin. Biochim. Biophys. Acta 1992, 1121, 130–136. [Google Scholar] [CrossRef]
- Hata, Y.; Yamamoto, M.; Ohni, M.; Nakajima, K.; Nakamura, Y.; Takano, T. A Placebo-controlled Study of the Effect of Sour Milk on Blood Pressure in Hypertensive Subjects. Am. J. Clin. Nutr. 1996, 64, 767–771. [Google Scholar] [CrossRef] [Green Version]
- Sato, R.; Noguchi, T.; Naito, H. Casein Phosphopeptide (CPP) Enhances Calcium Absorption from the Ligated Segment of Rat Small Intestine. J. Nutr. Sci. Vitam. 1986, 32, 67–76. [Google Scholar] [CrossRef] [Green Version]
- Alhaider, A.; Abdelgader, A.G.; Turjoman, A.A.; Newell, K.; Hunsucker, S.W.; Shan, B.; Ma, B.; Gibson, D.S.; Duncan, M.W. Through the Eye of an Electrospray Needle: Mass Spectrometric Identification of the Major Peptides and Proteins in the Milk of the One-humped Camel (Camelus Dromedarius). J. Mass Spectr. 2013, 48, 779–794. [Google Scholar] [CrossRef]
- Moslehishad, M.; Ehsani, M.R.; Salami, M.; Mirdamadi, S.; Ezzatpanah, H.; Naslaji, A.N.; Moosavi-Movahedi, A.A. The Comparative Assessment of ACE-inhibitory and Antioxidant Activities of Peptide Fractions Obtained from Fermented Camel and Bovine Milk by Lactobacillus Rhamnosus PTCC 1637. Int. Dairy J. 2013, 29, 82–87. [Google Scholar] [CrossRef]
- Mati, A.; Senoussi-Ghezali, C.; Zennia, S.S.A.; Almi-Sebbane, D.; El-Hatmi, H.; Girardet, J.-M. Dromedary Camel Milk Proteins, a Source of Peptides Having Biological Activities—A Review. Int. Dairy J. 2017, 73, 25–37. [Google Scholar] [CrossRef]
- Beja-Pereira, A.; England, P.R.; Ferrand, N.; Jordan, S.; Bakhiet, A.O.; Abdalla, M.A.; Mashkour, M.; Jordana, J.; Taberlet, P.; Luikart, G. Africans Origins of the Domestic Donkey. Science 2004, 304, 1781. [Google Scholar] [CrossRef] [Green Version]
- Park, Y.W.; Zhang, H.; Zhang, B.; Zhang, L. Mare Milk. In Handbook of Milk of Non-Bovine Mammals; Park, Y.W., Haenlein, G.F.W., Eds.; Blackwell Publishing Professional: Ames, IA, USA, 2006; pp. 275–296. [Google Scholar]
- Wang, J.; Chen, X.; Liu, W.; Yang, M.; Airidengcaicike; Zhang, H. Identification of Lactobacillus from Koumiss by Conventional and Molecular Methods. Eur. Food Res. Technol. 2008, 227, 1555–1561. [Google Scholar] [CrossRef]
- Chen, Y.; Wang, Z.; Chen, Y.; Liu, Y.; Zhang, H.; Sun, T. Identification of Angiotensin I-converting Enzyme inhibitory Peptides from Koumiss, a Traditional Fermented Mare’s Milk. J. Dairy Sci. 2010, 93, 884–892. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ugwu, C.P.; Abarshi, M.M.; Mada, S.B.; Sanusi, B.; Nzelibe, H.C. Camel and Horse Milk Casein Hydrolysates Exhibit Angiotensin Converting Enzyme Inhibitory and Antioxidant Effects in Vitro and in Silico. Int. J. Pept. Res. Ther. 2019, 25, 1595–1604. [Google Scholar] [CrossRef]
