Drying Habanero Pepper (Capsicum chinense) by Modified Freeze Drying Process
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Melorose, J.; Perroy, R.; Careas, S. México, líder mundial en exportación de chile: SAGARPA. Statew. Agric. L. Use Baseline 2015, 1, 2015. [Google Scholar]
- SAGARPA Un panorama del cultivo del chile. Serv. Inf. Agroaliment. Pesq. 2010, 1, 20.
- SAGARPA Agrícola Nacional. Planeación Agrícola Nac. 2017-2030 2017, 1, 1–14.
- Restrepo Gallego, M.; Llanos Ríos, N.; Fonseca Echeverri, C.E. Composición de las oleorresinas de dos variedades de ají picante (habanero y tabasco) obtenidas mediante lixiviación con solventes orgánicos* Composition of oleoresins from two kinds of chili pepper (habanero and tabasco) obtained by lixiviation with orga. Rev. Lasallista Investig. 2007, 4, 14–19. [Google Scholar]
- Fernandes, F.A.N.; Rodrigues, S.; Law, C.L.; Mujumdar, A.S. Drying of Exotic Tropical Fruits: A Comprehensive Review. Food Bioprocess Technol. 2011, 4, 163–185. [Google Scholar] [CrossRef]
- Sagar, V.R.; Suresh Kumar, P. Recent advances in drying and dehydration of fruits and vegetables: A review. J. Food Sci. Technol. 2010, 47, 15–26. [Google Scholar] [CrossRef] [Green Version]
- Chandrasekaran, S.; Ramanathan, S.; Basak, T. Microwave food processing—A review. FRIN 2013, 52, 243–261. [Google Scholar] [CrossRef]
- Belessiotis, V.; Delyannis, E. Solar drying. Sol. Energy 2011, 85, 1665–1691. [Google Scholar] [CrossRef]
- De la Fuente-Blanco, S.; De Sarabia, E.R.F.; Acosta-Aparicio, V.M.; Blanco-Blanco, A.; Gallego-Juárez, J.A. Food drying process by power ultrasound. Ultrasonics 2006, 44, 523–527. [Google Scholar] [CrossRef]
- Nikolaou, A.; Sgouros, G.; Mitropoulou, G.; Santarmaki, V. Freeze-Dried Immobilized Kefir Culture in Low. Foods 2020, 9, 115. [Google Scholar] [CrossRef] [Green Version]
- Piskov, S.; Timchenko, L.; Grimm, W.; Rzhepakovsky, I. Effects of Various Drying Methods on Some Physico-Chemical Properties and the Antioxidant Profile and ACE Inhibition Activity of Oyster Mushrooms (Pleurotus Ostreatus ). Foods 2020, 9, 160. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Munzenmayer, P.; Ulloa, J.; Pinto, M.; Ramirez, C.; Valencia, P.; Simpson, R.; Almonacid, S. Freeze-Drying of Blueberries: Effects of Carbon Dioxide (CO2) Laser Perforation as Skin Pretreatment to Improve Mass Transfer, Primary Drying Time, and Quality. Foods 2020, 9, 1–18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- OHAUS, “Combining Speed and Precision in One Moisture Analyzer” 2020. Available online: https://us.ohaus.com/en-US/Products/Balances-Scales/Moisture-Analyzers (accessed on 3 April 2020).
