Proximate Analysis and Nutritional Evaluation of Twenty Canadian Lentils by Principal Component and Cluster Analyses
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Reagents
2.2. Sample Preparation
2.3. Chemical Analysis
2.4. In Vitro Starch Digestion
2.5. Estimated Glycemic Index (eGI)
2.6. Statistical Analysis
3. Results and Discussion
3.1. Proximate Analysis of Cooked Lentils
3.2. Dietary Fiber Composition of Cooked Lentils
3.3. Total Starch, Apparent Amylose Content and In Vitro Starch Digestibility Determined by Indirect and Direct Methods
3.4. Kinetic Study of Starch Digestion and Estimated Glycemic Index (eGI)
3.5. Pearson Correlation Between Chemical Components and Nutritional Properties
3.6. Principal Component Analysis (PCA)
3.7. Cluster Analysis (CA)
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Diabetes Canada Clinical Practice Guidelines Expert Committee; Sievenpiper, J.L.; Chan, C.B.; Dworatzek, P.D.; Freeze, C.; Williams, S.L. 2018 Clinical practice guidelines—Nutrition therapy. Can. J. Diabetes 2018, 42, S64–S79. [Google Scholar]
- Yadav, S.S.; Stevenson, P.C.; Rizvi, A.H.; Manohar, M.; Gailing, S.; Mateljan, G. Uses and Consumption. In Lentil: An Ancient Crop for Modern Times; Yadav, S.S., McNeil, D., Stevenson, P.C., Eds.; Springer: Dordrecht, The Netherlands, 2007; p. 37. [Google Scholar]
- Bhatty, R.S. Composition and quality of lentil (Lens culinaris medik): A review. Can. Inst. Food Sci. Technol. J. 1988, 21, 144–160. [Google Scholar] [CrossRef]
- Canadian Lentils. Global Uses. Available online: http://www.lentils.org/about-lentils/global-uses/ (accessed on 8 August 2019).
- Lu, Z.H.; Donner, E.; Tsao, R.; Ramdath, D.D.; Liu, Q. Physicochemical and digestion characteristics of flour and starch from eight Canadian red and green lentils. Int. J. Food Sci. Tech. 2018, 53, 735–746. [Google Scholar] [CrossRef]
- Englyst, H.N.; Cummings, J.H. Digestion of polysaccharides of potato in the small intestine of man. Am. J. Clin. Nutr. 1987, 45, 423–431. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, G.; Hamaker, B.R. Slowly digestible starch: Concept, mechanism, and proposed extended glycemic index. Crit. Rev. Food Sci. Nutr. 2009, 49, 852–867. [Google Scholar] [CrossRef]
- Topping, D.L.; Clifton, P.M. Short-chain fatty acids and human colonic function: Roles of resistant starch and nonstarch polysaccharides. Physiol. Rev. 2001, 81, 1031–1064. [Google Scholar] [CrossRef]
- Fuentes-Zaragoza, E.; Riquelme-Navarrete, M.J.; Sanchez-Zapata, E.; Perez-Alvarez, J.A. Resistant starch as functional ingredient: A review. Food Res. Int. 2010, 43, 931–942. [Google Scholar] [CrossRef]