- Song, J.J.; Wang, Q.; Du, M.; Ji, X.M.; Mao, X.Y. Identification of Dipeptidyl Peptidase-IV Inhibitory Peptides from Mare Whey Protein Hydrolysates. J. Dairy Sci. 2017, 100, 6885–6894. [Google Scholar] [CrossRef] [Green Version]
- Nielsen, S.D.; Beverly, R.L.; Qu, Y.; Dallas, D.C. Milk Bioactive Peptide Database: A Comprehensive Database of Milk Protein-derived Bioactive Peptides and Novel Visualization. Food Chem. 2017, 232, 673–682. [Google Scholar] [CrossRef]
- Perkins, D.N.; Pappin, D.J.C.; Creasy, D.M.; Cottrell, J.S. Probability-based Protein Identification by Searching Sequence Databases Using Mass Spectrometry Data. Electrophoresis 1999, 20, 3551–3567. [Google Scholar] [CrossRef]
- Edman, P. A Method for the Determination of Amino Acid Sequence in Peptides. Arch. Biochem. 1949, 22, 475. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pauciullo, A.; Shuiep, E.S.; Cosenza, G.; Ramunno, L.; Erhardt, G. Molecular Characterization and Genetic Variability at κ-Casein Gene (CSN3) in Camels. Gene 2013, 513, 22–30. [Google Scholar] [CrossRef] [PubMed]
- Kohmura, M.; Nio, N.; Ariyoshi, Y. Inhibition of Angiotensin-converting Enzyme by Synthetic Peptide Fragments of Various β-Caseins. Agric. Biol. Chem. 1990, 54, 1101–1102. [Google Scholar] [CrossRef] [PubMed]
- Muhialdin, B.J.; Hassan, Z.; Abu Bakar, F.; Saari, N. Identification of Antifungal Peptides Produced by Lactobacillus Plantarum IS10 Grown in the MRS Broth. Food Control 2016, 59, 27–30. [Google Scholar] [CrossRef]
- Elbarbary, H.A.; Abdou, A.M.; Nakamura, Y.; Park, E.Y.; Mohamed, H.A.; Sato, K. Identification of Novel Antibacterial Peptides Isolated from a Commercially Available Casein Hydrolysate by Autofocusing Technique. Biofactors 2012, 38, 309–315. [Google Scholar] [CrossRef] [PubMed]
- Rival, S.G.; Boeriu, C.G.; Wichers, H.J. Caseins and Casein Hydrolysates. 2. Antioxidative Properties and Relevance to Lipoxygenase Inhibition. J. Agric. Food Chem. 2001, 49, 295–302. [Google Scholar] [CrossRef]
- Maruyama, S.; Nakagomi, K.; Tomizuka, N.; Suzuki, H. Angiotensin I-converting Enzyme Inhibitor Derived from an Enzymatic Hydrolysate of Casein. II. Isolation and Bradykinin-potentiating Activity on the Uterus and the Ileum of Rats. Agric. Biol. Chem. 1985, 49, 1405–1409. [Google Scholar]
- Lu, Y.; Govindasamy-Lucey, S.; Lucey, J.A. Angiotensin-I-converting Enzyme-inhibitory Peptides in Commercial Wisconsin Cheddar Cheeses of Different Ages. J. Dairy Sci. 2016, 99, 41–52. [Google Scholar] [CrossRef]
- Kayser, H.; Meisel, H. Stimulation of Human Peripheral Blood Lymphocytes by Bioactive Peptides Derived from Bovine Milk Proteins. FEBS Lett. 1996, 383, 18–20. [Google Scholar] [CrossRef] [Green Version]
