Potentially Bioactive Metabolites from Pineapple Waste Extracts and Their Antioxidant and α-Glucosidase Inhibitory Activities by 1H NMR
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemical Reagents
2.2. Plant Material
2.3. Extraction Method
2.4. Total Phenolic Content (TPC) Assay
2.5. 2,2-Diphenyl-1-picrylhydrazyl (DPPH) Radical Scavenging Activity Assay
2.6. Nitric oxide (NO) Radical Scavenging Activity Assay
2.7. α-Glucosidase Inhibition Assay
2.8. 1H NMR Analysis
2.9. The Bucketing of 1H-NMR Spectra and Multivariate Statistical Analysis
2.10. Statistical Analysis
3. Results and Discussion
3.1. TPC of MD2 Pineapple Peel, Crown and Core Extracts
3.2. DPPH Free Radical Scavenging Activity of MD2 Pineapple Peel, Crown and Core Extracts
3.3. Nitric Oxide (NO) Free Radical Scavenging Activity of MD2 Pineapple Peel, Crown and Core Extracts
3.4. α-Glucosidase Inhibitory Activity of MD2 Pineapple Peel, Crown and Core Extracts
3.5. Visual Inspection of The 1H NMR Spectra and Metabolite Identification of MD2 Pineapple Peel, Crown and Core Extracts
3.6. Metabolite Variations in MD2 Pineapple Peel, Crown and Core Extracts
3.7. Classification of MD2 Pineapple Peel, Crown and Core Extracts by Partial Least Squares Analysis (PLS)
3.8. Relationship Between Antioxidant and α-Glucosidase Inhibitory Activities with Bioactive Metabolites
3.9. Quantification of Metabolites in MD2 Pineapple Peel, Crown and Core Extracts
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Cheok, C.Y.; Mohd Adzahan, N.; Abdul Rahman, R.; Zainal Abedin, N.H.; Hussain, N.; Sulaiman, R.; Chong, G.H. Current trends of tropical fruit waste utilization. Crit. Rev. Food Sci. Nutr. 2018, 58, 335–361. [Google Scholar] [CrossRef]
- Amar Ahmadi, T.; Tong, P.S.; Ng, C. The MD2 ‘Super Sweet’ pineapple (Ananas comosus). Utar Agric. Sci. J. 2015, 1, 14–17. [Google Scholar]
- de Ancos, B.; Sánchez-Moreno, C.; Adolfo, G. Pineapple composition and nutrition. Handbook of Pineapple Technology: Production, Postharvest Science, Processing and Nutrition; John Wiley & Sons: Chichester, UK, 2017; pp. 221–239. [Google Scholar]
- Li, T.; Shen, P.; Liu, W.; Liu, C.; Liang, R.; Yan, N.; Chen, J. Major polyphenolics in pineapple peels and their antioxidant interactions. Int. J. Food Prop. 2014, 17, 1805–1817. [Google Scholar] [CrossRef]
- Roda, A.; Lucini, L.; Torchio, F.; Dordoni, R.; De Faveri, D.M.; Lambri, M. Metabolite profiling and volatiles of pineapple wine and vinegar obtained from pineapple waste. Food Chem. 2017, 229, 734–742. [Google Scholar] [CrossRef] [PubMed]
- Gil, L.S.; Maupoey, P.F. An integrated approach for pineapple waste valorisation. Bioethanol production and bromelain extraction from pineapple residues. J. Clean. Prod. 2018, 172, 1224–1231. [Google Scholar]
- Rashad, M.M.; Mahmoud, A.E.; Ali, M.M.; Nooman, M.U.; Al-Kashef, A.S. Antioxidant and anticancer agents produced from pineapple waste by solid state fermentation. Int. J. Toxicol. Pharmacol. Res. 2015, 7, 287–296. [Google Scholar]
- Mediani, A.; Abas, F.; Tan, C.P.; Khatib, A.; Lajis, N.H. Influence of Growth Stage and Season on the Antioxidant Constituents of Cosmos caudatus. Plant Foods Hum. Nutr. 2012, 67, 344–350. [Google Scholar] [CrossRef]
- Ramautar, R.; Berger, R.; van der Greef, J.; Hankemeier, T. Human metabolomics: Strategies to understand biology. Curr. Opin. Chem. Biol. 2013, 17, 841–846. [Google Scholar] [CrossRef] [Green Version]
- Wishart, D.S. Metabolomics: Applications to food science and nutrition research. Food Sci. Technol. 2008, 19, 482–493. [Google Scholar] [CrossRef]
- Malaysian Pineapple Industry Board. Available online: http://www.mpib.gov.my/en/pineapple-farm-management/?lang=en (accessed on 3 February 2020).
