Table Olives: An Overview on Effects of Processing on Nutritional and Sensory Quality
Abstract
:1. Introduction
2. How Processing Influences the Nutritional Properties of Table Olives
2.1. Trade Preparations
2.1.1. Treated Green Olives or “Spanish Style”
2.1.2. Natural Olives
2.1.3. Dehydrated and/or Shriveled Olives
2.1.4. Other Processing Methods and Stabilization Treatments
2.1.5. Comparison among Different Trade Preparations and Styles
2.2. Influence of Starters
3. How Processing Influences the Sensorial Quality
3.1. Trade Preparations
3.1.1. Treated Green Olives or “Spanish Style”
3.1.2. Natural Olives
3.1.3. Olives Darkened by Oxidation or Californian-Style
3.1.4. Other Processing Methods and Stabilization Treatments
3.1.5. Comparison among Different Trade Preparations and Styles
3.2. Influence of Starters
3.2.1. Natural Olives
3.2.2. Treated Green Olives or Spanish Style
3.2.3. Comparison among Different Trade Preparations and Styles
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Food and Agriculture Organization of the United Nations Corporate Statistical Database (FAOSTAT). Food and Agriculture Data. 2017. Available online: http://www.fao.org/faostat/en/#data (accessed on 20 January 2020).
- Kiritsakis, A. Olive Oil from the Tree to the Table, 2nd ed.; Food & Nutrition Press: Trumbull, CT, USA, 1998; pp. 53–95, 119–226. [Google Scholar]
- International Olive Oil Council (IOC). The World Catalogue of Olive Varieties—Olive Germplasm, Cultivars and World-Wide Collections; International Olive Oil Council: Madrid, Spain, 2013. [Google Scholar]
- Garrido Fernández, A.; Fernández Diez, M.J.; Adams, M.R. Table Olives: Production and Processing; Chapman and Hall: London, UK, 1997; p. 461. [Google Scholar]
- Frega, N.; Lercker, G. La composizione dei lipidi della drupa di olivo durante maturazione. Agrochimica 1985, 29, 300–308. [Google Scholar]
- Bianchi, G.; Murelli, C.; Vlahov, G. Surface waxes from olive fruits. Phytochemistry 1992, 31, 3503–3506. [Google Scholar] [CrossRef]
- Rodríguez, G.; Lama, A.; Rodríguez, R.; Jiménez, A.; Guillén, R.; Fernández-Bolaños, J. Olive stone an attractive source of bioactive and valuable compounds. Bioresour. Technol. 2008, 99, 5261–5269. [Google Scholar] [CrossRef] [PubMed]
- Montaño, A.; Sánchez, A.H.; López-López, A.; De Castro, A.; Rejano, L. Chemical Composition of Fermented Green Olives: Acidity, Salt, Moisture, Fat, Protein, Ash, Fiber, Sugar, and Polyphenol. In Olives and Olive Oil in Health and Disease Prevention; Preedy, V.R., Watson, R.R., Eds.; Elsevier: Oxford, UK, 2010; pp. 291–297. [Google Scholar]
- Evangelou, E.; Kiritsakis, K.; Sakellaropoulos, N.; Kiritsakis, A. Table olives production, postharvest processing, and nutritional qualities. In Handbook of Vegetables and Vegetable Processing, 2nd ed.; Siddiq, M., Uebersax, M.A., Eds.; John Wiley & Sons Ltd: Chichester, UK, 2018; Volume 2, pp. 727–744. [Google Scholar]
- Guo, Z.; Jia, X.; Zheng, Z.; Lu, X.; Zheng, Y.; Zheng, B.; Xiao, J. Chemical composition and nutritional function of olive (Olea europaea L.): A review. Phytochem. Rev. 2018, 17, 1091–1110. [Google Scholar] [CrossRef]
- Johnson, R.L.; Mitchell, A.E. Reducing Phenolics Related to Bitterness in Table Olives. J. Food Qual. 2018, 2018, 3193185. [Google Scholar] [CrossRef]
- Charoenprasert, S.; Mitchell, A. Factors influencing phenolic compounds in table olives (Olea europaea). J. Agric. Food Chem. 2012, 60, 7081–7095. [Google Scholar] [CrossRef] [PubMed]
- Ghanbari, R.; Anwar, F.; Alkharfy, K.M.; Gilani, A.H.; Saari, N. Valuable nutrients and functional bioactives in different parts of olive (Olea europaea L.)-A review. Int. J. Mol. Sci. 2012, 13, 3291–3340. [Google Scholar] [CrossRef]
- International Olive Oil Council (IOC). Production Data for Table Olives. 2016. Available online: https://www.internationaloliveoil.org/what-we-do/economic-affairs-promotion-unit/ (accessed on 17 January 2020).