- Venn, B.J.; Green, T.J. Glycemic index and glycemic load: Measurement issues and their effect on diet-disease relationships. Eur. J. Clin. Nutr. 2007, 61, S122–S131. [Google Scholar] [CrossRef]
- Ramdath, D.D.; Liu, Q.; Donner, E.; Hawke, A.; Kalinga, D.; Winberg, J.; Wolever, T.M.S. Investigating the relationship between lentil carbohydrate fractions and in vivo postprandial blood glucose response by use of the natural variation in starch fractions among 20 lentil varieties. Food Funct. 2017, 8, 3783–3791. [Google Scholar] [CrossRef]
- Brummer, Y.; Kaviani, M.; Tosh, S.M. Structural and functional characteristics of dietary fibre in beans, lentils, peas and chickpeas. Food Res. Int. 2015, 67, 117–125. [Google Scholar] [CrossRef]
- Williams, P.C.; Kuzina, F.D.; Hlynka, I. A rapid colorimetric procedure for estimating amylose content of starches and flours. Cereal Chem. 1970, 47, 411–420. [Google Scholar]
- Englyst, H.N.; Kingman, S.M.; Cummings, J.H. Classification and measurement of nutritionally important starch fractions. Eur. J. Clin. Nutr. 1992, 46 (Suppl. S2), S33–S50. [Google Scholar] [PubMed]
- Goni, I.; Garcia-Alonso, A.; Saura-Calixto, F. A starch hydrolysis procedure to estimate glycemic index. Nutr. Res. 1997, 17, 427–437. [Google Scholar] [CrossRef]
- Granfeldt, Y.; Bjorck, I.; Drews, A.; Tovar, J. An in vitro procedure based on chewing to predict metabolic response to starch in cereal and legume products. Eur. J. Clin. Nutr. 1992, 46, 649–660. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Costa, G.E.D.A.; Queiroz-Monici, K.D.S.; Reis, S.M.P.M.; Oliveira, A.C.D. Chemical composition, dietary fibre and resistant starch contents of raw and cooked pea, common bean, chickpea and lentil legumes. Food Chem. 2006, 94, 327–330. [Google Scholar] [CrossRef]
- Wang, N.; Hatcher, D.; Toews, R.; Gawalko, E. Influence of cooking and dehulling on nutritional composition of several varieties of lentils (Lens culinaris). LWT Food Sci. Technol. 2009, 42, 842–848. [Google Scholar] [CrossRef]
- Li, B.W.; Andrews, K.W.; Pehrsson, P.R. Individual sugars, soluble, and insoluble dietary fiber contents of 70 high consumption foods. J. Food Compos. Anal. 2002, 15, 715–723. [Google Scholar] [CrossRef] [Green Version]
- Tosh, S.M.; Yada, S. Dietary fibres in pulse seeds and fractions: Characterization, functional attributes, and applications. Food Res. Int. 2010, 43, 450–460. [Google Scholar] [CrossRef]
- Wang, N.; Daun, J.K. Effects of variety and crude protein content on nutrients and anti-nutrients in lentils (Lens culinaris). Food Chem. 2006, 95, 493–502. [Google Scholar] [CrossRef]
- Jain, A.; Rao, S.M.; Sethi, S.; Ramesh, A.; Tiwari, S.; Mandal, S.K.; Singh, N.; Modi, N.; Bansal, V.; Kalaichelvani, C. Effect of cooking on amylose content of rice. Eur. J. Exp. Biol. 2012, 2, 385–388. [Google Scholar]
