Effect of Grape Pomace Addition on the Technological, Sensory, and Nutritional Properties of Durum Wheat Pasta
Abstract
:1. Introduction
2. Materials and Methods
2.1. Grape Pomace Powder Preparation and Chemical Composition
2.2. Pasta Preparation
2.3. Pasta Properties Determination
2.4. Color Analysis
2.5. Texture Analysis
2.6. Determination of Total Phenolic Compounds, ABTS, and FRAP Assay
2.7. Starch Fractions Determination
2.8. Hydrolysis Index and Predicted Glycemic Index
2.9. Scanning Electron Microscopy
2.10. Sensory Evaluation
2.11. Statistical Analysis
3. Results and Discussion
3.1. Grape Pomace Composition
3.2. Cooking, Textural Properties, and Color Value
3.3. Polyphenols and Antioxidant Activity
3.4. In Vitro Starch Digestibility
3.5. Scanning Electron Microscopy (ESEM)
3.6. Sensory Evaluation
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Oliviero, T.; Fogliano, V. Food design strategies to increase vegetable intake: The case of vegetable enriched pasta. Trends Food Sci. Technol. 2016, 51, 58–64. [Google Scholar] [CrossRef]
- Spinelli, S.; Padalino, L.; Costa, C.; Del Nobile, M.A.; Conte, A. Food by-products to fortified pasta: A new approach for optimization. J. Clean. Prod. 2019, 215, 985–991. [Google Scholar] [CrossRef]
- Padalino, L.; D’Antuono, I.; Durante, M.; Conte, A.; Cardinali, A.; Linsalata, V.; Mita, G.; Logrieco, A.F.; Del Nobile, M.A. Use of Olive Oil Industrial By-Product for Pasta Enrichment. Antioxidants 2018, 7, 59. [Google Scholar] [CrossRef] [Green Version]
- Simonato, B.; Trevisan, S.; Favati, F.; Tolve, R.; Pasini, G. Pasta fortification with olive pomace: Effects on the technological characteristics and nutritional properties. Food Sci. Technol. 2019, 114, 108368. [Google Scholar] [CrossRef]
- Sant’Anna, V.; Christiano, F.D.P.; Marczak, L.D.F.; Tessaro, I.C.; Thys, R.C.S. The effect of the incorporation of grape marc powder in fettuccini pasta properties. Food Sci. Technol. 2014, 58, 497–501. [Google Scholar] [CrossRef] [Green Version]
- Zanotti, I.; Dall’Asta, M.; Mena, P.; Mele, L.; Bruni, R.; Ray, S.; Del Rio, D. Atheroprotective effects of (poly)phenols: A focus on cell cholesterol metabolism. Food Funct. 2015, 6, 13–31. [Google Scholar] [CrossRef]
- Hogervorst, J.C.; Miljić, U.; Puškaš, V. Extraction of bioactive compounds from grape processing by-products. In Handbook of Grape Processing by-Products; Galanakis, C.M., Ed.; Academic Press: Amsterdam, NL, USA, 2017; pp. 105–135. [Google Scholar]
- Montealegre, R.R.; Peces, R.R.; Chacòn Vozmediano, J.L.; Martìnez Gascuena, J.; Garcìa Romero, E. Phenolic compounds in skins and seeds of ten grape Vitis vinifera varieties grown in a warm climate. J. Food Comp. Anal. 2006, 19, 687–693. [Google Scholar] [CrossRef]
- Cao, H.; Ou, J.; Chen, L.; Zhang, Y.; Szkudelski, T.; Delmas, D.; Daglia, M.; Xiao, J. Dietary polyphenols and type 2 diabetes: Human study and clinical trial. Crit. Rev. Food Sci. Nutr. 2019, 59, 3371–3379. [Google Scholar] [CrossRef]
- Rothwell, J.A.; Knaze, V.; Zamora-Ros, R. Polyphenols: Dietary assessment and role in the prevention of cancers. Curr. Opin. Clin. Nutr. Metab. Care 2017, 20, 512–521. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, H.; Cao, X.; Wang, J. Preparation and modification of high dietary fiber flour: A review. Food Res. Int. 2018, 113, 24–35. [Google Scholar] [CrossRef]
- Llobera, A.; Cañellas, J. Dietary fibre content and antioxidant activity of Manto Negro red grape (Vitis vinifera): Pomace and stem. Food Chem. 2007, 101, 659–666. [Google Scholar] [CrossRef]
- Deng, Q.; Penner, M.H.; Zhao, Y.Y. Chemical composition of dietary fiber and polyphenols of five different varieties of wine grape pomace skins. Food Res. Int. 2011, 44, 2712–2720. [Google Scholar] [CrossRef]