- Siti Rashima, R.; Maizura, M.; Wan Nur Hafzan, W.M.; Hazzeman, H. Physicochemical properties and sensory acceptability of pineapples of different varieties and stages of maturity. Food Res. 2019, 5, 491–500. [Google Scholar]
- Ding, P.; Syazwani, S. Maturity stages affect antioxidant activity of “MD2” pineapple Ananas cosmosus (L.). Acta Hortic. 2015, 1088, 223–226. [Google Scholar] [CrossRef]
- Lee, S.Y.; Mediani, A.; Nur Ashikin, A.H.; Azliana, A.B.S.; Abas, F. Antioxidant and α-glucosidase inhibitory activities of the leaf and stem of selected traditional medicinal plants. Int. Food Res. J. 2014, 21, 165–172. [Google Scholar]
- Boora, F.; Chirisa, E.; Mukanganyama, S. Evaluation of nitrite radical scavenging properties of selected Zimbabwean plant extracts and their phytoconstituents. J. Food Process. 2014, 2014, 918018. [Google Scholar] [CrossRef] [Green Version]
- Pramai, P.; Hamid, N.A.A.; Mediani, A.; Maulidiani, M.; Abas, F.; Jiamyangyuen, S. Metabolite profiling, antioxidant, and α-glucosidase inhibitory activities of germinated rice: Nuclear-magnetic-resonance-based metabolomics study. J. Food Drug Anal. 2018, 26, 47–57. [Google Scholar] [CrossRef] [Green Version]
- Mukaka, M.M. A guide to appropriate use of correlation coefficient in medical research. Malawi Med. J. 2012, 24, 69–71. [Google Scholar]
- Akula, R.; Ravishankar, G.A. Influence of abiotic stress signals on secondary metabolites in plants. Plant Signal. Behav. 2011, 6, 1720–1731. [Google Scholar] [CrossRef]
- Nur Asniyati, A.H.; Ramasamy, S.; Tan, B.C.; Norzulaani, K.; Jamilah, S.Y. In vitro shoot regeneration and analysis of biochemical, antioxidant and anticancer properties of Ananas comosus var. MD2. Malays. J. Fundam. Appl. Sci. 2018, 14, 263–268. [Google Scholar]
- Liu, J.; He, C.; Shen, F.; Zhang, K.; Zhu, S. The crown plays an important role in maintaining quality of harvested pineapple. Postharvest Biol. Tech. 2017, 124, 18–24. [Google Scholar] [CrossRef]
- Wang, L.; Boussetta, N.; Lebovka, N.; Vorobiev, E. Effects of ultrasound treatment and concentration of ethanol on selectivity of phenolic extraction from apple pomace. Int. J. Food Sci. Technol. 2018, 53, 2104–2109. [Google Scholar] [CrossRef]
- Prasad, K.N.; Hassan, F.A.; Yang, B.; Kong, K.W.; Ramanan, R.N.; Azlan, A.; Ismail, A. Response surface optimisation for the extraction of phenolic compounds and antioxidant capacities of underutilised Mangifera pajang Kosterm. peels. Food Chem. 2011, 128, 1121–1127. [Google Scholar] [CrossRef]
- Verma, M.; Rai, G.K.; Kaur, D. Effect of extraction solvents on phenolic content and antioxidant activities of Indian gooseberry and guava. Int. Food Res. J. 2018, 25, 762–768. [Google Scholar]
