Evaluation of the Suitability of Mammalian In Vitro Assays to Assess the Genotoxic Potential of Food Contact Materials
Abstract
:1. Introduction
2. Genetic Toxicology
3. Mammalian In Vitro Assays for Genotoxicity Testing
Endpoint | Assay | Test System | Toxicological Sensitivity | Specificity | Number of Compounds Tested | Source |
---|---|---|---|---|---|---|
Gene Mutations | Ames Test OECD No. 471 | Salmonella | 59% | 60% | 541 | [60] |
90% | 87% | 283 | [61] | |||
SOS-Chromotest | Salmonella | 38% | 81% | 177 | [62] | |
Rec-Assay | Bacillus subtilis | 74% | 62% | 119 | [63] | |
Escherichia coli | 76% | 62% | 277 | [63] | ||
Mouse Lymphoma Assay (MLA) OECD No. 490 | L5178Y | 71% | 44% | 460 | [63] | |
L5178Y | 73% | 39% | 350 | [60] | ||
Clastogenicity | Chromosomal Aberration (CA) OECD No. 473 | CHL 1 | 69% | 58% | 255 | [63] |
HPBL 2 | 51% | 67% | 123 | [63] | ||
Sister Chromatid Exchange (SCE) OECD No. 479 | CHL and CHO 3 | 68% | 40% | 438 | [63] | |
HPBL and HF 4 | 83% | 35% | 111 | [63] | ||
Comet Assay OECD No. 489 (for in vivo) | HepaRG 5 | 44% | 100% | 16 | [64] | |
not indicated | 88% | 64% | 95 | [65] | ||
Clastogenicity and Aneugenicity | Micronucleus (MN) OECD No. 487 | HepaRG | 73% | 80% | 16 | [64] |
CHO-k1 | 80% | 88% | 62 | [66] | ||
not given | 79% | 31% | 115 | [60] | ||
TK6 6 | 88% | 87% | 48 | [67] | ||
HPBL 2 | 79% | 33% | 38 | [63] | ||
DNA-Damage Response | p53 CALUX® | U2OS 7 | 82% | 90% | 60 | [44] |
BlueScreenTM HC | TK6 | 80% | 100% | 60 | [45] | |
GreenScreenTM HC | TK6 | 90% | 96% | 43 | [41] | |
TK6 | 76% | 88% | 60 | [44] | ||
TK6 | 67% | 96% | 71 | [68] | ||
ToxTracker® | mES 8 | 85% | 79% | 27 | [69] | |
mES | 95% | 94% | 54 | [70] |
4. Detection of Low-Levels of Genotoxic Substances with Mammalian In Vitro Assays
- a theoretical concentration factor of 1000 [71];
- the sample solvent is exchanged to 100% DMSO;
- no substances being lost during sample preparation or solvent exchange;
- a sample dilution factor of 100 (1% sample concentration in the cell culture medium);
- no cell viability artefacts being present, which might negatively affect the LOBD value.
5. Genotoxicity Testing of FCMs with Mammalian In Vitro Assays
Assay | Material | Simulant | Migration Protocol | Concentration Method | Sample Solvent | Result | Cell Type | +/-S9 | Source |
---|---|---|---|---|---|---|---|---|---|
BlueScreenTM HC | Paper | Tenax | 10 d at 60 °C | - | Aqueous Water | 0/3 positive Not cytotoxic No genotoxic substances in GC–MS and LC–MS analysis | TK6 1 | yes | [102] |
Chromosomal Aberration Test (CA) | Polystyrene | Acetone | 1 h at 40 °C, then addition of Methanol for 1 h at 40 °C | Evaporation GCF 2 = 1.5 | Acetone | 0/1 positive Not cytotoxic No genotoxic substances in GC–MS | CHL 3 | yes | [103] |
Comet Assay | Paper and Board | Water, 95% Ethanol, Tenax | Water: EN 645 (cold water extraction) and EN 647 (hot water extraction) 24 h at 20 or 80 °C 95% Ethanol: 24 h at RT 4 Tenax: 24 h at RT, 5 d at 50 °C, 10 d at 20 °C | Evaporation GCF = 10 | 95% Ethanol | 0/20 positive Some samples cytotoxic No genotoxic substances in GC–MS | HepG2 5 | no 6 | [104] |
Paper (recycled) | Ethanol | Refluxed for 2 h | Evaporation | DMSO 7 | 6/8 positive Cytotoxicity not evaluated Several genotoxic substances identified with GC–MS | HL-60 8 | no info | [105] | |
Polyethylene-terephthalate (PET) | Mineral water | Storage for 1 to 12 months | Lyophilisation and evaporation | DMSO | 6/12 samples positive for mineral water 5/12 samples positive for carbonated mineral water Cytotoxicity not evaluated No genotoxic substances in GC–MS | Human Leukocytes | no info | [106] | |
PET | Mineral water | 10 d at 40 °C and at RT | Solid Phase Extraction (SPE) | DMSO | some positive results, but not statistically significant Cytotoxicity not evaluated No genotoxic substances in GC–MS | Human Leukocytes | no info | [111] | |
Polypropylene | - | Dissolving of the sample in ethyl acetate | Evaporation GCF = 0.1 | DMSO | 0/6 positive some cytotoxic effects No genotoxic substances in GC–MS and HPLC | HepG2 | no info | [112] | |
Micronucleus (MN) | PET and glass | Water | 10 d at 40, 50, 60 °C | Solid Phase Extraction GCF = 5 | Ethyl acetate | 0/4 sample pools positive Not cytotoxic No genotoxic substances in GC–MS | HepG2 | no info | [107] |
PET and glass | Water | Exposure to sunlight for 2, 6, 10 d | Solid Phase Extraction GCF = 5 | Ethyl acetate | 0/4 sample pools positive Not cytotoxic Low concentrations of formaldehyde and acetaldehyde in GC–MS | HepG2 | no info | [108] | |
P53 CALUX® | Paper and board | Ethanol | Refluxed for 4 h | Evaporation GCF = 1.3 | Ethanol | 6/20 positive Cytotoxicity not evaluated in one positive sample di-isobutyl phthalate identified with GC–QTOF | U2OS 9 | no info | [110] |
Sister chromatid exchange (SCE) | PET | Mineral water | 8 weeks RT | - | Water | 0/4 sample pools positive some cytotoxic effects No chemical analytical method conducted | Human Lymphocytes | no info | [109] |
6. Discussion
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Koster, S.; Bani-Estivals, M.H.; Bonuomo, M.; Bradley, E.; Chagnon, M.C.; Garcia, M.L.; Godts, F.; Gude, T.; Helling, R.; Paseiro-Losada, P.; et al. Guidance on Best Practices on the Risk Assessment of Non Intentionally Added Substances (NIAS) in Food Contact Materials and Articles. Available online: https://www.cabdirect.org/cabdirect/abstract/20163135771 (accessed on 30 January 2020).
