Composition, Physicochemical and Sensorial Properties of Commercial Plant-Based Yogurts
Abstract
:1. Introduction
2. Materials and Methods
2.1. Yogurt Products
2.2. pH and Lactic Acid Content
2.3. Total Titratable Acidity
2.4. Colour
2.5. Water Holding Capacity
2.6. Rheological Analysis
2.6.1. Uniaxial Compression Testing
2.6.2. Viscosity
2.7. Sensory Analysis
2.8. Statistical Data Analysis
3. Results and Discussion
3.1. Chemical Composition
3.2. Total Titratable Acidity, pH and Lactic Acid
3.3. Colour
3.4. Rheological Analysis
3.4.1. Uniaxial Compression Testing
3.4.2. Viscosity
3.5. Water Holding Capacity
3.6. Sensory Analysis
4. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- FAO. Global Agriculture Towards 2050-High Level Expert Forum-How to Feed the World in 2050; FAO: Rome, Italy, 2009. [Google Scholar]
- Department of Economic and Social Affairs-Population Division. United Nation. Word Population Prospects: The 2017 Revision. Key Findings and Advance Tables; United Nations: New York, NY, USA, 2017. [Google Scholar]
- FAO. The Future of Food and Agriculture-Trends and Challenges; FAO: Rome, Italy, 2017. [Google Scholar]
- Boland, M.J.; Rae, A.N.; Vereijken, J.M.; Meuwissen, M.P.M.; Fischer, A.R.H.; van Boekel, M.A.J.S.; Rutherfurd, S.M.; Gruppen, H.; Moughan, P.J.; Hendriks, W.H. The future supply of animal-derived protein for human consumption. Trends Food Sci. Technol. 2013, 29, 62–73. [Google Scholar] [CrossRef]
- Westhoek, H.; Rood, T.; van den Berg, M.; Janse, J.H.; Nijdam, D.S.; Reudink, M.A.; Stehfest, E.E. The Protein Puzzle-The Consumption and Production of Meat, Dairy and Fish in the European Union; PBL Netherlands Environmental Assessment Agency: The Hague, The Netherlands, 2011. [Google Scholar]
- Henchion, M.; Hayes, M.; Mullen, A.M.; Fenelon, M.; Tiwari, B. Future protein supply and demand: Strategies and factors influencing a sustainable equilibrium. Foods 2017, 6, 53. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sethi, S.; Tyagi, S.K.; Anurag, R.K. Plant-based milk alternatives an emerging segment of functional beverages: A review. J. Food Sci. Technol. 2016, 53, 3408–3423. [Google Scholar] [CrossRef] [PubMed]
- European Commission. Report from the Commission to the Council and the European Parliament on the Development of Plant Proteins in the European Union; European Commission: Brussels, Belgium, 2018.