- Jacotet-Navarro, M.; Laguerre, M.; Fabiano-Tixier, A.-S.; Tenon, M.; Feuillère, N.; Bily, A.; Chemat, F. What is the best ethanol-water ratio for the extraction of antioxidants from rosemary? Impact of the solvent on yield, composition, and activity of the extracts. Electrophoresis 2018, 39, 1946–1956. [Google Scholar] [CrossRef] [PubMed]
- Pinelo, M.; Manzocco, L.; Nuñez, M.J.; Nicoli, M.C. Interaction among phenols in food fortification: Negative synergism on antioxidant capacity. J. Agric. Food Chem. 2004, 52, 1177–1180. [Google Scholar] [CrossRef] [PubMed]
- Sun, C.; Wu, Z.; Wang, Z.; Zhang, H. Effect of ethanol/water solvents on phenolic profiles and antioxidant properties of Beijing propolis extracts. J. Evid. -Based Complementary Altern. Med. 2015, 2015, 595393. [Google Scholar] [CrossRef] [Green Version]
- Saint-Cricq de Gaulejac, N.; Provost, C.; Vivas, N. Comparative Study of Polyphenol Scavenging Activities Assessed by Different Methods. J. Agric. Food Chem. 1999, 47, 425–431. [Google Scholar] [CrossRef]
- Rathnakumar, K.; Anal, A.K.; Lakshmi, K. Optimization of ultrasonic assisted extraction of bioactive components from different parts of Pineapple Waste. Int. J. Agri. Environ. Biotechnol. 2017, 10, 553. [Google Scholar] [CrossRef]
- Patel Rajesh, M.; Patel Natvar, J. In vitro antioxidant activity of coumarin compounds by DPPH, super oxide and nitric oxide free radical scavenging methods. J. Adv. Pharm. Educ. Res. 2011, 1, 52–68. [Google Scholar]
- Javadi, N.; Abas, F.; Hamid, A.A.; Simoh, S.; Shaari, K.; Ismail, I.S.; Mediani, A.; Khatib, A. GCMS Based metabolite profiling of Cosmos caudatus leaves possessing alpha-Glucosidase inhibitory activity. J. Food Sci. 2014, 79, 1130–1136. [Google Scholar] [CrossRef]
- Khoo, L.W.; Mediani, A.; Zolkeflee, N.K.Z.; Leong, S.W.; Ismail, I.S.; Khatib, A.; Shaari, K.; Abas, F. Phytochemical diversity of Clinacanthus nutans extracts and their bioactivity correlations elucidated by NMR based metabolomics. Phytochem. Lett. 2015, 14, 123–133. [Google Scholar] [CrossRef]
- Siti Roha, A.M.; Zainal, S.; Noriham, A.; Nadzirah, K.Z. Determination of sugar content in pineapple waste variety N36. Int. Food Res. J. 2013, 20, 1941–1943. [Google Scholar]
- Arshad, Z.I.M.; Amid, A.; Yusof, F.; Jaswir, I.; Ahmad, K.; Loke, S.P. Bromelain: An overview of industrial application and purification strategies. Appl. Microbiol. Biotechnol. 2014, 98, 7283–7297. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gupta, P.; Sharma, A.; K Verma, A. Evaluation of nutritional constituent and fatty acid profiles of different tropical fruit residues. Curr. Nutr. Food Sci. 2012, 8, 80–85. [Google Scholar] [CrossRef]