- Veyrand, J.; Marin-Kuan, M.; Bezencon, C.; Frank, N.; Guérin, V.; Koster, S.; Latado, H.; Mollergues, J.; Patin, A.; Piguet, D.; et al. Integrating bioassays and analytical chemistry as an improved approach to support safety assessment of food contact materials. Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess. 2017, 34, 1807–1816. [Google Scholar] [CrossRef] [PubMed]
- Rainer, B.; Mayrhofer, E.; Redl, M.; Dolak, I.; Mislivececk, D.; Czerny, T.; Kirchnawy, C.; Marin-Kuan, M.; Schilter, B.; Tacker, M. Mutagenicity Assessment of Food Contact Material Migrates with the Ames MPF Assay. Food Addit. Contam. Part A 2019. [Google Scholar] [CrossRef] [PubMed]
- EFSA. Recent developments in the risk assessment of chemicals in food and their potential impact on the safety assessment of substances used in food contact materials. EFSA Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids (CEF). EFSA J. 2016, 14, 4357. [Google Scholar] [CrossRef]
- Koster, S.; Boobis, A.R.; Cubberley, R.; Hollnagel, H.M.; Richling, E.; Wildemann, T.; Würtzen, G.; Galli, C.L. Application of the TTC concept to unknown substances found in analysis of foods. Food Chem. Toxicol. 2011, 49, 1643–1660. [Google Scholar] [CrossRef] [PubMed]
- Pinalli, R.; Croera, C.; Theobald, A.; Feigenbaum, A. Threshold of toxicological concern approach for the risk assessment of substances used for the manufacture of plastic food contact materials. Trends Food Sci. Technol. 2011, 22, 523–534. [Google Scholar] [CrossRef]
- Munro, I.C.; Renwick, A.G.; Danielewska-Nikiel, B. The Threshold of Toxicological Concern (TTC) in risk assessment. Toxicol. Lett. 2008, 180, 151–156. [Google Scholar] [CrossRef]
- EFSA. Scientific Opinion on Exploring options for providing advice about possible human health risks based on the concept of Threshold of Toxicological Concern (TTC). EFS2 2012, 10, 63. [Google Scholar] [CrossRef]
- Kroes, R.; Renwick, A.G.; Cheeseman, M.; Kleiner, J.; Mangelsdorf, I.; Piersma, A.; Schilter, B.; Schlatter, J.; van Schothorst, F.; Vos, J.G.; et al. Structure-based thresholds of toxicological concern (TTC): Guidance for application to substances present at low levels in the diet. Food Chem. Toxicol. 2004, 42, 65–83. [Google Scholar] [CrossRef]
- Commission. Regulation (EU) No 10/2011 on Plastic Materials and Articles Intended to Come Into Contact with Food. Available online: https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX%3A32011R0010 (accessed on 30 January 2020).
- Schilter, B.; Burnett, K.; Eskes, C.; Geurts, L.; Jacquet, M.; Kirchnawy, C.; Oldring, P.; Pieper, G.; Pinter, E.; Tacker, M.; et al. Value and limitation of in vitro bioassays to support the application of the threshold of toxicological concern to prioritise unidentified chemicals in food contact materials. Food Addit. Contam. Part A 2019, 276, 1–34. [Google Scholar] [CrossRef]
- van der Burg, B.; Pieterse, B.; Buist, H.; Lewin, G.; van der Linden, S.C.; Man, H.-Y.; Rorije, E.; Piersma, A.H.; Mangelsdorf, I.; Wolterbeek, A.P.M.; et al. A high throughput screening system for predicting chemically-induced reproductive organ deformities. Reprod. Toxicol. 2015, 55, 95–103. [Google Scholar] [CrossRef]
- Mertl, J.; Kirchnawy, C.; Osorio, V.; Grininger, A.; Richter, A.; Bergmair, J.; Pyerin, M.; Washüttl, M.; Tacker, M. Characterization of Estrogen and Androgen Activity of Food Contact Materials by Different In Vitro Bioassays (YES, YAS, ERa and AR CALUX) and Chromatographic Analysis (GC-MS, HPLC-MS). PLoS ONE 2014, 9, e100952. [Google Scholar] [CrossRef] [PubMed]
- Muncke, J. Exposure to endocrine disrupting compounds via the food chain: Is packaging a relevant source? Sci. Total Environ. 2009, 407, 4549–4559. [Google Scholar] [CrossRef] [PubMed]
- OECD. Guidance Document on Revisions to OECD Genetic Toxicology Test Guidelines. Available online: https://www.oecd.org/chemicalsafety/testing/Genetic%20Toxicology%20Guidance%20Document%20Aug%2031%202015.pdf (accessed on 31 January 2020).
- Eisenbrand, G.; Pool-Zobel, B.; Baker, V.; Balls, M.; Blaauboer, B.J.; Boobis, A.; Carere, A.; Kevekordes, S.; Lhuguenot, J.-C.; Pieters, R.; et al. Methods of in vitro toxicology. Food Chem. Toxicol. 2002, 193–236. [Google Scholar] [CrossRef]
- ICH. ICH Harmonised Guideline: Assessment and Control of DNA Reactive (mutagenic) Impurities in Pharmaceuticals to Limit Potential Carcinogenic Risk M7(R1). Available online: https://www.ema.europa.eu/en/ich-m7-assessment-control-dna-reactive-mutagenic-impurities-pharmaceuticals-limit-potential (accessed on 30 January 2020).