- Almaas, H.; Eriksen, E.; Sekse, C.; Comi, I.; Flengsrud, R.; Holm, H.; Jensen, E.; Jacobsen, M.; Langsrud, T.; Vegarud, G.E. Antibacterial Peptides Derived from Caprine Whey Proteins, by Digestion with Human Gastrointestinal Juice. Br. J. Nutr. 2011, 106, 896–905. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Chen, R.; Ma, H.; Chen, S. Isolation and Identification of Dipeptidyl Peptidase IV-Inhibitory Peptides from Trypsin/Chymotrypsin-treated Goat Milk Casein Hydrolysates by 2D-TLC and LC-MS/MS. J. Agric. Food Chem. 2015, 63, 8819–8828. [Google Scholar] [CrossRef]
- Yamamoto, N.; Akino, A.; Takano, T. Antihypertensive Effect of the Peptides Derived from Casein by an Extracellular Proteinase from Lactobacillus Helveticus CP790. J. Dairy Sci. 1994, 77, 917–922. [Google Scholar] [CrossRef]
- El-Agamy, E.I. Bioactive Components in Camel Milk. In Handbook of Milk of Non-Bovine Mammals; Park, Y.W., Haenlein, G.F.W., Eds.; Blackwell Publishing Professional: Ames, IA, USA, 2006; pp. 159–194. [Google Scholar]
- Hill, R.J.; Wake, R.G. Further Studies on the Origin and Nature of the Bovine Para-κ-Casein Components. Biochim. Biophys. Acta 1969, 175, 419–426. [Google Scholar] [CrossRef]
- Plowman, J.E.; Creamer, L.K. Restrained Molecular Dynamics Study of the Interaction Between Bovine κ-Casein Peptide 98-111 and Bovine Chymosin and Porcine Pepsin. J. Dairy Res. 1995, 62, 451–467. [Google Scholar] [CrossRef] [PubMed]
- Andrews, A.T. The Composition, Structure and Origin of Proteose-peptone Component 5 of Bovine Milk. Eur. J. Biochem. 1978, 90, 59–65. [Google Scholar] [CrossRef] [PubMed]
- Lasky, L.A.; Singer, M.S.; Dowbenko, D.; Imai, Y.; Henzel, W.; Fennie, C.; Watson, S.; Rosen, S.D. Glycosylation-dependent Cell Adhesion Molecule 1: A Novel Mucin-like Adhesion Ligand for L-selectin. Cold Spring Harb. Symp. Quant. Biol. 1992, 57, 259–269. [Google Scholar] [CrossRef]
- Ibrahim, H.R.; Isono, H.; Miyata, T. Potential Antioxidant Bioactive Peptides from Camel Milk Proteins. Anim. Nutr. 2018, 4, 273–280. [Google Scholar] [CrossRef]
- Pihlanto-Leppälä, A.; Rokka, T.; Korhonen, H. Angiotensin I Converting Enzyme Inhibitory Peptides Derived from Bovine Milk Proteins. Int. Dairy J. 1998, 8, 325–331. [Google Scholar] [CrossRef]
- Schmelzer, C.E.H.; Schöps, R.; Reynell, L.; Ulbrich-Hofmann, R.; Neubert, R.H.H.; Raith, K. Peptic Digestion of β-Casein: Time Course and Fate of Possible Bioactive Peptides. J. Chromatogr. A 2007, 1166, 108–115. [Google Scholar] [CrossRef]
- Phelan, M.; Aherne, A.; FitzGerald, R.J.; O’Brien, N.M. Casein-derived Bioactive Peptides: Biological Effects, Industrial Uses, Safety Aspects and Regulatory Status. Int. Dairy J. 2009, 19, 643–654. [Google Scholar] [CrossRef]
- Tsopmp, A.; Romanowski, A.; Banda, L.; Lavoie, J.C.; Jenssen, H.; Friel, J.K. Novel Anti-oxidant Peptides from Enzymatic Digestion of Human Milk. Food Chem. 2011, 126, 1138–1143. [Google Scholar] [CrossRef]
- Hernández-Ledesma, B.; Quirós, A.; Amigo, L.; Recio, I. Identification of Bioactive Peptides After Digestion of Human Milk and Infant Formula with Pepsin and Pancreatin. Int. Dairy J. 2007, 17, 42–49. [Google Scholar] [CrossRef]