- Wen, L.; Wrolstad, R.E.; Hsu, V.L. Characterization of sinapyl derivatives in pineapple (Ananas comosus [L.] Merill) Juice. J. Agric. Food Chem. 1999, 47, 850–853. [Google Scholar] [CrossRef] [PubMed]
- Lawal, U.; Maulidiani, M.; Shaari, K.; Ismail, I.S.; Khatib, A.; Abas, F. Discrimination of Ipomoea aquatica cultivars and bioactivity correlations using NMR-based metabolomics approach. Plant Biosyst. 2016, 151, 833–843. [Google Scholar] [CrossRef]
- Abdul-Hamid, N.A.; Mediani, A.; Maulidiani, M.; Shadid, K.; Ismail, I.S.; Abas, F.; Lajis, N.H. Metabolite characterization of different palm date varieties and the correlation with their NO inhibitory activity, texture and sweetness. J. Food Sci. Technol. 2018, 55, 1541–1551. [Google Scholar] [CrossRef] [PubMed]
- Sukruansuwan, V.; Napathorn, S.C. Use of agro-industrial residue from the canned pineapple industry for polyhydroxybutyrate production by Cupriavidus necator strain A-04. Biotechnol. Biofuels 2018, 11, 202. [Google Scholar] [CrossRef] [Green Version]
- Steingass, C.B.; Glock, M.P.; Schweiggert, R.M.; Carle, R. Studies into the phenolic patterns of different tissues of pineapple (Ananas comosus [L.] Merr.) infructescence by HPLC-DAD-ESI-MSn and GC-MS analysis. Anal. Bioanal. Chem. 2015, 407, 6463–6479. [Google Scholar] [CrossRef]
- Tadera, K.; Minami, Y.; Takamatsu, K.; Matsuoka, T. Inhibition of α-glucosidase and α-amylase by flavonoids. J. Nutr. Sci. Vitaminol. 2006, 52, 149–153. [Google Scholar] [CrossRef] [Green Version]
- Eriksson, L.; Johansson, E.; Kettaneh-Wold, N.; Trygg, J.; Wikström, C.; Wold, S. Multi-and Megavariate Data Analysis; Umetrics: Umeå, Sweden, 2006; Volume 1, p. 1. [Google Scholar]
- Aguiar, A.C.D.; Boroski, M.; Bonafé, E.G.; Almeida, V.V.D.; Souza, N.E.D.; Visentainer, J.V. Evaluation of omega-3 fatty acids content and antioxidant activity in wheat (Triticum aestivum L.) leaves. Sci. Agrotechnol. 2011, 35, 735–741. [Google Scholar] [CrossRef]
- Rahimi, V.B.; Ajam, F.; Rakhshandeh, H.; Askari, V.R. A pharmacological review on Portulaca oleracea L.: Focusing on anti-inflammatory, anti-oxidant, immuno-modulatory and antitumor activities. J. Pharmacopunct. 2019, 22, 7–15. [Google Scholar]
Part | Ethanol | TPC | DPPH Scavenging Activity | Nitric Oxide Scavenging Activity | α-Glucosidase Inhibition | |||
---|---|---|---|---|---|---|---|---|
Ratio (%) | (mg GAE/g crude extract) | % inhibition | IC50(µg/mL) | % inhibition | IC50(µg/mL) | % inhibition | IC50 (µg/mL) | |
Peel | 0 | 10.62 ± 0.37 ab | 68.96 ± 1.07 ba | 386.70 ± 17.55 a | 63.60 ± 0.85 aa | 658.19 ± 16.06 b | 54.99 ± 2.88 bb | 878.75 ± 96.19 aa |