- EFSA. Guidance on Safety assessment of botanicals and botanical preparations intended for use as ingredients in food supplements. EFS2 2009, 7, 1. [Google Scholar] [CrossRef]
- ISO. Biological Evaluation of Medical Devices. Part 3: Tests for Genotoxicity, Carcinogenicity and Reproductive Toxicity. Available online: https://www.iso.org/obp/ui/#iso:std:iso:10993:-3:ed-3:v1:en (accessed on 30 January 2020).
- Brusick, D. Principles of Genetic Toxicology, 2nd ed.; Springer: New York, NY, USA, 1987; ISBN 978-1-4899-1982-3. [Google Scholar]
- Pfuhler, S.; Albertini, S.; Fautz, R.; Herbold, B.; Madle, S.; Utesch, D.; Poth, A. Genetic toxicity assessment: Employing the best science for human safety evaluation part IV: Recommendation of a working group of the Gesellschaft fuer Umwelt-Mutationsforschung (GUM) for a simple and straightforward approach to genotoxicity testing. Toxicol. Sci. 2007, 97, 237–240. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shah, U.S. Importance of Genotoxicity & S2A guidelines for genotoxicity testing for pharmaceuticals. J. Pharm. Biol. Sci. 2012, 1, 43–54. [Google Scholar] [CrossRef]
- EFSA. Scientific opinion on genotoxicity testing strategies applicable to food and feed safety assessment. EFS2 2011, 9. [Google Scholar] [CrossRef]
- Custer, L.L.; Powley, M.W. Genotoxicity Testing of API. In Genotoxicity and Carcinogenicity Testing of Pharmaceuticals; Graziano, M.J., Jacobson-Kram, D., Eds.; Springer: Berlin, Germany, 2015; pp. 35–54. ISBN 978-3-319-22084-0. [Google Scholar]
- Elhajouji, A.; Lukamowicz, M.; Cammerer, Z.; Kirsch-Volders, M. Potential thresholds for genotoxic effects by micronucleus scoring. Mutagenesis 2011, 26, 199–204. [Google Scholar] [CrossRef]
- Aardema, M. Aneuploidy: A report of an ECETOC task force. Mutat. Res./Rev. Mutat. Res. 1998, 410, 3–79. [Google Scholar] [CrossRef]
- Stavitskaya, L.; Aubrecht, J.; Kruhlak, N.L. Chemical Structure-Based and Toxicogenomic Models. In Genotoxicity and Carcinogenicity Testing of Pharmaceuticals; Graziano, M.J., Jacobson-Kram, D., Eds.; Springer: Berlin, Germany, 2015; pp. 13–34. ISBN 978-3-319-22084-0. [Google Scholar]
- Boobis, A.; Brown, P.; Cronin, M.T.D.; Edwards, J.; Galli, C.L.; Goodman, J.; Jacobs, A.; Kirkland, D.; Luijten, M.; Marsaux, C.; et al. Origin of the TTC values for compounds that are genotoxic and/or carcinogenic and an approach for their re-evaluation. Crit. Rev. Toxicol. 2017, 47, 705–727. [Google Scholar] [CrossRef] [Green Version]
- Nohmi, T. Thresholds of Genotoxic and Non-Genotoxic Carcinogens. Toxicol. Res. 2018, 34, 281–290. [Google Scholar] [CrossRef] [PubMed]
- EFSA. Review of the Threshold of Toxicological Concern (TTC) Approach and Development of New TTC Decision Tree; European Food Safety Authority and World Health Organisation: Geneva, Switzerland, 2016. [Google Scholar] [CrossRef]
- OECD. Guideline For The Testing Of Chemicals: Bacterial Reverse Mutation Test. Available online: https://www.oecd.org/chemicalsafety/risk-assessment/1948418.pdf (accessed on 30 January 2020).
- OECD. OECD Guideline for the Testing of Chemicals: In Vitro Mammalian Cell Gene Mutation Tests Using the Thymidine Kinase Gene. Available online: https://www.oecd.org/publications/test-no-490-in-vitro-mammalian-cell-gene-mutation-tests-using-the-thymidine-kinase-gene-9789264264908-en.htm (accessed on 28 January 2020). [CrossRef]
- Lloyd, M.; Kidd, D. The mouse lymphoma assay. Methods Mol. Biol. 2012, 817, 35–54. [Google Scholar] [CrossRef] [PubMed]
- OECD. OECD Guideline For The Testing Of Chemicals: In Vitro Mammalian Chromosomal Aberration Test. Available online: https://www.oecd-ilibrary.org/environment/oecd-guidelines-for-the-testing-of-chemicals-section-4-health-effects_20745788 (accessed on 30 January 2020).
- OECD. Guideline For The Testing Of Chemicals: In Vitro Sister Chromatid Exchange Assay in Mammalian Cells. Available online: https://www.oecd-ilibrary.org/environment/test-no-479-genetic-toxicology-in-vitro-sister-chromatid-exchange-assay-in-mammalian-cells_9789264071384-en (accessed on 30 January 2020). [CrossRef]
- OECD. OECD Guideline For The Testing Of Chemicals: In Vivo Mammalian Alkaline Comet Assay. Available online: https://www.oecd-ilibrary.org/environment/test-no-489-in-vivo-mammalian-alkaline-comet-assay_9789264224179-en (accessed on 26 January 2020). [CrossRef]
- OECD. OECD Guideline For The Testing Of Chemicals: In vitro Mammalian Cell Micronucleus Test. Available online: https://www.oecd-ilibrary.org/environment/test-no-487-in-vitro-mammalian-cell-micronucleus-test_9789264264861-en (accessed on 21 February 2020).