- Wali, A.; Yanhua, G.; Ishimov, U.; Yili, A.; Aisa, H.A.; Salikhov, S. Isolation and Identification of Three Novel Antioxidant Peptides from the Bactrian Camel Milk Hydrolysates. Int. J. Pept. Res. Ther. 2020, 26, 641–650. [Google Scholar] [CrossRef]
- Ledesma-Martínez, E.; Aguíñiga-Sánchez, I.; Weiss-Steider, B.; Rivera-Martínez, A.R.; Santiago-Osorio, E. Casein and Peptides Derived from Casein as Antileukaemic Agents. J. Oncol. 2019, 2019, 8150967. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Peak ID | Observed m/z by MS | Theoretical Mass * | Sequence Estimated by MS/MS * | Origin | Potential Bioactivity [Reference] |
---|---|---|---|---|---|
C3–1 | 597.363 | 596.400 | IRIPV | n.d. | |
C3–2 | 597.321 | 596.400 | IRIPV | n.d. | |
C3–3 | 711.386 | 710.440 | NLRLPV | n.d. | |
754.362 | 753.420 | HLLQPF | n.d. | ||
1021.522 | 1020.520 | R76HQNQNPK83 | Lactophorin | ||
1232.775 | n.d. | n.d. | n.d. | ||
C3–4 | 1335.659 | n.d. | n.d. | n.d. | |
1177.576 | 1176.620 | R75RHQNQNPK83 | Lactophorin | ||
C3–5 | 1098.615 | 1097.470 | T65RNEPTEDH73 | αs1-CN | |
1213.633 | 1212.500 | D64TRNEPTEDH73 | αs1-CN | ||
1798.079 | n.d. | n.d. | n.d. | ||
C3–6 | 865.548 | 864.500 | R110PRPRPS116 | k-CN | |
C3–7 | 865.548 | 864.500 | R110PRPRPS116 | k-CN | |
C3–8 | 674.370 | 673.350 | H221PVPQP226 | β-CN | ACE inhibitory [23] Antimicrobial [24] |
966.588 | 948.540 | P212VPDPVRGL220 | β-CN | ||
1309.692 | 1308.580 | NNASHNGNNSAPI | n.d. | ||
C3–9 | 759.415 | 758.410 | V194PYPQR199 | β-CN | Antimicrobial [24,25] Antioxidant [26] ACE inhibitory [27] |
1544.925 | 1543.800 | P104PTVERPARNRHD116 | k-CN | ||
C3–10 | 929.574 | 928.560 | R16PKYPLR22 | αs1-CN | Antimicrobial [24] |
C3–11 | 1019.540 | 1035.530 | Q210 ** EPVPDPVR218 | β-CN | ACE inhibitory [28] Antimicrobial [24] Immunomodulative [29] |
1076.616 | n.d. | n.d. | n.d. |
Peak ID | Observed m/z by MS | Theoretical Mass * | Sequence Estimated by MS/MS * | Origin | Potential Bioactivity |
---|---|---|---|---|---|
H1–1 | 790.394 | 789.390 | E107VSQAKE113 | β-CN | |
816.432 | 815.420 | R55EVERQ60 | β-CN | ||
H1–2 | 951.458 | 950.450 | K16HNMEHR22 | αs2-CN | |
1206.619 | n.d. | n.d. | n.d. | ||
H1–3 | 823.490 | 822.480 | A128IHAQRK134 | αs1-CN | |
927.470 | 944.020 | Q54**REVERQ60 | β-CN | ||
944.491 | 943.480 | Q54REVERQ60 | β-CN | ||
H1–4 | 1129.575 | 1128.570 | K46FKHEGQQQ54 | β-CN | |
1157.581 | 1156.570 | F47KHEGQQQR55 | β-CN | ||
H1–5 | 872.090 | n.d. | n.d. | n.d. | |
1241.665 | n.d. | n.d. | n.d. | ||
H1–6 | 1129.575 | 1128.570 | K46FKHEGQQQ54 | β-CN | |
1157.581 | 1156.570 | F47KHEGQQQR55 | β-CN | ||
H1–7 | 826.388 | 825.380 | M157HQVPQS163 | β-CN | |
1024.578 | n.d. | n.d. | n.d. | ||
H1–8 | 739.356 | 738.350 | M157HQVPQ162 | β-CN | Antimicrobial [30] DPP-IV inhibitory [31] |
786.410 | 785.400 | R196DTPVQA202 | β-CN | ||