- Doymaz, İ.; Pala, M. The effects of dipping pretreatments on air-drying rates of the seedless grapes. J. Food Eng. 2002, 52, 413–417. [Google Scholar] [CrossRef]
- Arancibia, C.; Riquelme, N.; Zúñiga, R.; Matiacevich, S. Comparing the effectiveness of natural and synthetic emulsifiers on oxidative and physical stability of avocado oil-based nanoemulsions. Innov. Food Sci. Emerg. Technol. 2017, 44, 159–166. [Google Scholar] [CrossRef]
- Berasategi, I.; Barriuso, B.; Ansorena, D.; Astiasarán, I. Stability of avocado oil during heating: Comparative study to olive oil. Food Chem. 2012, 132, 439–446. [Google Scholar] [CrossRef]
- Beaulieu, J.C.; Park, H.S.; Mims, A.G.B.; Kuk, M.S. Extension of green bell pepper shelf life using oilseed-derived lipid films from soapstock. Ind. Crops Prod. 2009, 30, 271–275. [Google Scholar] [CrossRef]
- Faustino, J.M.F.; Barroca, M.J.; Guiné, R.P.F. Study of the drying kinetics of green bell pepper and chemical characterization. Food Bioprod. Process. 2007, 85, 163–170. [Google Scholar] [CrossRef]
- Serafin-Higuera, N.; Hernandez-Sanchez, J.; Ocadiz-Delgado, R.; Vazquez-Hernandez, J.; Albino-Sanchez, M.E.; Hernandez-Pando, R.; Gariglio, P. Retinoic acid receptor β deficiency reduces splenic dendritic cell population in a conditional mouse line. Immunol. Lett. 2012, 146, 15–24. [Google Scholar] [CrossRef]
- Trentham, W.R.; Sams, C.E.; Conway, W.S. Histological effects of calcium chloride in stored apples. J. Am. Soc. Hortic. Sci. 2008, 133, 487–491. [Google Scholar] [CrossRef] [Green Version]
- De Torres, C.; Schumacher, R.; Alañón, M.E.; Pérez-Coello, M.S.; Díaz-Maroto, M.C. Freeze-dried grape skins by-products to enhance the quality of white wines from neutral grape varieties. Food Res. Int. 2015. [Google Scholar] [CrossRef]
- Di Matteo, P.; Donsì, G.; Ferrari, G. The role of heat and mass transfer phenomena in atmospheric freeze-drying of foods in a fluidised bed. J. Food Eng. 2003, 59, 267–275. [Google Scholar] [CrossRef]
- Ghio, S.; Barresi, A.A.; Rovero, G. A Comparison of Evaporative and Conventional Freezing Prior to Freeze-Drying of Fruits and Vegetables. Food Bioprod. Process. 2000, 78, 187–192. [Google Scholar] [CrossRef]
- González-Zamora, A.; Sierra-Campos, E.; Pérez-Morales, R.; Vázquez-Vázquez, C.; Gallegos-Robles, M.A.; López-Martínez, J.D.; García-Hernández, J.L. Measurement of capsaicinoids in chiltepin hot pepper: A comparison study between spectrophotometric method and high performance liquid chromatography analysis. J. Chem. 2015, 2015. [Google Scholar] [CrossRef]
- Igual, M.; García-Martínez, E.; Camacho, M.M.; Martínez-Navarrete, N. Effect of thermal treatment and storage on the stability of organic acids and the functional value of grapefruit juice. Food Chem. 2010, 118, 291–299. [Google Scholar] [CrossRef]
- Samoticha, J.; Wojdyło, A.; Lech, K. The influence of different the drying methods on chemical composition and antioxidant activity in chokeberries. LWT Food Sci. Technol. 2016, 66, 484–489. [Google Scholar] [CrossRef]
- Park, J.N.; Sung, N.Y.; Byun, E.H.; Byun, E.B.; Song, B.S.; Kim, J.H.; Lee, K.A.; Son, E.J.; Lyu, E.S. Microbial analysis and survey test of gamma-irradiated freeze-dried fruits for patient’s food. Radiat. Phys. Chem. 2015, 111, 57–61. [Google Scholar] [CrossRef]
Habanero Pepper Samples | Freezing Process (Minutes) | Drying Process (Hours) | Final Moisture(%) | Energy Saving (%) | Effectiveness of Emulsions (Adimensional) |
---|---|---|---|---|---|
Samples without pretreatment | 180 | 20 | 4.6 | 0 | |
Olive oil | 10 | 14 | 6.55 | 39 | 0.083 |
Coconut oil | 10 | 13 | 4.08 | 43 | 0.470 |
Avocado oil | 10 | 14 | 6.04 | 39 | 0.154 |
Grape oil | 10 | 14 | 5.10 | 39 | 0.286 |
Sesame oil | 10 | 14 | 4.97 | 39 | 0.304 |
Safflower oil | 10 | 14.5 | 3.01 | 36 | 0.564 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
González-Toxqui, C.; González-Ángeles, Á.; López-Avitia, R.; González-Balvaneda, D. Drying Habanero Pepper (Capsicum chinense) by Modified Freeze Drying Process. Foods 2020, 9, 437. https://doi.org/10.3390/foods9040437
González-Toxqui C, González-Ángeles Á, López-Avitia R, González-Balvaneda D. Drying Habanero Pepper (Capsicum chinense) by Modified Freeze Drying Process. Foods. 2020; 9(4):437. https://doi.org/10.3390/foods9040437
Chicago/Turabian StyleGonzález-Toxqui, Cicerón, Álvaro González-Ángeles, Roberto López-Avitia, and David González-Balvaneda. 2020. "Drying Habanero Pepper (Capsicum chinense) by Modified Freeze Drying Process" Foods 9, no. 4: 437. https://doi.org/10.3390/foods9040437
APA StyleGonzález-Toxqui, C., González-Ángeles, Á., López-Avitia, R., & González-Balvaneda, D. (2020). Drying Habanero Pepper (Capsicum chinense) by Modified Freeze Drying Process. Foods, 9(4), 437. https://doi.org/10.3390/foods9040437