- Tseng, A.; Zhao, Y. Wine grape pomace as antioxidant dietary fibre for enhancing nutritional value and improving storability of yogurt and salad dressing. Food Chem. 2013, 138, 356–365. [Google Scholar] [CrossRef] [PubMed]
- Jane, M.; McKay, J.; Pal, S. Effects of daily consumption of psyllium, oat bran and polyGlycopleX on obesity-related disease risk factors: A critical review. Nutrition 2019, 57, 84–91. [Google Scholar] [CrossRef] [PubMed]
- Gull, A.; Prasad, K.; Kumar, P. Effect of Millet Flours and Carrot Pomace on Cooking Qualities, Color and Texture of Developed Pasta. LWT Food Sci. Technol. 2015, 63, 470–474. [Google Scholar] [CrossRef]
- Gull, A.; Prasad, K.; Kumar, P. Nutritional, antioxidant, microstructural and pasting properties of functional pasta. J. Saudi Soc. Agric. Sci. 2018, 17, 147–153. [Google Scholar] [CrossRef] [Green Version]
- Pasqualone, A.; Gambacorta, G.; Summo, C.; Caponio, F.; Di Miceli, G.; Flagella, Z.; Marrese, P.P.; Piro, G.; Perrotta, C.; De Bellis, L.; et al. Functional, textural and sensory properties of dry pasta supplemented with lyophilized tomato matrix or with durum wheat bran extracts produced by supercritical carbon dioxide or ultrasound. Food Chem. 2016, 213, 545–553. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis, 17th ed.; AOAC International: Rockville, MD, USA, 2000. [Google Scholar]
- AACC. Approved Methods of the AACC, 10th ed.; American Association of Cereal Chemists: St. Paul, MN, USA, 2000. [Google Scholar]
- Cleary, L.; Brennan, C. The influence of a (1→3)(1→4)-β-d-glucan rich fraction from barley on the physico-chemical properties and in vitro reducing sugars release of durum wheat pasta. Int. J. Food Sci. Technol. 2006, 41, 910–918. [Google Scholar] [CrossRef]
- Del Pino-García, R.; González-Sanjosé, M.L.; Rivero-Pérez, M.D.; García-Lomillo, J.; Muñiz, P. The effects of heat treatment on the phenolic composition and antioxidant capacity of red wine pomace seasonings. Food Chem. 2017, 221, 1723–1732. [Google Scholar] [CrossRef] [Green Version]
- Singleton, V.L.; Rossi, J.A. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am. J. Enol. Vitic. 1965, 16, 144–158. [Google Scholar]
- Benzie, I.F.; Strain, J.J. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: The FRAP assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Englyst, H.N.; Kingman, S.M.; Cummings, J.H. Classification and measurement of nutritionally important starch fractions. Eur. J. Clin. Nutr. 1992, 46, S33–S50. [Google Scholar] [PubMed]
- Granfeldt, Y.; Bjorck, I.; Drews, A.; Tovar, J. An in vitro procedure based on chewing to predict metabolic response to starch in cereal and legume products. Eur. J. Clin. Nutr. 1992, 46, 649–660. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2015. [Google Scholar]
- Rakhesh, N.; Fellows, C.M.; Sissons, M. Evaluation of the technological and sensory properties of durum wheat spaghetti enriched with different dietary fibers. J. Sci. Food Agric. 2015, 95, 2–11. [Google Scholar] [CrossRef] [PubMed]
- Song, X.; Zhu, W.; Pei, Y.; Ai, Z.; Chen, J. Effects of wheat bran with different colors on the qualities of dry noodles. J. Cereal Sci. 2013, 58, 400–407. [Google Scholar] [CrossRef]
- Aravind, N.; Sissons, M.; Egan, N.; Fellows, C. Effect of insoluble dietary fiber addition on technological, sensory, and structural properties of durum wheat spaghetti. Food Chem. 2012, 130, 299–309. [Google Scholar] [CrossRef]
- Kim, S.H.; Lee, J.W.; Heo, Y.; Moon, B.K. Effect of Pleurotus eryngii mushroom-glucan on quality characteristics of common wheat pasta. J. Food Sci. 2016, 81, 835–840. [Google Scholar] [CrossRef]
- Kim, B.; Kim, S.; Bae, G.; Chang, M.B.; Moon, B. Quality characteristics of common wheat fresh noodle with insoluble dietary fiber from kimchi by-product. Food Sci. Technol. 2017, 85, 240–245. [Google Scholar] [CrossRef]
- EFSA. Scientific Opinion on the substantiation of a health claim related to “Slowly digestible starch in starch-containing foods” and “reduction of post-prandial glycemic responses”. EFSA J. 2011, 9, 2292. [Google Scholar]