- Avlasevich, S.; Bryce, S.; de Boeck, M.; Elhajouji, A.; van Goethem, F.; Lynch, A.; Nicolette, J.; Shi, J.; Dertinger, S. Flow cytometric analysis of micronuclei in mammalian cell cultures: Past, present and future. Mutagenesis 2011, 26, 147–152. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boehme, K.; Dietz, Y.; Hewitt, P.; Mueller, S.O. Activation of P53 in HepG2 cells as surrogate to detect mutagens and promutagens in vitro. Toxicol. Lett. 2010, 198, 272–281. [Google Scholar] [CrossRef]
- Bieging, K.T.; Mello, S.S.; Attardi, L.D. Unravelling mechanisms of p53-mediated tumour suppression. Nat. Rev. Cancer 2014, 14, 359–370. [Google Scholar] [CrossRef] [Green Version]
- Birrell, L.; Cahill, P.; Hughes, C.; Tate, M.; Walmsley, R.M. GADD45a-GFP GreenScreen HC assay results for the ECVAM recommended lists of genotoxic and non-genotoxic chemicals for assessment of new genotoxicity tests. Mutat. Res. 2010, 695, 87–95. [Google Scholar] [CrossRef]
- Knight, A.W.; Little, S.; Houck, K.; Dix, D.; Judson, R.; Richard, A.; McCarroll, N.; Akerman, G.; Yang, C.; Birrell, L.; et al. Evaluation of high-throughput genotoxicity assays used in profiling the US EPA ToxCast chemicals. Regul. Toxicol. Pharmacol. 2009, 55, 188–199. [Google Scholar] [CrossRef]
- Ando, M.; Yoshikawa, K.; Iwase, Y.; Ishiura, S. Usefulness of monitoring γ-H2AX and cell cycle arrest in HepG2 cells for estimating genotoxicity using a high-content analysis system. J. Biomol. Screen. 2014, 19, 1246–1254. [Google Scholar] [CrossRef] [Green Version]
- van der Linden, S.C.; von Bergh, A.R.; van Vught-Lussenburg, B.M.; Jonker, L.R.; Teunis, M.; Krul, C.A.; van der Burg, B. Development of a panel of high-throughput reporter-gene assays to detect genotoxicity and oxidative stress. Mutat. Res. Genet. Toxicol. Environ. Mutagen. 2014, 760, 23–32. [Google Scholar] [CrossRef]
- Hughes, C.; Rabinowitz, A.; Tate, M.; Birrell, L.; Allsup, J.; Billinton, N.; Walmsley, R.M. Development of a high-throughput Gaussia luciferase reporter assay for the activation of the GADD45a gene by mutagens, promutagens, clastogens, and aneugens. J. Biomol. Screen. 2012, 17, 1302–1315. [Google Scholar] [CrossRef] [Green Version]
- Hastwell, P.W.; Chai, L.-L.; Roberts, K.J.; Webster, T.W.; Harvey, J.S.; Rees, R.W.; Walmsley, R.M. High-specificity and high-sensitivity genotoxicity assessment in a human cell line: Validation of the GreenScreen HC GADD45a-GFP genotoxicity assay. Mutat. Res. 2006, 607, 160–175. [Google Scholar] [CrossRef] [PubMed]
- Bryce, S.M.; Bernacki, D.T.; Bemis, J.C.; Dertinger, S.D. Genotoxic mode of action predictions from a multiplexed flow cytometric assay and a machine learning approach. Environ. Mol. Mutagen. 2016, 57, 171–189. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hendriks, G.; Atallah, M.; Morolli, B.; Calléja, F.; Ras-Verloop, N.; Huijskens, I.; Raamsman, M.; van de Water, B.; Vrieling, H. The ToxTracker assay: Novel GFP reporter systems that provide mechanistic insight into the genotoxic properties of chemicals. Toxicol. Sci. 2012, 125, 285–298. [Google Scholar] [CrossRef] [PubMed]
- Kirkland, D.; Reeve, L.; Gatehouse, D.; Vanparys, P. A core in vitro genotoxicity battery comprising the Ames test plus the in vitro micronucleus test is sufficient to detect rodent carcinogens and in vivo genotoxins. Mutat. Res. 2011, 721, 27–73. [Google Scholar] [CrossRef] [PubMed]
- Rainer, B.; Pinter, E.; Czerny, T.; Riegel, E.; Kirchnawy, C.; Marin-Kuan, M.; Schilter, B.; Tacker, M. Suitability of the Ames test to characterise genotoxicity of food contact material migrates. Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess. 2018, 1–14. [Google Scholar] [CrossRef]
- Steinberg, P. (Ed.) High Throughput Screening Methods in Toxicity Testing; John Wiley & Sons: Hoboken, NJ, USA, 2013; ISBN 9781118065631. [Google Scholar]
- Diaz, D.; Scott, A.; Carmichael, P.; Shi, W.; Costales, C. Evaluation of an automated in vitro micronucleus assay in CHO-K1 cells. Mutat. Res. 2007, 630, 1–13. [Google Scholar] [CrossRef]
- Kawaguchi, S.; Nakamura, T.; Yamamoto, A.; Honda, G.; Sasaki, Y.F. Is the comet assay a sensitive procedure for detecting genotoxicity? J. Nucleic Acids 2010, 2010, 541050. [Google Scholar] [CrossRef] [Green Version]
- Billinton, N.; Bruce, S.; Hansen, J.R.; Hastwell, P.W.; Jagger, C.; McComb, C.; Klug, M.L.; Pant, K.; Rabinowitz, A.; Rees, R.; et al. A pre-validation transferability study of the GreenScreen HC GADD45a-GFP assay with a metabolic activation system (S9). Mutat. Res. 2010, 700, 44–50. [Google Scholar] [CrossRef]