851.517 | n.d. | n.d. | n.d. | ||
1396.762 | n.d. | n.d. | n.d. | ||
H1–9 | 727.519 | n.d. | n.d. | n.d. | |
2062.080 | 797.460 | QGRRGKP | n.d. | ||
1255.721 | n.d. | n.d. | n.d. | ||
H1–10 | 871.484 | 870.470 | R65FVQPQP71 | β-CN | |
H1–11 | 871.425 | n.d. | n.d. | n.d. | |
H1–12 | 1046.504 | n.d. | n.d. | n.d. | |
1232.561 | n.d. | n.d. | n.d. | ||
H1–13 | 506.406 | n.d. | n.d. | n.d. | |
675.222 | 674.280 | Q74HMPY78 | κ-CN | ||
697.237 | n.d. | n.d. | n.d. | ||
713.227 | n.d. | n.d. | n.d. | ||
866.317 | n.d. | n.d. | n.d. | ||
1050.508 | 1049.510 | E49YINELNR56 | αs1-CN | ||
1171.640 | n.d. | n.d. | n.d. | ||
1398.713 | n.d. | n.d. | n.d. | ||
1980.967 | n.d. | n.d. | n.d. | ||
2262.040 | n.d. | n.d. | n.d. | ||
H1–14 | 785.358 | 784.370 | W176FHPAQ181 | αs1-CN | |
805.487 | 804.430 | KVPMPPH | n.d. | ||
933.512 | 932.470 | R196DTPVQAF203 | β-CN | ACE inhibitory [32] | |
1195.652 | 1267.660 | P185FPQPVVPYPQ195 | β-CN | ||
1611.978 | n.d. | n.d. | n.d. | ||
2067.045 | n.d. | n.d. | n.d. | ||
H1–15 | 734.443 | n.d. | n.d. | n.d. | |
1021.563 | n.d. | n.d. | n.d. | ||
1460.719 | n.d. | n.d. | n.d. | ||
H1–16 | 1618.056 | n.d. | n.d. | n.d. | |
1954.955 | n.d. | n.d. | n.d. | ||
H1–17 | 1442.653 | n.d. | n.d. | n.d. | |
2069.022 | n.d. | n.d. | n.d. | ||
2085.990 | n.d. | n.d. | n.d. | ||
H1–18 | 1798.163 | n.d. | n.d. | n.d. | |
1815.285 | n.d. | n.d. | n.d. | ||
H1–19 | 711.451 | 710.440 | N145LRLPV150 | β-CN | ACE inhibitory [23] |
1797.000 | 1797.070 | K137LIPTPN***GRSLRLPVH151 | β-CN | ||
H1–20 | 3084.609 | 3083.660 | M169LPSQPVLSPPQSKVAPFPQPVPYPQR196 | β-CN | |
3624.809 | 3623.920 | M169LPSQPVLSPPQSKVAPFPQPVPYPQRDTPVQ201 | β-CN | ||
H1–21 | 2928.835 | 2927.560 | M169LPSQPVLSPPQSKVAPFPQPVPYPQ195 | β-CN | |
H1–22 | 683.468 | 682.410 | P95PILPF100 | β-CN | |
716.920 | n.d. | n.d. | n.d. | ||
3652.638 | 3651.951 | M169LPSQPVLSPPQSKVAPFPQPVPYPQRDTPVQ201 | β-CN |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ganzorig, K.; Urashima, T.; Fukuda, K. Exploring Potential Bioactive Peptides in Fermented Bactrian Camel’s Milk and Mare’s Milk Made by Mongolian Nomads. Foods 2020, 9, 1817. https://doi.org/10.3390/foods9121817
Ganzorig K, Urashima T, Fukuda K. Exploring Potential Bioactive Peptides in Fermented Bactrian Camel’s Milk and Mare’s Milk Made by Mongolian Nomads. Foods. 2020; 9(12):1817. https://doi.org/10.3390/foods9121817
Chicago/Turabian StyleGanzorig, Khuukhenbaatar, Tadasu Urashima, and Kenji Fukuda. 2020. "Exploring Potential Bioactive Peptides in Fermented Bactrian Camel’s Milk and Mare’s Milk Made by Mongolian Nomads" Foods 9, no. 12: 1817. https://doi.org/10.3390/foods9121817
APA StyleGanzorig, K., Urashima, T., & Fukuda, K. (2020). Exploring Potential Bioactive Peptides in Fermented Bactrian Camel’s Milk and Mare’s Milk Made by Mongolian Nomads. Foods, 9(12), 1817. https://doi.org/10.3390/foods9121817