- Bach-Faig, A.; Berry, E.M.; Lairon, D.; Reguant, J.; Trichopoulou, A.; Dernini, S.; Medina, F.X.; Battino, M.; Belahsen, R.; Miranda, G.; et al. Mediterranean diet pyramid today. Science and cultural updates. Public Health Nutr. 2011, 14, 2274–2284. [Google Scholar] [CrossRef] [Green Version]
- Uylaşer, V.; Yildiz, G. The Historical Development and Nutritional Importance of Olive and Olive Oil Constituted an Important Part of the Mediterranean Diet. Crit. Rev. Food Sci. Nutr. 2014, 54, 1092–1101. [Google Scholar] [CrossRef]
- International Olive Oil Council (IOC). Trade Standard Applying to Table Olives; International Olive Oil Council: Madrid, Spain, 2004. [Google Scholar]
- Marsilio, V.; Campestre, C.; Lanza, B. Phenolic compounds change during California-style ripe olive processing. Food Chem. 2001, 74, 55–60. [Google Scholar] [CrossRef]
- Sakouhi, F.; Harrabi, S.; Absalon, C.; Sbei, K.; Boukhchina, S.; Kallel, H. α-Tocopherol and fatty acids contents of some Tunisian table olives (Olea europea L.): Changes in their composition during ripening and processing. Food Chem. 2008, 108, 833–839. [Google Scholar] [CrossRef] [PubMed]
- Ribarova, F.; Zanev, R.; Shishkov, S.; Rizov, N. α-Tocopherol, fatty acids and their correlations in Bulgarian foodstuffs. J. Food Compos. Anal. 2003, 16, 659–667. [Google Scholar] [CrossRef]
- Lanza, B.; Di Serio, M.G.; Iannucci, E.; Russi, F.; Marfisi, P. Nutritional, textural and sensorial characterisation of Italian table olives (Olea europaea L. cv. ’Intosso d’Abruzzo’). Int. J. Food Sci. Technol. 2010, 45, 67–74. [Google Scholar] [CrossRef]
- López-López, A.; Cortés-Delgado, A.; Garrido-Fernández, A. Effect of green Spanish-style processing (Manzanilla and Hojiblanca) on the quality parameters and fatty acid and triacylglycerol compositions of olive fat. Food Chem. 2015, 188, 37–45. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cano-Lamadrid, M.; Girón, I.F.; Pleite, R.; Burló, F.; Corell, M.; Moriana, A.; Carbonell-Barrachina, A.A. Quality attributes of table olives as affected by regulated deficit irrigation. LWT-Food Sci. Technol. 2015, 62, 19–26. [Google Scholar] [CrossRef] [Green Version]
- Sánchez-Rodríguez, L.; Cano-Lamadrid, M.; Carbonell-Barrachina, A.A.; Wojdyło, A.; Sendra, E.; Hernández, F. Polyphenol Profile in Manzanilla Table Olives As Affected by Water Deficit during Specific Phenological Stages and Spanish-Style Processing. J. Agric. Food Chem. 2019, 67, 661–670. [Google Scholar] [CrossRef]
- Mastralexi, A.; Mantzouridou, F.T.; Tsimidou, M.Z. Evolution of Safety and Other Quality Parameters of the Greek PDO Table Olives “Prasines Elies Chalkidikis” During Industrial Scale Processing and Storage. Eur. J. Lipid Sci. Technol. 2019, 121, e1800171. [Google Scholar] [CrossRef]
- Commission European. Regulation (EU) No 432/2012 of the 16 May 2012 Establishing a List of Permitted Health Claims Made on Foods, Other Than Those Referring to the Reduction of Disease Risk and to Children’s Development and Health. Official Journal European Union, 16 May 2012. [Google Scholar]
- Sánchez Gómez, A.H.; García García, P.; Rejano Navarro, L. Elaboration of table olives. Grasas y Aceites 2006, 57, 76–84. [Google Scholar] [CrossRef] [Green Version]