- FONA International. Non-dairy Yogurt 2018-Trend Insight Report; FONA International: Geneva, Switzerland, 2018. [Google Scholar]
- FONA International. Category Insight-What’s Next for Yogurt: A Global Review; FONA International: Geneva, Switzerland, 2017. [Google Scholar]
- Mäkinen, M.O.E.; Wanhalinna, M.V.; Zannini, E.; Arendt, E.K. Foods for special dietary needs: Non-dairy plant based milk substitutes and fermented dairy type products. Crit. Rev. Food Sci. Nutr. 2015, 56, 37–41. [Google Scholar] [CrossRef] [PubMed]
- Nishinari, K.; Fang, Y.; Guo, S.; Phillips, G.O. Soy proteins: A review on composition, aggregation and emulsification. Food. Hydrocoll. 2014, 39, 301–318. [Google Scholar] [CrossRef]
- Prado, C.; Parada, J.L.; Pandey, A.; Soccol, C.R. Trends in non-dairy probiotic beverages. Food Res. Int. 2008, 41, 111–123. [Google Scholar] [CrossRef]
- Fukushima, D. Soy Proteins. In Handbook of Food Proteins; Williams, P.A., Phillips, G.O., Eds.; Woodhead Publishing: Cambridge, UK, 2011; pp. 210–232. [Google Scholar]
- Chou, C.; Hou, J. Growth of bifidobacteria in soymilk and their survival in the fermented soymilk drink during storage. Int. J. Food Microbiol. 2000, 56, 113–121. [Google Scholar] [CrossRef]
- Bernat, N.; Chafer, M.; Chiralt, A.; Gonzalez-Martineza, C. Vegetable milks and their fermented derivative products. Int. J. Food Stud. 2014, 3, 93–124. [Google Scholar] [CrossRef]
- Guo, J.; Yang, X.-Q. Texture Modification of Soy-based Products. In Modifying Food Texture; Chen, J., Rosenthal, A., Eds.; Elsevier: Cambridge, UK, 2015; pp. 237–255. [Google Scholar]
- Banerjee, S.; Bhattacharya, S. Food gels: Gelling process and new applications. Crit. Rev. Food Sci. Nutr. 2012, 52, 334–346. [Google Scholar] [CrossRef] [PubMed]
- Silva, J.V.C.; O’Mahony, J.A. Microparticulated whey protein addition modulates rheological and microstructural properties of high-protein acid milk gels. Int. Dairy J. 2018, 78, 145–151. [Google Scholar] [CrossRef]
- Pliner, P.; Hobden, K. Development of a scale to measure neophobia in humans the trait of food. Appetite 1992, 19, 105–120. [Google Scholar] [CrossRef]
- O’Neil, J.M.; Kleyn, D.H.; Hare, L.B. Consistency and compositional characteristics of commercial yogurts. J. Dairy Sci. 1979, 62, 1032–1036. [Google Scholar] [CrossRef]
- Chandan, R.C. An overview of yogurt production and composition. In Yogurt in Health and Disease Prevention; Shah, N.P., Ed.; Elsevier: Cambridge, UK, 2017; pp. 31–47. [Google Scholar]
- Lück, E.; von Rymon Lipinski, G. Foods, 3. Food Additives. In Ulmann’s Encycl. Ind. Chem.; Elvers, B., Ed.; Wiley-VCH: Weinheim, Germany, 2000; pp. 671–692. [Google Scholar]
- Laye, I.; Karleskind, D.; Morr, C.V. Chemical, microbiological and sensory properties of plain nonfat yogurt. J. Food Sci. 1993, 58, 991–995. [Google Scholar] [CrossRef]