- Zhang, G.; Hamaker, B.R. Slowly digestible starch: Concept, mechanism, and proposed extended glycemic index. Crit. Rev. Food Sci. Nutr. 2009, 49, 852–867. [Google Scholar] [CrossRef]
- Kim, E.H.J.; Petrie, J.R.; Motoi, L.; Morgenstern, M.P.; Sutton, K.H.; Mishra, S.; Simmons, L.D. Effect of structural and physicochemical characteristics of the protein matrix in pasta on in vitro starch digestibility. Food Biophys. 2008, 3, 229–234. [Google Scholar] [CrossRef]
- Hanhineva, K.; Törrönen, R.; Bondia-Pons, I.; Pekkinen, J.; Kolehmainen, M.; Mykkänen, H.; Poutanen, K. Impact of Dietary Polyphenols on Carbohydrate Metabolism. Int. J. Mol. Sci. 2010, 11, 1365–1402. [Google Scholar] [CrossRef] [PubMed]
- Shogren, R.L.; Hareland, G.A.; Wu, Y.V. Sensory evaluation and composition of spaghetti fortified with soy flour. J. Food Sci. 2006, 71, S428–S432. [Google Scholar] [CrossRef]
- Commission Regulation. (EC) No 1924/2006 of the European Parliament and of the Council of 20 December 2006 on nutrition and health claims made on foods. Off. J. Eur. Union L 2006, 404, 9–25. [Google Scholar]
Pasta Samples | Optimum Cooking Time (min) | Cooking Loss (%) | Swelling Index (g Water/g Dry Pasta) | Firmness (N) | Adhesiveness (N) |
---|---|---|---|---|---|
GP0 | 6.0 | 6.61 ± 0.03 a | 3.59 ± 0.08 a | 104.20 ± 0.01 a | −0.11 ± 0.01 a |
GP5 | 5.5 | 8.18 ± 0.23 b | 2.98 ± 0.21 b | 113.44 ± 0.02 b | −0.45 ± 0.02 b |
GP10 | 5.0 | 9.48 ± 0.10 c | 0.97 ± 0.03 c | 135.80 ± 0.02 c | −0.66 ± 0.02 c |
Pasta Samples | L* | a* | b* | |||
---|---|---|---|---|---|---|
Uncooked | Cooked | Uncooked | Cooked | Uncooked | Cooked | |
GP0 | 65.95 ± 2.45 a | 70.13 ± 1.90 a | −0.61 ± 0.34 b | −5.57 ± 0.18 c | 16.18 ± 0.92 a | 14.24 ± 1.19 a |
GP5 | 47.64 ± 2.57 b | 43.28 ± 0.52 b | 1.46 ± 0.45 a | 4.84 ± 0.32 b | 6.50 ± 0.44 b | 6.06 ± 0.64 b |
GP10 | 43.55 ± 3.03 b | 33.43 ± 1.75 c | 1.62 ± 0.04 a | 6.61 ± 0.60 a | 5.27 ± 0.11 c | 5.27 ± 0.10 b |
Pasta Samples | TPC (mg GAE/g dw) | FRAP (µM TE/g dw) | ABTS (µM TE/g dw) |
---|---|---|---|
Uncooked GP0 | 0.43 ± 0.03 e | 0.30 ± 0.09 e | 2.85 ± 0.06 c |
Uncooked GP5 | 1.38 ± 0.04 c | 8.27 ± 0.27 c | 3.63 ± 0.18 b |
Uncooked GP10 | 2.57 ± 0.06 a | 11.32 ± 0.20 a | 4.50 ± 0.20 a |
Cooked GP0 | 0.15 ± 0.02 f | 0.09 ± 0.07 f | 0.60 ± 0.04 e |
Cooked GP5 | 1.05 ± 0.14 d | 7.34 ± 0.32 d | 2.46 ± 0.22 d |
Cooked GP10 | 1.81 ± 0.11 b | 9.42 ± 0.21 b | 4.40 ± 0.15 a |
Cooked Pasta Samples | Starch Fractions (%) | pGI | ||
---|---|---|---|---|
RDS | SDS | RS | ||
GP0 | 33.45 ± 1.16 a | 32.94 ± 0.99 a | 2.13 ± 0.16 a | 57.46 ± 0.41 a |
GP5 | 31.87 ± 1.64 ab | 33.33 ± 1.36 a | 2.19 ± 0.17 a | 55.56 ± 0.22 b |
GP10 | 29.09 ± 2.05 b | 36.19 ± 0.34 b | 1.83 ± 0.41 a | 53.15 ± 1.37 c |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tolve, R.; Pasini, G.; Vignale, F.; Favati, F.; Simonato, B. Effect of Grape Pomace Addition on the Technological, Sensory, and Nutritional Properties of Durum Wheat Pasta. Foods 2020, 9, 354. https://doi.org/10.3390/foods9030354
Tolve R, Pasini G, Vignale F, Favati F, Simonato B. Effect of Grape Pomace Addition on the Technological, Sensory, and Nutritional Properties of Durum Wheat Pasta. Foods. 2020; 9(3):354. https://doi.org/10.3390/foods9030354
Chicago/Turabian StyleTolve, Roberta, Gabriella Pasini, Fabiola Vignale, Fabio Favati, and Barbara Simonato. 2020. "Effect of Grape Pomace Addition on the Technological, Sensory, and Nutritional Properties of Durum Wheat Pasta" Foods 9, no. 3: 354. https://doi.org/10.3390/foods9030354
APA StyleTolve, R., Pasini, G., Vignale, F., Favati, F., & Simonato, B. (2020). Effect of Grape Pomace Addition on the Technological, Sensory, and Nutritional Properties of Durum Wheat Pasta. Foods, 9(3), 354. https://doi.org/10.3390/foods9030354