- Piecyk, M.; Wolosiak, R.; Druzynska, B.; Worobiej, E. Chemical composition and starch digestibility in flours from Polish processed legume seeds. Food Chem. 2012, 135, 1057–1064. [Google Scholar] [CrossRef]
- Sandhu, K.S.; Lim, S.-T. Digestibility of legume starches as influenced by their physical and structural properties. Carbohydr. Polym. 2008, 71, 245–252. [Google Scholar] [CrossRef]
- Garcia-Alonso, A.; Goni, I.; Saura-Calixto, F. Resistant starch and potential glycaemic index of raw and cooked legumes (lentils, chickpeas and beans). Zeitschrift fur Lebensmitteluntersuchung und Forschung A 1998, 206, 284–287. [Google Scholar] [CrossRef]
- Perera, A.; Meda, V.; Tyler, R.T. Resistant starch: A review of analytical protocols for determining resistant starch and of factors affecting the resistant starch content of foods. Food Res. Int. 2010, 43, 1959–1974. [Google Scholar] [CrossRef]
- Goni, I.; GarciaDiz, L.; Manas, E.; SauraCalixto, F. Analysis of resistant starch: A method for foods and food products. Food Chem. 1996, 56, 445–449. [Google Scholar] [CrossRef] [Green Version]
- McCleary, B.V.; Monaghan, D.A. Measurement of resistant starch. J. AOAC Int. 2002, 85, 665–675. [Google Scholar] [CrossRef] [Green Version]
- Annor, G.A.; Marcone, M.; Bertoft, E.; Seetharaman, K. In vitro starch digestibility and expected glycemic index of Kodo millet (paspalum scrobiculatum) as affected by starch-protein-lipid interactions. Cereal Chem. 2013, 90, 211–217. [Google Scholar] [CrossRef]
- Dupuis, J.H.; Liu, Q.; Yada, R.Y. Methodologies for increasing the resistant starch content of food starches: A review. Compr. Rev. Food Sci. Food Saf. 2014, 13, 1219–1234. [Google Scholar] [CrossRef]
- Barros, F.; Awika, J.M.; Rooney, L.W. Interaction of tannins and other sorghum phenolic compounds with starch and effects on in vitro starch digestibility. J. Agric. Food Chem. 2012, 60, 11609–11617. [Google Scholar] [CrossRef]
- Zhang, B.; Deng, Z.; Ramdath, D.D.; Tang, Y.; Chen, P.X.; Liu, R.; Liu, Q.; Tsao, R. Phenolic profiles of 20 Canadian lentil cultivars and their contribution to antioxidant activity and inhibitory effects on alpha-glucosidase and pancreatic lipase. Food Chem. 2015, 172, 862–872. [Google Scholar] [CrossRef]
- Wong, S.; Traianedes, K.; Odea, K. Factors affecting the rate of hydrolysis of starch in legumes. Am. J. Clin. Nutr. 1985, 42, 38–43. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, Y.; Hoover, R.; Liu, Q. Relationship between alpha-amylase degradation and the structure and physicochemical properties of legume starches. Carbohydr. Polym. 2004, 57, 299–317. [Google Scholar] [CrossRef]