- Kandler, O. Carbohydrate metabolism in lactic acid bacteria. Antonie Van Leeuwenhoek. 1983, 49, 209–224. [Google Scholar] [CrossRef] [PubMed]
- Tamime, A.Y.; Robinson, R.K. YOGHURT-Science and Technology, 2nd ed.; Woodhead Publishing Limited: Cambridge, UK, 1999. [Google Scholar]
- Ciron, C.I.E.; Gee, V.L.; Kelly, A.L.; Auty, M.A.E. Modifying the microstructure of low-fat yoghurt by microfluidisation of milk at different pressures to enhance rheological and sensory properties. Food Chem. 2012, 130, 510–519. [Google Scholar] [CrossRef]
- Mei, J.; Feng, F.; Li, Y. Effective of different homogeneous methods on physicochemical, textural and sensory characteristics of soybean (Glycine max L.) yogurt. CyTA J. Food. 2017, 15, 21–26. [Google Scholar]
- Cho, K.M.; Ha, T.J.; Lee, Y.B.; Seo, W.D.; Kim, J.Y.; Ryu, H.W.; Jeong, S.H.; Kang, Y.M.; Lee, J.H. Soluble phenolics and antioxidant properties of soybean (Glycine max L.) cultivars with varying seed coat colours. J. Funct. Foods. 2013, 5, 1065–1076. [Google Scholar] [CrossRef]
- Imeson, A. Agar. In Food Stabilisers, Thickeners and Gelling Agents; Imeson, A., Ed.; Wiley-Blackwell: Chichester, UK, 2009; pp. 31–49. [Google Scholar]
- Foster, T.; Wolf, B. Hydrocolloid Gums-Their Role and Interactions in Foods. In Practical Food Rheology-An Interpretative Approach; Norton, I.T., Spyropoulos, F., Cox, P., Eds.; Wiley-Blackwell: Birmingham, UK, 2011; pp. 61–84. [Google Scholar]
- Donkor, O.N.; Henriksson, A.; Vasiljevic, T. Rheological properties and sensory characteristics of set-type soy yogurt. J. Agric. Food Chem. 2007, 55, 9868–9876. [Google Scholar] [CrossRef] [PubMed]
- Sasaki, T.; Kohyama, K. Effect of non-starch polysaccharides on the in vitro digestibility and rheological properties of rice starch gel. Food Chem. 2011, 127, 541–546. [Google Scholar] [CrossRef] [PubMed]
- Nazir, A.; Asghar, A.; Aslam Maan, A. Food Gels: Gelling Process and New Applications. In Advances in Food Rheology and Its Applications; Ahmed, J., Ed.; Woodhead Publishing: Duxford, UK, 2017; pp. 335–353. [Google Scholar]
- Singh, G.; Muthukumarappan, K. Influence of calcium fortification on sensory, physical and rheological characteristics of fruit yogurt. LWT Food Sci. Technol. 2008, 41, 1145–1152. [Google Scholar] [CrossRef]
Unit | Soy-1 | Soy-2 | Coconut | Cashew | Almond | Hemp | Dairy | |
---|---|---|---|---|---|---|---|---|
Energy | kJ/kcal | 212/50 | 192/46 | 328/79 | 287/70 | 400/97 | 160/38 | 259/61 |
Fat of which saturated | g g | 2.30 0.40 | 2.60 0.40 | 4.90 4.20 | 4.20 0.80 | 7.90 0.70 | 2.00 0.20 | 1.50 1.00 |
Carbohydrate of which sugar | g g | 2.10 2.10 | 1.00 0.40 | 8.00 4.30 | 3.00 1.00 | 3.00 0.80 | 4.00 0.60 | 6.10 6.10 |