50 | 10.73 ± 0.14 ab | 72.67 ± 1.51 aa | 339.23 ± 14.61 ba | 46.74 ± 1.56 bb | ND | 44.51 ± 3.35 ca | ND | |
100 | 7.97 ± 0.63 bb | 71.24 ± 1.38 abb | 353.10 ± 21.34 aba | 44.43 ± 0.75 cb | ND | 73.86 ± 5.39 aa | 92.95 ± 6.09 bb | |
Crown | 0 | 12.15 ± 0.62 aa | 46.56 ± 1.51 cb | ND | 51.16 ± 1.01 bb | 848.87 ± 34.18 aa | 65.24 ± 1.47 aa | 552.44 ± 68.55 ab |
50 | 12.71 ± 1.15 aa | 72.19 ± 1.91 ba | 341.44 ± 32.26 aa | 65.86 ± 7.38 aa | 328.77 ± 30.17 b | 23.59 ± 1.67 bb | ND | |
100 | 12.22 ± 0.83 aa | 75.57 ± 0.81 aa | 296.31 ± 12.74 bb | 70.21 ± 1.72 aa | 338.52 ± 25.32 b | 63.44 ± 4.38 ab | 651.49 ± 57.35 aa | |
Core | 0 | 3.53 ± 0.12 cc | 30.13 ± 2.00 cc | ND | 27.82 ± 1.87 bc | ND | 32.26 ± 3.01 cc | ND |
50 | 4.80 ± 0.23 ac | 49.14 ± 0.61 ab | ND | 31.62 ± 1.69 ac | ND | 46.16 ± 1.88 aa | ND | |
100 | 4.15 ± 0.20 bc | 35.00 ± 1.32 bc | ND | 31.31 ± 1.73 ac | ND | 41.10 ± 1.49 bc | ND | |
Standard | 11.24 ± 0.39 (Quercetin) | 3.51 ± 0.51 (Gallic Acid) | 0.99 ± 0.14 (Quercetin) |
Metabolites | Chemical Shift (δ) | Parts of MD2 Pineapple Waste/Ethanol Ratio (%) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Peel | Crown | Core | ||||||||
0 | 50 | 100 | 0 | 50 | 100 | 0 | 50 | 100 | ||
Sugar | ||||||||||
(1) Fructose | 4.17(d) | + | + | + | + | + | + | + | + | + |
(2) Sucrose | 5.38(d), 4.02(t) | + | + | + | + | + | + | + | + | + |
(3) α-D-glucose | 5.18(d) | + | + | + | + | + | + | + | + | + |
(4) β-D-glucose | 4.58(d) | + | + | + | + | + | + | + | + | + |
Amino Acids | ||||||||||
(5) Alanine | 1.47(d) | + | + | + | + | + | + | + | + | + |
(6) Arginine | 3.78(t) | + | + | + | + | + | + | + | + | + |
(7) Asparagine | 2.93(d) | - | - | - | + | + | + | - | - | - |
(8) Threonine | 1.34(d) | + | + | + | + | + | + | + | + | + |
(9) Glycine | 3.57(s) | + | + | + | + | + | + | + | + | + |
(10) Valine | 1.06(d) | + | + | + | + | + | + | + | + | + |
(11) Isoleucine | 3.66(d) | + | + | + | + | + | + | + | + | + |
(12) Phenyalanine | 7.30(d), 7.36(d) | + | + | + | + | + | + | + | + | + |
(13) Tryptophan | 7.54(d) | + | + | + | + | + | + | + | + | + |
Organic acids | ||||||||||
(14) Citric acid | 2.72(d) | + | + | + | + | + | + | - | - | - |
(15) Malic Acid | 4.30(dd) | + | + | + | + | + | + | + | + | + |
Lipids | ||||||||||
(16) α-linolenic acid | 1.26(s) | + | + | + | + | + | + | + | + | + |
Phenolic compounds | ||||||||||
(17) Ferulic acid | 7.34(d), 7.27(s), 7.10(dd), 6.93(d), 6.39(d) | + | + | + | + | + | + | + | + | + |
(18) Gallic acid | 7.04(s) | + | + | + | + | + | + | + | + | + |
(19) Epicatechin | 6.12(d), 6.09(d), 5.00(s), 4.34(m) | + | + | + | + | + | + | + | + | + |