- Faulks, R.M.; Bailey, A.L. Digestion of cooked starches from different food sources by porcine alpha-amylase. Food Chem. 1990, 36, 191–203. [Google Scholar] [CrossRef]
- Foster-Powell, K.; Holt, S.H.; Brand-Miller, J.C. International table of glycemic index and glycemic load values: 2002. Am. J. Clin. Nutr. 2002, 76, 5–56. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Germaine, K.A.; Samman, S.; Fryirs, C.G.; Griffiths, P.J.; Johnson, S.K.; Quail, K.J. Comparison of in vitro starch digestibility methods for predicting the glycaemic index of grain foods. J. Sci. Food Agric. 2008, 88, 652–658. [Google Scholar] [CrossRef]
- Al-Rabadi, G.J.S.; Gilbert, R.G.; Gidley, M.J. Effect of particle size on kinetics of starch digestion in milled barley and sorghum grains by porcine alpha-amylase. J. Cereal Sci. 2009, 50, 198–204. [Google Scholar] [CrossRef]
- Blasel, H.M.; Hoffman, P.C.; Shaver, R.D. Degree of starch access: An enzymatic method to determine starch degradation potential of corn grain and corn silage. Anim. Feed Sci. Technol. 2006, 128, 96–107. [Google Scholar] [CrossRef]
- Araya, H.; Contreras, P.; Alvina, M.; Vera, G.; Pak, N. A comparison between an in vitro method to determine carbohydrate digestion rate and the glycemic response in young men. Eur. J. Clin. Nutr. 2002, 56, 735–739. [Google Scholar] [CrossRef]
- Englyst, H.N.; Veenstra, J.; Hudson, G.J. Measurement of rapidly available glucose (RAG) in plant foods: A potential in vitro predictor of the glycaemic response. Br. J. Nutr. 1996, 75, 327–337. [Google Scholar] [CrossRef] [Green Version]
Color/Class/Variety | Energy, kJ | Ash, % | Fat, % | Protein, % | Carbohydrate, % |
Red lentils | |||||
Extra small | |||||
Roxy | 1885 ± 6 a | 3.13 ± 0.01 f | 1.49 ± 0.04 a | 30.4 ± 0.2 bcd | 65.0 ± 0.2 ijk |
Impala | 1846 ± 1 i | 3.43 ± 0.01 d | 0.85 ± 0.06 h | 31.2 ± 0.1 ab | 64.5 ± 0.1 jk |
Rosie | 1872 ± 5 abcdef | 3.58 ± 0.01 c | 0.50 ± 0.03 j | 30.5 ± 0.6 abc | 65.4 ± 0.6 hij |
Small | |||||
Cherie | 1875 ± 3 abcde | 3.12 ± 0.02 f | 1.25 ± 0.05 bc | 29.4 ± 0.5 defgh | 66.2 ± 0.5 fgh |
Dazil | 1877 ± 3 abcd | 3.27 ± 0.01 e | 1.25 ± 0.05 bc | 29.3 ± 0.4 defgh | 66.2 ± 0.4 fgh |
Impulse | 1854 ± 6 hi | 3.03 ± 0.04 g | 1.33 ± 0.00 b | 28.9 ± 0.3 efgh | 66.7 ± 0.4 defg |
Proclaim | 1862 ± 1 efgh | 3.17 ± 0.01 f | 1.25 ± 0.04 bc | 26.5 ± 0.3 i | 69.1 ± 0.3 a |
Imax | 1865 ± 3 defgh | 3.26 ± 0.02 e | 1.16 ± 0.03 cd | 29.3 ± 0.4 defgh | 66.3 ± 0.4 fgh |
Imvincible | 1881 ± 2 ab | 3.01 ± 0.02 g | 0.93 ± 0.03 fgh | 29.6 ± 0.4 cdefgh | 66.4 ± 0.4 efgh |
Redberry | 1879 ± 3 abc | 2.89 ± 0.01 h | 0.93 ± 0.03 fgh | 30.5 ± 0.2 abc | 65.7 ± 0.2 ghi |