Fibre | g | 1.00 | 0.10 | 0.20 | n.a. | n.a. | n.a. | n.a. |
Protein | g | 4.00 | 4.60 | 0.60 | 2.00 | 2.30 | 0.60 | 5.10 |
Salt | g | 0.25 | 0.07 | 0.40 | 0.10 | 0.36 | 0.03 | 0.18 |
Product | Ingredients |
---|---|
Soy-1 | Water, hulled soya beans (7.9%), sugar, calcium (tri-calcium citrate), stabiliser (pectin), acidity regulators (sodium citrate, citric acid), flavouring, sea salt, antioxidants (tocopherol-rich extract, ascorbyl palmitate), yogurt cultures (S. thermophilus, L. bulgaricus), vitamins (B12, D2) |
Soy-2 | Water, hulled soya bean (9%), calcium phosphate, bacterial cultures |
Coconut | Water, coconut cream (20%), modified maize starch, dextrose, salt, thickener (pectin), colour (carotene), calcium phosphate, vitamin D2, vitamin B12, natural flavouring, non-dairy yogurt culture (S. thermophilus, L. bulgaricus) |
Cashew | Organic cashew milk (97%) (organic cashews/filtered water), organic tapioca starch, organic carob gum, live vegan cultures |
Almond | Almond milk (95%) (almonds, filtered water), tapioca starch, carob gum (thickener), live vegan cultures |
Hemp | Hemp juice 96% (water, hemp seed 3%), rice starch, thickener (agar agar), selected live cultures of which L. bifidus and L. acidophilus, antioxidant (rosemary extract) |
Dairy | Low fat milk, cultures |
Product | TTA (mL NaOH/g) | pH (-) | D-Lactic Acid g/100 g | L-Lactic Acid g/100 g |
---|---|---|---|---|
Soy-1 | 0.78 ± 0.01 b,c | 4.38 ± 0.00 b | 0.00 ± 0.00 a | 0.42 ± 0.01 b,c |
Soy-2 | 0.56 ± 0.01 a,b,c | 4.56 ± 0.00 b | 0.01 ± 0.00 a | 0.43 ± 0.01 b,c |
Coconut | 0.49 ± 0.01 a,b,c | 4.00 ± 0.01 a | 0.01 ± 0.01 a | 0.36 ± 0.01 a,b,c |
Cashew | 0.45 ± 0.01 a,b | 4.16 ± 0.01 a,b | 0.08 ± 0.00 a | 0.28 ± 0.01 a,b |
Almond | 0.48 ± 0.01 a,b,c | 4.28 ± 0.01 a,b | 0.05 ± 0.00 a | 0.29 ± 0.00 a,b,c |
Hemp | 0.12 ± 0.01 a | 3.99 ± 0.00 a | 0.01 ± 0.00 a | 0.10 ± 0.00 a |
Dairy | 1.38 ± 0.02 c | 4.15 ± 0.01 a,b | 0.02 ± 0.00 a | 1.11 ± 0.01 c |
Product | L* | a* | b* |
---|---|---|---|
Soy-1 | 64.2 ± 0.03 b,c,d | −2.83 ± 0.01 a,b | 9.69 ± 0.01 d |
Soy-2 | 64.1 ± 0.01 b,c,d | −1.62 ± 0.01 b,c,d | 7.95 ± 0.00 c,d |
Coconut | 62.3 ± 0.41 a,b,c | −1.79 ± 0.03 a,b,c | 4.31 ± 0.08 a,b |
Cashew | 60.5 ± 0.11 a,b | −0.98 ± 0.02 d | 6.85 ± 0.02 b,c,d |
Almond | 64.2 ± 0.24 c,d | −1.15 ± 0.01 c,d | 4.97 ± 0.04 a,b,c |
Hemp | 60.2 ± 0.25 a | −1.70 ± 0.01 a,b,c,d | 3.75 ± 0.03 a |
Dairy | 66.6 ± 0.11 d | −3.49 ± 0.02 a | 6.59 ± 0.02 a,b,c,d |
Product | Firmness (N) | Consistency (N·s) | Cohesiveness (N) | Index of Viscosity (N·s) | WHC (%) |
---|---|---|---|---|---|
Soy-1 | 0.46 ± 0.03 a,b,c | 9.98 ± 0.97 a,b,c | 0.28 ± 0.02 b,c | 5.63 ± 0.74 b,c | 96.3 ± 1.40 b,c,d |
Soy-2 | 0.73 ± 0.16 c,d | 14.1 ± 2.40 b,c,d | 0.39 ± 0.12 a,b | 7.76 ± 2.16 a,b | 82.8 ± 0.92 a,b |