- Boskou, G.; Salta, F.N.; Chrysostomou, S.; Mylona, A.; Chiou, A.; Andrikopoulos, N.K. Antioxidant capacity and phenolic profile of table olives from the Greek market. Food Chem. 2006, 94, 558–564. [Google Scholar] [CrossRef]
- Pires-Cabral, P.; Barros, T.; Nunes, P.; Quintas, C. Physicochemical, nutritional and microbiological characteristics of traditional table olives from Southern Portugal. Emirates J. Food Agric. 2018, 30, 611–620. [Google Scholar]
- Pires-Cabral, P.; Barros, T.; Mateus, T.; Prata, J.; Quintas, C. The effect of seasoning with herbs on the nutritional, safety and sensory properties of reduced-sodium fermented Cobrançosa cv. table olives. AIMS Agric. Food 2018, 3, 521–534. [Google Scholar] [CrossRef]
- D’Antuono, E.; Garbetta, A.; Ciasca, B.; Linsalata, V.; Minervini, F.; Lattanzio, V.M.T.; Logrieco, A.F.; Cardinali, A. Biophenols from Table Olive cv Bella di Cerignola: Chemical Characterization, Bioaccessibility, and Intestinal Absorption. J. Agric. Food Chem. 2016, 64, 5671–5678. [Google Scholar] [CrossRef] [PubMed]
- Romero, C.; Brenes, M.; Yousfi, K.; Garciä, P.; Garciä, A.; Garrido, A. Effect of Cultivar and Processing Method on the Contents of Polyphenols in Table Olives. J. Agric. Food Chem. 2004, 52, 479–484. [Google Scholar] [CrossRef] [PubMed]
- Mantzouridou, F.; Tsimidou, M.Z. Microbiological quality and biophenol content of hot air-dried Thassos cv. table olives upon storage. Eur. J. Lipid Sci. Technol. 2011, 113, 786–795. [Google Scholar] [CrossRef]
- Fernández-Poyatos, M.P.; Ruiz-Medina, A.; Llorent-Martínez, E.J. Phytochemical profile, mineral content, and antioxidant activity of Olea europaea L. cv. Cornezuelo table olives. Influence of in vitro simulated gastrointestinal digestion. Food Chem. 2019, 297, e124933. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez, G.; Lama, A.; Jaramillo, S.; Fuentes-Alventosa, J.M.; Guillén, R.; Jiménez-Araujo, A.; Rodríguez-Arcos, R.; Fernández-Bolanos, J. 3,4-Dihydroxyphenylglycol (DHPG): An Important Phenolic Compound Present in Natural Table Olives. J. Agric. Food Chem. 2009, 57, 6298–6304. [Google Scholar] [CrossRef]
- Rodríguez, G.; Rodríguez, R.; Fernández-Bolaños, J.; Guillén, R.; Jiménez, A. Antioxidant activity of effluents during the purification of hydroxytyrosol and 3,4-dihydroxyphenyl glycol from olive oil waste. Eur. Food Res. Technol. 2007, 224, 733–741. [Google Scholar] [CrossRef]
- Lanza, B.; Di Serio, M.G.; Russi, F.; Iannucci, E.; Giansante, L.; Di Loreto, G.; Di Giacinto, L. Evaluation of the nutritional value of oven-dried table olives (cv. Majatica) processed by the Ferrandina style. Riv. Ital. delle Sostanze Grasse 2014, 91, 117–127. [Google Scholar]
- Mousori, E.; Melliou, E.; Magiatis, P. Isolation of Megaritolactones and Other Bioactive Metabolites from ‘Megaritiki’ Table Olives and Debittering Water. J. Agric. Food Chem. 2014, 62, 660–667. [Google Scholar] [CrossRef]
- Tokuşoǧlu, Ö.; Alpas, H.; Bozoǧlu, F. High hydrostatic pressure effects on mold flora, citrinin mycotoxin, hydroxytyrosol, oleuropein phenolics and antioxidant activity of black table olives. Innov. Food Sci. Emerg. Technol. 2010, 11, 250–258. [Google Scholar] [CrossRef]