Scarlet | 1877 ± 2 abcd | 3.40 ± 0.02 d | 1.13 ± 0.02 de | 30.0 ± 0.5 cde | 65.5 ± 0.5 hij |
Green lentils | |||||
Small | |||||
Kermit | 1869 ± 4 bcdef | 3.16 ± 0.03 f | 1.03 ± 0.05 ef | 31.6 ± 0.2 a | 64.2 ± 0.2 k |
Asterix | 1867 ± 5 cdefg | 3.02 ± 0.01 g | 1.30 ± 0.05 b | 29.9 ± 0.3 cdef | 65.8 ± 0.4 ghi |
Viceroy | 1880 ± 6 abc | 3.00 ± 0.01 g | 0.50 ± 0.02 j | 28.9 ± 0.3 fgh | 67.6 ± 0.3 cd |
Medium | |||||
Imigreen | 1861 ± 2 fgh | 2.74 ± 0.03 i | 0.62 ± 0.05 i | 28.8 ± 0.2 gh | 67.8 ± 0.2 bc |
Impress | 1877 ± 6 abcd | 2.97 ± 0.03 g | 0.88 ± 0.02 gh | 29.1 ± 0.4 efgh | 67.1 ± 0.4 cdef |
Large | |||||
Greenland | 1877 ± 7 abcd | 3.64 ± 0.03 b | 0.91 ± 0.02 gh | 28.5 ± 0.5 h | 66.9 ± 0.5 cdef |
Greenstar | 1878 ± 4 abcd | 3.74 ± 0.01 a | 0.97 ± 0.02 fg | 29.7 ± 0.5 cdefg | 65.6 ± 0.5 ghij |
Impower | 1856 ± 4 ghi | 2.70 ± 0.01 i | 1.10 ± 0.03 de | 27.4 ± 0.3 i | 68.8 ± 0.4 ab |
Improve | 1843 ± 5 i | 2.84 ± 0.03 h | 0.98 ± 0.01 fg | 28.6 ± 0.3 gh | 67.6 ± 0.3 cde |
Color/Class/Variety | IDF | SDF | TDF | Raffinose | Stachyose | Verbascose | All DF |
Red lentils | |||||||
Extra small | |||||||
Roxy | 15.1 ± 0.5 abcd | 2.2 ± 0.2 abc | 17.3 ± 0.3 abcd | 0.31 ± 0.02 fgh | 2.28 ± 0.00 ghi | 0.71 ± 0.08 j | 20.7 ± 0.2 bcd |
Impala | 15.3 ± 0.9 abcd | 2.6 ± 0.1 a | 17.9 ± 0.8 abc | 0.50 ± 0.05 a | 2.68 ± 0.10 bcd | 0.72 ± 0.02 j | 21.8 ± 0.9 abc |
Rosie | 16.1 ± 0.5 ab | 2.4 ± 0.3 ab | 18.5 ± 0.3 ab | 0.42 ± 0.01 bcd | 2.81 ± 0.02 b | 0.69 ± 0.01 j | 22.4 ± 0.3 a |
Small | |||||||
Cherie | 15.0 ± 0.4 bcd | 2.0 ± 0.0 abc | 17.0 ± 0.4 cd | 0.32 ± 0.01 fgh | 2.77 ± 0.04 bc | 1.13 ± 0.02 fghi | 21.2 ± 0.4 abcd |
DazilDazil | 14.9 ± 0.2 bcd | 2.1 ± 0.3 abc | 17.0 ± 0.4 cd | 0.19 ± 0.00 i | 2.60 ± 0.07 cde | 1.16 ± 0.06 efgh | 20.9 ± 0.6 abcd |
Impulse | 15.6 ± 0.3 abc | 2.2 ± 0.1 abc | 17.7 ± 0.3 abc | 0.42 ± 0.01 bc | 2.30 ± 0.05 gh | 1.27 ± 0.02 cde | 21.7 ± 0.3 abc |
Proclaim | 16.5 ± 0.1 a | 2.2 ± 0.2 abc | 18.6 ± 0.2 a | 0.36 ± 0.02 cdef | 2.48 ± 0.02 ef | 1.22 ± 0.09 def | 22.6 ± 0.2 a |
Imax | 15.1 ± 0.2 abcd | 2.0 ± 0.2 abc | 17.2 ± 0.3 abcd | 0.33 ± 0.01 efgh | 2.58 ± 0.08 def | 1.30 ± 0.03 bcd | 21.4 ± 0.4 abcd |
Imvincible | 15.0 ± 0.4 bcd | 1.9 ± 0.2 abc | 17.0 ± 0.5 cd | 0.29 ± 0.01 gh | 2.61 ± 0.08 cde | 1.19 ± 0.04 defg | 21.1 ± 0.5 abcd |
Redberry | 14.7 ± 0.2 cd | 2.0 ± 0.3 abc | 16.7 ± 0.5 cd | 0.27 ± 0.04 h | 2.14 ± 0.07 hij | 1.01 ± 0.04 i | 20.1 ± 0.6 cd |
Scarlet | 15.8 ± 0.2 abc | 2.0 ± 0.1 abc | 17.7 ± 0.2 abc | 0.34 ± 0.03 efgh | 3.35 ± 0.03 a | 0.69 ± 0.00 j | 22.1 ± 0.3 ab |
Green lentils | |||||||
Small | |||||||
Kermit | 15.5 ± 0.5 abcd | 2.0 ± 0.2 abc | 17.5 ± 0.7 abc | 0.29 ± 0.00 gh | 2.17 ± 0.04 hij | 1.04 ± 0.06 hi | 21.0 ± 0.8 abcd |