Coconut | 0.44 ± 0.02 a,b,c | 10.0 ± 0.23 a,b,c | 0.31 ± 0.02 a,b,c | 5.36 ± 0.10 b,c | 99.3 ± 0.50 d |
Cashew | 0.51 ± 0.15 a,b | 8.71 ± 1.61 a,b | 0.27 ± 0.07 b,c | 5.33 ± 1.49 b,c | 97.2 ± 1.34 c,d |
Almond | 0.72 ± 0.04 b,c,d | 15.1 ± 0.63 c,d | 0.44 ± 0.01 a,b | 9.26 ± 0.29 a,b | 91.0 ± 0.54 a,b,c |
Hemp | 1.78 ± 0.03 d | 31.7 ± 2.53 d | 1.06 ± 0.03 a | 16.7 ± 0.66 a | 95.9 ± 2.31 b,c,d |
Dairy | 0.36 ± 0.03 a | 6.81 ± 1.21 a | 0.23 ± 0.01 c | 3.61 ± 0.62 c | 75.7 ± 0.68 a |
Product | Yield Stress (Pa) | Apparent Viscosity at 200 s−1 (Pa·s) | K (Pa·sn) | n (-) | R2 |
---|---|---|---|---|---|
Soy-1 | 27.2 ± 2.50 a,b,c | 0.29 ± 0.01 a,b,c | 3.52 ± 0.06 b | 0.45 ± 0.00 a | 0.86 ± 0.01 |
Soy-2 | 20.9 ± 1.30 a,b | 0.23 ± 0.00 a | 0.77 ± 0.65 a | 0.72 ± 0.04 b | 0.94 ± 0.01 |
Coconut | 30.4 ± 0.46 b,c | 0.75 ± 0.01 d | 1.34 ± 0.26 a | 0.87 ± 0.04 b | 1.00 ± 0.00 |
Cashew | 35.6 ± 2.37 c | 0.42 ± 0.01 b,c,d | 2.75 ± 0.43 a,b | 0.58 ± 0.03 a,b | 0.97 ± 0.01 |
Almond | 28.4 ± 1.94 b,c | 0.31 ± 0.02 a,b,c,d | 6.45 ± 1.62 b | 0.37 ± 0.05 a | 0.80 ± 0.03 |
Hemp | n.a. | 0.55 ± 0.02 c,d | n.a. | n.a. | n.a. |
Dairy | 11.7 ± 0.39 a | 0.24 ± 0.00 a,b | 2.50 ± 0.37 a,b | 0.55 ± 0.03 a,b | 0.91 ± 0.04 |
Soy-1 | Soy-2 | Coconut | Cashew | Almond | Dairy | |
---|---|---|---|---|---|---|
Appearance | 6.82 ± 0.01 c,d | 4.81 ± 1.20 a | 6.93 ± 0.30 c,d | 5.46 ± 0.39 a,b | 6.21 ± 0.36 b,c | 7.17 ± 0.18 d |
Odour | 6.29 ± 0.05 c | 4.03 ± 0.49 a | 6.43 ± 0.35 c | 4.61 ± 0.64 a,b | 5.09 ± 0.46 b | 6.33 ± 0.18 c |
Flavour | 5.75 ± 0.21 b | 2.54 ± 0.04 a | 4.79 ± 0.16 c | 2.60 ± 0.01 a | 2.88 ± 0.56 a | 5.67 ± 0.18 b,c |
Texture | 6.49 ± 0.31 c | 4.05 ± 0.81 a | 6.37 ± 0.23 c | 5.17 ± 0.10 b | 4.83 ± 0.71 a,b | 6.33 ± 0.12 c |
Acceptability | 5.95 ± 0.21 b | 2.80 ± 0.33 a | 5.19 ± 0.27 b | 3.61 ± 0.06 a | 3.54 ± 0.50 a | 5.95 ± 0.16 b |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Grasso, N.; Alonso-Miravalles, L.; O’Mahony, J.A. Composition, Physicochemical and Sensorial Properties of Commercial Plant-Based Yogurts. Foods 2020, 9, 252. https://doi.org/10.3390/foods9030252
Grasso N, Alonso-Miravalles L, O’Mahony JA. Composition, Physicochemical and Sensorial Properties of Commercial Plant-Based Yogurts. Foods. 2020; 9(3):252. https://doi.org/10.3390/foods9030252
Chicago/Turabian StyleGrasso, Nadia, Loreto Alonso-Miravalles, and James A. O’Mahony. 2020. "Composition, Physicochemical and Sensorial Properties of Commercial Plant-Based Yogurts" Foods 9, no. 3: 252. https://doi.org/10.3390/foods9030252
APA StyleGrasso, N., Alonso-Miravalles, L., & O’Mahony, J. A. (2020). Composition, Physicochemical and Sensorial Properties of Commercial Plant-Based Yogurts. Foods, 9(3), 252. https://doi.org/10.3390/foods9030252