(20) Catechin | 2.82(dd) | - | - | - | + | + | + | - | - | - |
(21) Protocathechuic acid | 7.40 (d) 6.90 (d) | - | - | - | + | + | + | - | - | - |
(22) Benzoic acid | 7.70(t) 7.46 (dd) | - | - | - | + | + | + | - | - | - |
(23) Vanillic acid | 7.52 (d) 7.02(d) 3.90 (s) | - | - | - | + | + | + | - | - | - |
(24) Syringic acid | 7.37(s) 3.98 (s) | + | + | + | + | + | + | + | + | + |
(25) Phenylacetic acid | 7.42 (m) 7.30 (m) 3.50 (s) | + | + | + | + | + | + | + | + | + |
(26) Malonic acid | 3.10(s) | + | + | + | + | + | + | - | - | - |
(27) Succinic acid | 2.42(s) | + | + | + | + | + | + | + | + | + |
(28) Glyceric acid | 4.14(m) 3.82(m) | + | + | + | + | + | + | + | + | + |
(29) Fumaric acid | 6.50(s) | - | - | - | + | + | + | - | - | - |
(30) Glucaric acid | 4.22(d) 4.10(d) 3.92 (t) | + | + | + | + | + | + | + | + | + |
(31) 3-methylglutaric acid | 2.18(m) 0.90(d) | - | - | - | + | + | + | - | - | - |
Biological Assays | No. of Components | R2Y | Q2Y | R2Y Intercepts | Q2Y Intercepts | RMSEE | RMSEcv |
---|---|---|---|---|---|---|---|
DPPH | 2 | 0.817 | 0.668 | 0.342 | −0.715 | 8.06687 | 8.3657 |
Nitric oxide scavenging | 2 | 0.817 | 0.668 | 0.338 | −0.694 | 7.89406 | 7.89853 |
α-glucoside | 2 | 0.817 | 0.668 | 0.243 | −0.627 | 6.71054 | 10.6637 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Azizan, A.; Lee, A.X.; Abdul Hamid, N.A.; Maulidiani, M.; Mediani, A.; Abdul Ghafar, S.Z.; Zolkeflee, N.K.Z.; Abas, F. Potentially Bioactive Metabolites from Pineapple Waste Extracts and Their Antioxidant and α-Glucosidase Inhibitory Activities by 1H NMR. Foods 2020, 9, 173. https://doi.org/10.3390/foods9020173
Azizan A, Lee AX, Abdul Hamid NA, Maulidiani M, Mediani A, Abdul Ghafar SZ, Zolkeflee NKZ, Abas F. Potentially Bioactive Metabolites from Pineapple Waste Extracts and Their Antioxidant and α-Glucosidase Inhibitory Activities by 1H NMR. Foods. 2020; 9(2):173. https://doi.org/10.3390/foods9020173
Chicago/Turabian StyleAzizan, Awanis, Ai Xin Lee, Nur Ashikin Abdul Hamid, Maulidiani Maulidiani, Ahmed Mediani, Siti Zulaikha Abdul Ghafar, Nur Khaleeda Zulaikha Zolkeflee, and Faridah Abas. 2020. "Potentially Bioactive Metabolites from Pineapple Waste Extracts and Their Antioxidant and α-Glucosidase Inhibitory Activities by 1H NMR" Foods 9, no. 2: 173. https://doi.org/10.3390/foods9020173
APA StyleAzizan, A., Lee, A. X., Abdul Hamid, N. A., Maulidiani, M., Mediani, A., Abdul Ghafar, S. Z., Zolkeflee, N. K. Z., & Abas, F. (2020). Potentially Bioactive Metabolites from Pineapple Waste Extracts and Their Antioxidant and α-Glucosidase Inhibitory Activities by 1H NMR. Foods, 9(2), 173. https://doi.org/10.3390/foods9020173