Asterix | 15.5 ± 0.3 abc | 1.8 ± 0.3 bc | 17.3 ± 0.3 abcd | 0.32 ± 0.02 fgh | 3.26 ± 0.01 a | 0.47 ± 0.01 k | 21.3 ± 0.3 abcd |
Viceroy | 14.5 ± 0.2 cd | 1.9 ± 0.2 abc | 16.4 ± 0.4 cd | 0.35 ± 0.01 defg | 2.40 ± 0.08 fg | 1.08 ± 0.02 ghi | 20.3 ± 0.4 cd |
Medium | |||||||
Imigreen | 14.1 ± 0.2 d | 1.9 ± 0.3 abc | 16.0 ± 0.1 d | 0.37 ± 0.03 cdef | 2.11 ± 0.01 ij | 1.21 ± 0.06 defg | 19.8 ± 0.2 d |
Impress | 14.8 ± 0.6 bcd | 1.6 ± 0.1 c | 16.4 ± 0.6 cd | 0.30 ± 0.02 gh | 2.20 ± 0.06 hij | 1.01 ± 0.03 i | 19.9 ± 0.6 d |
Large | |||||||
Greenland | 15.1 ± 0.9 bcd | 2.0 ± 0.2 abc | 17.0 ± 0.8 bcd | 0.19 ± 0.01 i | 2.60 ± 0.01 cde | 1.37 ± 0.06 bc | 21.1 ± 1.0 abcd |
Greenstar | 15.9 ± 0.5 abc | 1.9 ± 0.3 abc | 17.8 ± 0.6 abc | 0.39 ± 0.01 bcde | 2.08 ± 0.01 jk | 1.40 ± 0.01 b | 21.7 ± 0.6 abc |
Impower | 15.1 ± 0.7 abcd | 1.8 ± 0.0 bc | 16.9 ± 0.7 cd | 0.43 ± 0.01 ab | 2.85 ± 0.04 b | 1.96 ± 0.03 a | 22.2 ± 0.7 ab |
Improve | 14.5 ± 0.1 cd | 2.0 ± 0.3 abc | 16.5 ± 0.2 cd | 0.37 ± 0.01 cdef | 1.91 ± 0.04 k | 1.21 ± 0.02 defg | 20.0 ± 0.2 d |
Color/Class/Variety | Total Starch | Apparent Amylose * | Indirect Assay (Protocol by Englyst et al.) | Direct Assay | |||
RDS | SDS | RS | nonRS | RS-Direct | |||
Red lentils | |||||||
Extra small | |||||||
Roxy | 44.7 ± 0.2 bcde | 8.7 ± 0.0 fg | 77.6 ± 0.3 f | 10.0 ± 0.5 b | 12.4 ± 0.2 bc | 90.6 ± 1.0 fghi | 9.4 ± 1.0 cdef |
Impala | 43.1 ± 0.3 ij | 10.6 ± 0.9 bcde | 81.9 ± 0.4 abcde | 6.7 ± 1.0 bcd | 11.4 ± 0.5 bcdef | 92.2 ± 0.2 efg | 7.8 ± 0.2 efg |
Rosie | 43.7 ± 0.5 fghi | 11.0 ± 0.4 abcd | 85.3 ± 0.2 a | 5.3 ± 0.5 cde | 9.4 ± 0.3 efg | 88.4 ± 0.7 jk | 11.6 ± 0.7 ab |
Small | |||||||
Cherie | 44.1 ± 0.2 efgh | 12.3 ± 0.0 ab | 80.3 ± 1.1 cdef | 6.9 ± 0.9 bcd | 12.8 ± 0.2 bc | 94.4 ± 0.3 cd | 5.6 ± 0.3 hi |
Dazil | 44.6 ± 0.5 cdef | 11.4 ± 0.5 abc | 81.4 ± 0.0 bcde | 1.9 ± 0.9 e | 16.7 ± 0.9 a | 89.1 ± 0.3 ijk | 10.9 ± 0.3 abc |
Impulse | 43.1 ± 0.4 ij | 9.3 ± 0.5 efg | 84.0 ± 0.8 abc | 6.9 ± 0.8 bcd | 9.1 ± 0.0 efg | 90.2 ± 1.0 ghijk | 9.8 ± 1.0 abcde |
Proclaim | 44.4 ± 0.2 defg | 8.7 ± 0.3 fg | 85.3 ± 0.0 a | 6.6 ± 0.8 bcd | 8.0 ± 0.8 g | 96.1 ± 1.0 abc | 3.9 ± 1.0 ijk |
Imax | 44.4 ± 0.4 defgh | 12.0 ± 0.0 ab | 82.0 ± 0.3 abcde | 8.4 ± 0.2 bc | 9.5 ± 0.2 defg | 90.1 ± 0.6 ghijk | 9.9 ± 0.6 abcde |
Imvincible | 44.9 ± 0.3 abcde | 9.7 ± 0.4 cdef | 81.3 ± 0.7 bcdef | 6.3 ± 0.1 bcd | 12.4 ± 0.5 bc | 97.5 ± 0.3 a | 2.5 ± 0.3 k |
Redberry | 44.5 ± 0.1 cdef | 10.7 ± 0.7 bcde | 73.5 ± 0.6 g | 14.4 ± 0.6 a | 12.1 ± 0.0 bcd | 92.1 ± 1.0 efgh | 7.9 ± 1.0 defg |
Scarlet | 43.1 ± 0.1 ij | 7.9 ± 0.3 g | 84.3 ± 0.8 ab | 6.1 ± 1.8 bcde | 9.6 ± 1.0 defg | 93.5 ± 0.3 de | 6.5 ± 0.3 gh |
Green lentils | |||||||
Small | |||||||