- Kirkland, D.J.; Marshall, R.R.; McEnaney, S.; Bidgood, J.; Rutter, A.; Mullineux, S. Aroclor-1254-induced rat-liver S9 causes chromosomal aberrations in CHO cells but not human lymphocytes: A role for active oxygen? Mutat. Res./Fundam. Mol. Mech. Mutagen. 1989, 214, 115–122. [Google Scholar] [CrossRef]
- Severin, I.; Souton, E.; Dahbi, L.; Chagnon, M.C. Use of bioassays to assess hazard of food contact material extracts: State of the art. Food Chem. Toxicol. 2017, 105, 429–447. [Google Scholar] [CrossRef]
- Kirkland, D.; Pfuhler, S.; Tweats, D.; Aardema, M.; Corvi, R.; Darroudi, F.; Elhajouji, A.; Glatt, H.; Hastwell, P.; Hayashi, M.; et al. How to reduce false positive results when undertaking in vitro genotoxicity testing and thus avoid unnecessary follow-up animal tests: Report of an ECVAM Workshop. Mutat. Res. 2007, 628, 31–55. [Google Scholar] [CrossRef] [PubMed]
- Bryce, S.M.; Bemis, J.C.; Mereness, J.A.; Spellman, R.A.; Moss, J.; Dickinson, D.; Schuler, M.J.; Dertinger, S.D. Interpreting in vitro micronucleus positive results: Simple biomarker matrix discriminates clastogens, aneugens, and misleading positive agents. Environ. Mol. Mutagen. 2014, 55, 542–555. [Google Scholar] [CrossRef] [PubMed]
- Schoonen, W.G.E.J.; de Roos, J.A.D.M.; Westerink, W.M.A.; Débiton, E. Cytotoxic effects of 110 reference compounds on HepG2 cells and for 60 compounds on HeLa, ECC-1 and CHO cells. II mechanistic assays on NAD(P)H, ATP and DNA contents. Toxicol. In Vitro 2005, 19, 491–503. [Google Scholar] [CrossRef] [PubMed]
- Kirkland, D.; Aardema, M.; Henderson, L.; Müller, L. Evaluation of the ability of a battery of three in vitro genotoxicity tests to discriminate rodent carcinogens and non-carcinogens I. Sensitivity, specificity and relative predictivity. Mutat. Res. 2005, 584, 1–256. [Google Scholar] [CrossRef] [PubMed]
- McCann, J.; Ames, B.N. Detection of carcinogens as mutagens in the Salmonella/microsome test: Assay of 300 chemicals: Discussion. Proc. Nat. Acad. Sci. USA 1976, 73, 950–954. [Google Scholar] [CrossRef] [Green Version]
- Escobar, P.A.; Kemper, R.A.; Tarca, J.; Nicolette, J.; Kenyon, M.; Glowienke, S.; Sawant, S.G.; Christensen, J.; Johnson, T.E.; McKnight, C.; et al. Bacterial mutagenicity screening in the pharmaceutical industry. Mutat. Res. 2013, 752, 99–118. [Google Scholar] [CrossRef]
- Matthews, E.J.; Kruhlak, N.L.; Cimino, M.C.; Benz, R.D.; Contrera, J.F. An analysis of genetic toxicity, reproductive and developmental toxicity, and carcinogenicity data: I. Identification of carcinogens using surrogate endpoints. Regul. Toxicol. Pharmacol. 2006, 44, 83–96. [Google Scholar] [CrossRef]
- Le Hégarat, L.; Mourot, A.; Huet, S.; Vasseur, L.; Camus, S.; Chesné, C.; Fessard, V. Performance of comet and micronucleus assays in metabolic competent HepaRG cells to predict in vivo genotoxicity. Toxicol. Sci. 2014, 138, 300–309. [Google Scholar] [CrossRef] [Green Version]
- Anderson, D.; Yu, T.-W.; McGregor, D.B. Comet assay responses as indicators of carcinogen exposure. Mutagenesis 1998, 13, 539–555. [Google Scholar] [CrossRef]
- Westerink, W.M.A.; Schirris, T.J.J.; Horbach, G.J.; Schoonen, W.G. Development and validation of a high-content screening in vitro micronucleus assay in CHO-k1 and HepG2 cells. Mutat. Res. 2011, 724, 7–21. [Google Scholar] [CrossRef]
- Thougaard, A.V.; Christiansen, J.; Mow, T.; Hornberg, J.J. Validation of a high throughput flow cytometric in vitro micronucleus assay including assessment of metabolic activation in TK6 cells. Environ. Mol. Mutagen. 2014, 55, 704–718. [Google Scholar] [CrossRef] [PubMed]
- Hastwell, P.W.; Webster, T.W.; Tate, M.; Billinton, N.; Lynch, A.M.; Harvey, J.S.; Rees, R.W.; Walmsley, R.M. Analysis of 75 marketed pharmaceuticals using the GADD45a-GFP ’GreenScreen HC’ genotoxicity assay. Mutagenesis 2009, 24, 455–463. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ates, G.; Favyts, D.; Hendriks, G.; Derr, R.; Mertens, B.; Verschaeve, L.; Rogiers, V.; Doktorova, T.Y. The Vitotox and ToxTracker assays: A two-test combination for quick and reliable assessment of genotoxic hazards. Mutat. Res. 2016, 810, 13–21. [Google Scholar] [CrossRef] [PubMed]
- Hendriks, G.; Derr, R.S.; Misovic, B.; Morolli, B.; Calléja, F.M.G.R.; Vrieling, H. The Extended ToxTracker Assay Discriminates Between Induction of DNA Damage, Oxidative Stress, and Protein Misfolding. Toxicol. Sci. 2016, 150, 190–203. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mittag, N.; Förster, S.; Hoppe, S.; Simat, T.J.; Sehr, A.; Renz, S.; Vobach, M.; Kammann, U. Bioassay Guided Analysis of Migrants from Can Coatings. J. Verbr. Lebensm. 2006, 1, 345–353. [Google Scholar] [CrossRef]