Kermit | 42.2 ± 0.4 j | 12.0 ± 0.4 ab | 83.3 ± 0.2 abcd | 3.9 ± 0.1 de | 12.8 ± 0.2 bc | 88.1 ± 0.6 k | 11.9 ± 0.6 a |
Asterix | 44.3 ± 0.2 defgh | 9.0 ± 0.1 fg | 82.4 ± 0.1 abcde | 5.3 ± 0.9 cde | 12.4 ± 1.0 bc | 90.8 ± 0.9 fghi | 9.2 ± 0.9 cdef |
Viceroy | 45.5 ± 0.8 abc | 11.4 ± 0.1 abc | 84.4 ± 0.4 ab | 5.4 ± 1.2 cde | 10.2 ± 0.8 cdefg | 94.5 ± 0.0 bcd | 5.5 ± 0.0 hij |
Medium | |||||||
Imigreen | 44.6 ± 0.5 cdef | 9.5 ± 0.2 def | 83.3 ± 1.4 abcd | 6.3 ± 0.9 bcd | 10.3 ± 0.5 cdefg | 93.4 ± 0.3 de | 6.6 ± 0.3 gh |
Impress | 45.7 ± 0.1 a | 12.1 ± 0.4 ab | 80.0 ± 0.7 def | 8.4 ± 1.7 bc | 11.6 ± 1.0 bcde | 89.9 ± 0.2 hijk | 10.1 ± 0.2 abcd |
Large | |||||||
Greenland | 43.6 ± 0.4 ghi | 11.1 ± 0.5 abcd | 84.7 ± 2.8 ab | 5.7 ± 2.8 bcde | 9.6 ± 0.0 defg | 90.5 ± 0.3 fghij | 9.5 ± 0.3 bcdef |
Greenstar | 43.4 ± 0.2 hi | 10.9 ± 0.4 abcde | 79.2 ± 1.5 ef | 7.7 ± 0.1 bcd | 13.1 ± 1.4 b | 96.5 ± 0.2 ab | 3.5 ± 0.2 jk |
Impower | 45.6 ± 0.2 ab | 10.9 ± 0.0 abcde | 85.5 ± 0.7 a | 5.6 ± 0.0 cde | 8.9 ± 0.6 fg | 92.5 ± 0.3 def | 7.5 ± 0.3 fgh |
Improve | 45.2 ± 0.2 abcd | 12.4 ± 0.4 a | 81.8 ± 0.9 abcde | 7.8 ± 0.9 bcd | 10.4 ± 0.0 cdefg | 92.6 ± 0.5 def | ± 0.5 fgh |
Color/Class/Variety | C∞, % | K, min−1 | SHAUC, mg min mL−1 | HI, % | eGI |
Control (white bread) | 94.6 ± 0.8 | 2478.33 ± 43.41 | 11343 ± 94 | 100.0 ± 0.8 | 95 ± 1 |
Red lentils | |||||
Extra small | |||||
Roxy | 82.5 ± 3.6 cd | 0.19 ± 0.02 gh | 9735 ± 145 bcde | 85.8 ± 1.3 bcde | 82 ± 1 bcde |
Impala | 86.3 ± 0.5 abcd | 0.21 ± 0.01 defg | 9919 ± 16 abcde | 87.4 ± 0.1 abcde | 84 ± 0 abcde |
Rosie | 88.8 ± 0.5 ab | 0.24 ± 0.01 cde | 10238 ± 51 abcd | 90.3 ± 0.5 abcd | 86 ± 0 abcd |
Small | |||||
Cherie | 86.1 ± 1.8 abcd | 0.21 ± 0.03 defg | 9783 ± 56 bcde | 86.2 ± 0.5 bcde | 83 ± 0 bcde |
Dazil | 81.6 ± 0.4 d | 0.33 ± 0.02 a | 9537 ± 37 e | 84.1 ± 0.3 e | 81 ± 0 e |
Impulse | 89.0 ± 1.2 ab | 0.23 ± 0.01 cdef | 10347 ± 31 ab | 91.2 ± 0.3 ab | 87 ± 0 ab |
Proclaim | 90.3 ± 0.7 a | 0.25 ± 0.01 bcd | 10516 ± 10 a | 92.7 ± 0.1 a | 88 ± 0 a |
Imax | 86.2 ± 1.5 abcd | 0.23 ± 0.01 cdef | 9967 ± 151 abcde | 87.9 ± 1.3 abcde | 84 ± 1 abcde |
Imvincible | 85.7 ± 2.9 abcd | 0.33 ± 0.00 a | 9626 ± 104 de | 84.9 ± 0.9 de | 81 ± 1 de |
Redberry | 85.0 ± 2.4 abcd | 0.14 ± 0.02 i | 9527 ± 199 e | 84.0 ± 1.8 e | 81 ± 2 e |
Scarlet | 90.2 ± 1.5 a | 0.24 ± 0.01 cdef | 10333 ± 89 ab | 91.1 ± 0.8 ab | 87 ± 1 ab |
Green lentils | |||||
Small | |||||
Kermit | 84.5 ± 0.8 bcd | 0.29 ± 0.01 ab | 9887 ± 89 bcde | 87.2 ± 0.8 bcde | 83 ± 1 bcde |
Asterix | 87.7 ± 1.8 abc | 0.29 ± 0.01 ab | 10326 ± 183 abc | 91.0 ± 1.6 abc | 87 ± 1 abc |
Viceroy | 84.0 ± 3.6 bcd | 0.21 ± 0.03 defg | 9798 ± 395 bcde | 86.4 ± 3.5 bcde | 83 ± 3 bcde |
Medium | |||||
Imigreen | 86.9 ± 1.1 abcd | 0.21 ± 0.01 efg | 10005 ± 15 abcde | 88.2 ± 0.1 abcde | 84 ± 0 abcde |
Impress | 87.2 ± 1.3 abc | 0.15 ± 0.02 hi | 9931 ± 133 abcde | 87.6 ± 1.2 abcde | 84 ± 1 abcde |
Large | |||||
Greenland | 84.6 ± 2.4 bcd | 0.27 ± 0.02 bc | 9850 ± 260 bcde | 86.8 ± 2.3 bcde | 83 ± 2 bcde |
Greenstar | 83.7 ± 2.3 bcd | 0.20 ± 0.01 fg | 9710 ± 216 cde | 85.6 ± 1.9 cde | 82 ± 2 cde |
Impower | 86.5 ± 2.6 abcd | 0.26 ± 0.01 bc | 10079 ± 174 abcde | 88.9 ± 1.5 abcde | 85 ± 1 abcde |
Improve | 86.3 ± 1.4 abcd | 0.21 ± 0.01 efg | 10037 ± 28 abcde | 88.5 ± 0.2 abcde | 84 ± 0 abcde |
Variables | Englyst et al.’s Method | Megazyme Kit | SHAUC | |||
RDS | SDS | RS | nonRS | RS-Kit | ||
Energy | −0.377 * | 0.148 | 0.398 * | 0.145 | −0.145 | −0.381 * |
Ash | 0.167 | −0.22 | 0.033 | −0.029 | 0.029 | −0.015 |
Fat | −0.15 | 0.088 | 0.12 | −0.178 | 0.178 | 0.102 |
Protein | −0.441 ** | 0.104 | 0.560 *** | −0.328 | 0.328 | −0.315 * |
Carbohydrate | 0.408 * | −0.068 | −0.556 *** | 0.335 * | −0.335 * | 0.27 |
Total starch | −0.124 | 0.198 | −0.068 | 0.239 | −0.239 | −0.188 |
Apparent amylose | −0.14 | 0.012 | 0.206 | −0.049 | 0.049 | −0.434 * |
IDF | 0.176 | −0.112 | −0.124 | 0.006 | −0.006 | 0.495 *** |
SDF | 0.054 | −0.009 | −0.074 | −0.145 | 0.145 | 0.268 |
TDF | 0.177 | −0.103 | −0.139 | −0.041 | 0.041 | 0.534 *** |
Raffinose | 0.208 | −0.015 | −0.311 | 0.226 | −0.226 | 0.438 ** |
Stachyose | 0.396 * | −0.381 * | −0.083 | 0.021 | −0.021 | 0.370 * |
Verbascose | 0.114 | −0.002 | −0.18 | 0.241 | −0.241 | −0.113 |
All DF | 0.3 | −0.212 | −0.186 | 0.052 | −0.052 | 0.562 *** |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ramdath, D.D.; Lu, Z.-H.; Maharaj, P.L.; Winberg, J.; Brummer, Y.; Hawke, A. Proximate Analysis and Nutritional Evaluation of Twenty Canadian Lentils by Principal Component and Cluster Analyses. Foods 2020, 9, 175. https://doi.org/10.3390/foods9020175
Ramdath DD, Lu Z-H, Maharaj PL, Winberg J, Brummer Y, Hawke A. Proximate Analysis and Nutritional Evaluation of Twenty Canadian Lentils by Principal Component and Cluster Analyses. Foods. 2020; 9(2):175. https://doi.org/10.3390/foods9020175
Chicago/Turabian StyleRamdath, D. Dan, Zhan-Hui Lu, Padma L. Maharaj, Jordan Winberg, Yolanda Brummer, and Aileen Hawke. 2020. "Proximate Analysis and Nutritional Evaluation of Twenty Canadian Lentils by Principal Component and Cluster Analyses" Foods 9, no. 2: 175. https://doi.org/10.3390/foods9020175
APA StyleRamdath, D. D., Lu, Z.-H., Maharaj, P. L., Winberg, J., Brummer, Y., & Hawke, A. (2020). Proximate Analysis and Nutritional Evaluation of Twenty Canadian Lentils by Principal Component and Cluster Analyses. Foods, 9(2), 175. https://doi.org/10.3390/foods9020175