- Kirkland, D.; Kasper, P.; Martus, H.-J.; Müller, L.; van Benthem, J.; Madia, F.; Corvi, R. Updated recommended lists of genotoxic and non-genotoxic chemicals for assessment of the performance of new or improved genotoxicity tests. Mutat. Res. Genet. Toxicol. Environ. Mutagen. 2016, 795, 7–30. [Google Scholar] [CrossRef]
- Wangenheim, J.; Bolcsfoldi, G. Mouse lymphoma L5178Y thymidine kinase locus assay of 50 compounds. Mutagenesis 1988, 3, 193–205. [Google Scholar] [CrossRef]
- Phillips, B.J.; Kranz, E.; Elias, P.S. An investigation of the genetic toxicology of irradiated foodstuffs using short-term test systems-II. Sister chromatid exchange and mutation assays in cultured chinese hamster ovary cells. Food Cosmet. Toxicol. 1980, 18, 471–475. [Google Scholar] [CrossRef]
- Eliopoulos, P.; Mourelatos, D.; Dozi-Vassiliades, J. Comparative study on Salmonella mutagenicity and on cytogenetic and antineoplastic effects induced by cyclophosphamide and 3-aminobenzamide in cells of three transplantable tumours in vivo. Mutat. Res./Genet. Toxicol. 1995, 342, 141–146. [Google Scholar] [CrossRef]
- Doak, S.H.; Jenkins, G.J.S.; Johnson, G.E.; Quick, E.; Parry, E.M.; Parry, J.M. Mechanistic influences for mutation induction curves after exposure to DNA-reactive carcinogens. Cancer Res. 2007, 67, 3904–3911. [Google Scholar] [CrossRef] [Green Version]
- Zeiger, E.; Anderson, B.; Haworth, S.; Lawlor, T.; Mortelmans, K. Salmonella mutagenicity tests: V. Results from the testing of 311 chemicals. Environ. Mol. Mutagen. 1992, 19. [Google Scholar] [CrossRef] [PubMed]
- Clive, D.; Johnson, K.O.; Spector, J.F.S.; Batson, A.G.; Brown, M.M.M. Validation and characterization of the L5178Y/TK+/- mouse lymphoma mutagen assay system. Mutat. Res./Fundam. Mol. Mech. Mutagen. 1979, 59, 61–108. [Google Scholar] [CrossRef]
- Couch, D.B.; Forbes, N.L.; Hsie, A.W. Comparative mutagenicity of alkylsulfate and alkanesulfonate derivates in chinese hamster ovary cells. Mutat. Res. 1978, 217–224. [Google Scholar] [CrossRef]
- Kenyon, M.O.; Cheung, J.R.; Dobo, K.L.; Ku, W.W. An evaluation of the sensitivity of the Ames assay to discern low-level mutagenic impurities. Regul. Toxicol. Pharmacol. 2007, 48, 75–86. [Google Scholar] [CrossRef]
- Oberly, T.J.; Huffmann, D.M.; Scheuring, J.C.; Garriott, M.L. An evaluation of 6 chromosomal mutagens in the AS52/XPRT mutation assay utilization suspension culture and soft agar cloning. Mutat. Res. 1993, 179–187. [Google Scholar] [CrossRef]
- Thompson, L.H.; Salazar, E.P.; Brookman, K.W.; Hoy, C.A. Hypersensitivity to cell killing and mutation induction by chemical carcinogens in an excision repair-deficient mutant of CHO cells. Mutat. Res./DNA Repair Rep. 1983, 112, 329–344. [Google Scholar] [CrossRef]
- Kaden, D.A.; Hites, R.A.; Hilly, W.G. Mutagenicity of soot and associated polycyclic aromatic hydrocarbons to salmonella typhimurium. Cancer Res. 1979, 39, 4152–4159. [Google Scholar]
- Preisler, V. Aflatoxin B1-induced mitotic recombination in L5178Y mouse lymphoma cells. Mutagenesis 2000, 15, 91–97. [Google Scholar] [CrossRef] [Green Version]
- Coppinger, W.J.; Brennan, S.A.; Carver, J.H.; Thompson, E.D. Locus specificity of mutagenicity of 2,4-diaminotoluene in both L5178Y mouse lymphoma and AT3-2 Chinese hamster ovary cells. Mutat. Res./Genet. Toxicol. 1984, 135, 115–123. [Google Scholar] [CrossRef]
- Ames, B.N.; Kammen, H.O.; Yamasaki, E. Hair Dyes Are Mutagenic: Identification of a Variety of Mutagenic Ingredients: (hair dyes as possible human carcinogens and mutagens/2,4-diaminoanisole/2,4-diaminotoluene). Proc. Nat. Acad. Sci. USA 1975, 72, 2423–2427. [Google Scholar] [CrossRef] [Green Version]
- O’Neill, J.P.; Machanoff, R.; San Sebastian, J.R.; Hsie, A.W. Cytotoxicity and mutagenicity of dimethylnitrosamine in mammalian cells (CHO/HGPRT system): Enhancement by calcium phosphate. Environ. Mutagen. 1982, 4, 7–18. [Google Scholar] [CrossRef] [PubMed]
- Hakura, A.; Suzuki, S.; Sawada, S.; Sugihara, T.; Hori, Y.; Uchida, K.; Kerns, W.D.; Sagami, F.; Motooka, S.; Satoh, T. Use of human liver S9 in the Ames test: Assay of three procarcinogens using human S9 derived from multiple donors. Regul. Toxicol. Pharmacol. 2003, 37, 20–27. [Google Scholar] [CrossRef]
- Zeiger, E. Mutagenicity of 42 chemicals in Salmonella. Environ. Mol. Mutagen. 1990, 16. [Google Scholar] [CrossRef]
- Singh, B.; Gupta, R.S. Mutagenic responses of thirteen anticancer drugs on mutation induction at multiple genetic loci and on sister chromatid exchanges in chinese hamster ovary cells. Cancer Res. 1983, 577–584. [Google Scholar]
- Bryce, S.M.; Avlasevich, S.L.; Bemis, J.C.; Dertinger, S.D. Miniaturized flow cytometry-based CHO-K1 micronucleus assay discriminates aneugenic and clastogenic modes of action. Environ. Mol. Mutagen. 2011, 52, 280–286. [Google Scholar] [CrossRef]
- Speit, G.; Hartmann, A. The contribution of excision repair to the DNA effects seen in the alkaline single cell gel test (comet assay). Mutagenesis 1995, 10, 555–559. [Google Scholar] [CrossRef]
- Fotakis, G.; Cemeli, E.; Anderson, D.; Timbrell, J.A. Cadmium chloride-induced DNA and lysosomal damage in a hepatoma cell line. Toxicol. In Vitro 2005, 19, 481–489. [Google Scholar] [CrossRef]
- Bryce, S.M.; Avlasevich, S.L.; Bemis, J.C.; Lukamowicz, M.; Elhajouji, A.; van Goethem, F.; de Boeck, M.; Beerens, D.; Aerts, H.; van Gompel, J.; et al. Interlaboratory evaluation of a flow cytometric, high content in vitro micronucleus assay. Mutat. Res. 2008, 650, 181–195. [Google Scholar] [CrossRef] [Green Version]
- Lebailly, P.; Vigreux, C.; Godard, T.; Sichel, F.; Bar, E.; LeTalaer, J.Y.; Henry-Amar, M.; Gauduchon, P. Assessment of DNA damage induced in vitro by etoposide and two fungicides (carbendazim and chlorothaloni) in human lymphocytes with the comet assay. Mutat. Res. 1997, 205–217. [Google Scholar] [CrossRef]
- Andreoli, C.; Leopardi, P.; Crebelli, R. Detection of DNA damage in human lymphocytes by alkaline single cell gel electrophoresis after exposure to benzene or benzene metabolites. Mutat. Res./Fundam. Mol. Mech. Mutagen. 1997, 377, 95–104. [Google Scholar] [CrossRef]
- Branham, M.T.; Nadin, S.B.; Vargas-Roig, L.M.; Ciocca, D.R. DNA damage induced by paclitaxel and DNA repair capability of peripheral blood lymphocytes as evaluated by the alkaline comet assay. Mutat. Res. 2004, 560, 11–17. [Google Scholar] [CrossRef] [PubMed]
- Zeller, A.; Koenig, J.; Schmitt, G.; Singer, T.; Guérard, M. Genotoxicity profile of azidothymidine in vitro. Toxicol. Sci. 2013, 135, 317–327. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kasamatsu, T.; Kohda, K.; Kawazoe, Y. Comparison of chemically induced DNA breakage in cellular and subcellular systems using the comet assay. Mutat. Res./Genet. Toxicol. 1996, 369, 1–6. [Google Scholar] [CrossRef]
- Hartmann, A.; Speit, G. Effect of arsenic and cadmium on the persistence of mutagen-induced DNA lesions in human cells. Environ. Mol. Mutagen. 1996, 27, 98–104. [Google Scholar] [CrossRef]
- Anderson, D.; Yu, T.-W.; Browne, M.A. The use of the same image analysis system to detect genetic damage in human lymphocytes treated with doxorubicin in the Comet and fluoresence in situ hybridisation (FISH) assays. Mutat. Res./Genetic Toxicol. Environ. Mutagen. 1997, 390, 69–77. [Google Scholar] [CrossRef]
- Koster, S.; Rennen, M.; Leeman, W.; Houben, G.; Muilwijk, B.; van Acker, F.; Krul, L. A novel safety assessment strategy for non-intentionally added substances (NIAS) in carton food contact materials. Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess. 2014, 31, 422–443. [Google Scholar] [CrossRef]
- Nakai, M.; Tsubokura, M.; Suzuki, M.; Fujishima, S.; Watanabe, Y.; Hasegawa, Y.; Oyama, K.; Ogura, S. Genotoxicity of styrene oligomers extracted from polystyrene intended for use in contact with food. Toxicol. Rep. 2014, 1, 1175–1180. [Google Scholar] [CrossRef] [Green Version]
- Bradley, E.L.; Honkalampi-Hämäläinen, U.; Weber, A.; Andersson, M.A.; Bertaud, F.; Castle, L.; Dahlman, O.; Hakulinen, P.; Hoornstra, D.; Lhuguenot, J.-C.; et al. The BIOSAFEPAPER project for in vitro toxicity assessments: Preparation, detailed chemical characterisation and testing of extracts from paper and board samples. Food Chem. Toxicol. 2008, 46, 2498–2509. [Google Scholar] [CrossRef]
- Ozaki, A.; Yamaguchi, Y.; Fujita, T.; Kuroda, K.; Endo, G. Chemical analysis and genotoxicological safety assessment of paper and paperboard used for food packaging. Food Chem. Toxicol. 2004, 42, 1323–1337. [Google Scholar] [CrossRef]
- Biscardi, D.; Monarca, S.; de Fusco, R.; Senatore, F.; Poli, P.; Buschini, A.; Rossi, C.; Zani, C. Evaluation of the migration of mutagens/carcinogens from PET bottles into mineral water by Tradescantia/micronuclei test, Comet assay on leukocytes and GC/MS. Sci. Total Environ. 2003, 302, 101–108. [Google Scholar] [CrossRef]
- Bach, C.; Dauchy, X.; Severin, I.; Munoz, J.-F.; Etienne, S.; Chagnon, M.-C. Effect of temperature on the release of intentionally and non-intentionally added substances from polyethylene terephthalate (PET) bottles into water: Chemical analysis and potential toxicity. Food Chem. 2013, 139, 672–680. [Google Scholar] [CrossRef] [PubMed]
- Bach, C.; Dauchy, X.; Severin, I.; Munoz, J.-F.; Etienne, S.; Chagnon, M.-C. Effect of sunlight exposure on the release of intentionally and/or non-intentionally added substances from polyethylene terephthalate (PET) bottles into water: Chemical analysis and in vitro toxicity. Food Chem. 2014, 162, 63–71. [Google Scholar] [CrossRef]
- Ergene, S.; Celik, A.; Cavaş, T.; Köleli, N.; Aymak, C. The evaluation of toxicity and mutagenicity of various drinking waters in the human blood lymphocytes (HULYs) in vitro. Food Chem. Toxicol. 2008, 46, 2472–2475. [Google Scholar] [CrossRef] [PubMed]
- Rosenmai, A.K.; Bengtström, L.; Taxvig, C.; Trier, X.; Petersen, J.H.; Svingen, T.; Binderup, M.-L.; Dybdahl, M.; Granby, K.; Vinggaard, A.M.; et al. An effect-directed strategy for characterizing emerging chemicals in food contact materials made from paper and board. Food Chem. Toxicol. 2017, 106, 250–259. [Google Scholar] [CrossRef] [PubMed]
- Ceretti, E.; Zani, C.; Zerbini, I.; Guzzella, L.; Scaglia, M.; Berna, V.; Donato, F.; Monarca, S.; Feretti, D. Comparative assessment of genotoxicity of mineral water packed in polyethylene terephthalate (PET) and glass bottles. Water Res. 2010, 44, 1462–1470. [Google Scholar] [CrossRef] [PubMed]
- Riquet, A.M.; Breysse, C.; Dahbi, L.; Loriot, C.; Severin, I.; Chagnon, M.C. The consequences of physical post-treatments (microwave and electron-beam) on food/packaging interactions: A physicochemical and toxicological approach. Food Chem. 2016, 199, 59–69. [Google Scholar] [CrossRef] [Green Version]
- Monarca, S.; de Fusco, R.; Biscardi, D.; de Feo, V.; Pasqzuini, R.; Fatigoni, C.; Moretti, M.; Zanardini, A. Studies of migration of potentially genotoxic compounds into water stored in PET bottles. Food Chem. Toxicol. 1994, 32, 783–788. [Google Scholar] [CrossRef]
- Barnes, K.A.; Sinclair, R.C.; Watson, D.H. Chemical Migration and Food Contact Materials; CRC Press: Boca Raton, FL, USA, 2007; ISBN 978-1-84569-029-8. [Google Scholar]
Mode of Action | Substance | MLA-tk (mg·L−1) | MLA-hprt (mg·L−1) | Ames (mg·L−1) |
---|---|---|---|---|
Alkylating agents | Cyclophosphamide | 0.1 (+) [73] | 0.1 (+) [74] | 0.02 (+) [75] |
ENU (N-Ethyl nitrosourea) | - | 0.04 * [76] | 0.3 (-) [77] | |
Methyl Methanosulphonate | 0.6 [78] | 0.6 * [79] | 0.2 (-) [80] | |
Polycyclic aromatic hydrocarbons | Benzo-α-Pyrene | 0.1 (+) [73] | 0.01 (+) [81] | 0.005 (+) [80] |
7,12-Dimethylbenzanthracene | 0.05 (+) [73] | 0.1 (+) [82] | 0.2 (+) [83] | |
Aromatic amines | 2-Acetylaminofluorene | 4 (+) [84] | 5 (+) [81] | 0.003 (+) [80] |
2,4-Diaminotoluene | 20 [85] | 80 (+) [85] | 0.2 (+) [86] | |
Dimethyl Nitrosamine | 1 (+) [78] | 5 (+) [87] | 0.2 (+) [88] | |
Others | Aflatoxin B1 | 0.001 (+) [84] | 0.008 (+) [82] | 0.00004 (+) [80] |
p-Chloroaniline—free base and HCl salt | 19 (-) [73] | - | 3 (+) [89] | |
Cisplatin | - | 0.03 (-) [90] | 0.009 (-) [77] |
Mode of Action | Substance | p53 CALUX® (mg·L−1) [44] | BlueScreenTM HC (mg·L−1) [45] | Micronucleus (mg·L−1) | Comet (mg·L−1) |
---|---|---|---|---|---|
Probable aneugens and clastogens | 4-Nitroquinoline Oxide | - | 0.01 (-) | 0.01 (-) [91] | 0.001 (-) [92] |
Cadmium Chloride | Negative (+/-) | Negative (+/-) | 0.0006 (-) [91] | 4 (-) [93] | |
Etoposide | 0.6 (-) | 0.01 (-) | 0.002 (-) [94] | 1 (-) [95] | |
Hydroquinone | 1 (-) | 0.04 (-) | Negative (+/-) [66] | 0.05 (-) [96] | |
Taxol | 0.03 (+/-) | 0.003 (-) | 0.008 (-) [91] | 0.9 (-) [97] | |
Azidothymidine | Negative(+/-) | Negative (+/-) | 3 (+) [66] | 50 (-) [98] | |
5-Fluoruracil | - | - | - | 0.07 (-) [99] | |
Sodium Arsenite | 0.001 (-) | 0.06 (-) | 0.01 (-) [66] | 3 * [100] | |
Methyl Nitrosurea | - | - | 0.0008 (-) [91] | 10 (-) [99] | |
Doxorubicin | - | - | 0.005 (-) [66] | 0.07 (-) [101] | |
Chloramphenicol | 32+ | Negative+/- | 0.3 (+) [66] | - | |
Bleomycin | - | - | 0.5 (-) [53] | 1 (-) [99] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pinter, E.; Rainer, B.; Czerny, T.; Riegel, E.; Schilter, B.; Marin-Kuan, M.; Tacker, M. Evaluation of the Suitability of Mammalian In Vitro Assays to Assess the Genotoxic Potential of Food Contact Materials. Foods 2020, 9, 237. https://doi.org/10.3390/foods9020237
Pinter E, Rainer B, Czerny T, Riegel E, Schilter B, Marin-Kuan M, Tacker M. Evaluation of the Suitability of Mammalian In Vitro Assays to Assess the Genotoxic Potential of Food Contact Materials. Foods. 2020; 9(2):237. https://doi.org/10.3390/foods9020237
Chicago/Turabian StylePinter, Elisabeth, Bernhard Rainer, Thomas Czerny, Elisabeth Riegel, Benoît Schilter, Maricel Marin-Kuan, and Manfred Tacker. 2020. "Evaluation of the Suitability of Mammalian In Vitro Assays to Assess the Genotoxic Potential of Food Contact Materials" Foods 9, no. 2: 237. https://doi.org/10.3390/foods9020237
APA StylePinter, E., Rainer, B., Czerny, T., Riegel, E., Schilter, B., Marin-Kuan, M., & Tacker, M. (2020). Evaluation of the Suitability of Mammalian In Vitro Assays to Assess the Genotoxic Potential of Food Contact Materials. Foods, 9(2), 237. https://doi.org/10.3390/foods9020237