- Ben Othman, N.; Roblain, D.; Thonart, P.; Hamdi, M. Tunisian table olive phenolic compounds and their antioxidant capacity. J. Food Sci. 2008, 73, C235–C240. [Google Scholar] [CrossRef] [PubMed]
- Valenčič, V.; Mavsar, D.B.; Bučar-Miklavčič, M.; Butinar, B.; Čadež, N.; Golob, T.; Raspor, P.; Možina, S.S. The impact of production technology on the growth of indigenous microflora and quality of table olives from Slovenian Istria. Food Technol. Biotechnol. 2010, 48, 404–410. [Google Scholar]
- Zoidou, E.; Melliou, E.; Gikas, E.; Tsarbopoulos, A.; Magiatis, P.; Skaltsounis, A.L. Identification of Throuba Thassos, a Traditional Greek Table Olive Variety, as a Nutritional Rich Source of Oleuropein. J. Agric. Food Chem. 2010, 58, 46–50. [Google Scholar] [CrossRef] [PubMed]
- Melliou, E.; Zweigenbaum, J.A.; Mitchell, A.E. Ultrahigh-Pressure Liquid Chromatography Triple-Quadrupole Tandem Mass Spectrometry Quantitation of Polyphenols and Secoiridoids in California-Style Black Ripe Olives and Dry Salt-Cured Olives. J. Agric. Food Chem. 2015, 63, 2400–2405. [Google Scholar] [CrossRef]
- Servili, M.; Minnocci, F.; Veneziani, G.; Taticchi, A.; Urbani, S.; Esposto, S.; Sebastiani, L.; Valmorri, S.; Corestti, A. Compositional and Tissue Modifications Induced by the Natural Fermentation Process in Table Olives. J. Agric. Food Chem. 2008, 56, 6389–6396. [Google Scholar] [CrossRef]
- Tataridou, M.; Kotzekidou, P. Fermentation of table olives by oleuropeinolytic starter culture in reduced salt brines and inactivation of Escherichia coli O157:H7 and Listeria monocytogenes. Int. J. Food Microbiol. 2015, 208, 122–130. [Google Scholar] [CrossRef]
- Pistarino, E.; Aliakbarian, B.; Casazza, A.A.; Paini, M.; Cosulich, M.E.; Perego, P. Combined effect of starter culture and temperature on phenolic compounds during fermentation of Taggiasca black olives. Food Chem. 2013, 138, 2043–2049. [Google Scholar] [CrossRef]
- Durante, M.; Tufariello, M.; Tommasi, L.; Lenucci, M.S.; Bleve, G.; Mita, G. Evaluation of bioactive compounds in black table olives fermented with selected microbial starters. J. Sci. Food Agric. 2018, 98, 96–103. [Google Scholar] [CrossRef]
- D’Antuono, I.; Bruno, A.; Linsalata, V.; Minervini, F.; Garbetta, A.; Tufariello, M.; Mita, G.; Logrieco, A.F.; Bleve, G.; Cardinali, A. Fermented Apulian table olives: Effect of selected microbial starters on polyphenols composition, antioxidant activities and bioaccessibility. Food Chem. 2018, 248, 137–145. [Google Scholar] [CrossRef]
- Tufariello, M.; Anglana, C.; Crupi, P.; Virtuosi, I.; Fiume, P.; Di Terlizzi, B.; Moselhy, N.; Attay, H.A.G.; Pati, S.; Logrieco, A.F.; et al. Efficacy of yeast starters to drive and improve Picual, Manzanilla and Kalamàta table olive fermentation. J. Sci. Food Agric. 2019, 99, 2504–2512. [Google Scholar] [CrossRef]
- Sousa, A.; Casal, S.; Bento, A.; Malheiro, R.; Oliveira, M.B.P.P.; Pereira, J.A. Chemical characterization of “alcaparras” stoned table olives from northeast Portugal. Molecules 2011, 16, 9025–9040. [Google Scholar] [CrossRef] [PubMed]
- Malheiro, R.; Casal, S.; Sousa, A.; de Pinho, P.G.; Peres, A.M.; Dias, L.G.; Bento, A.; Pereira, J.A. Effect of Cultivar on Sensory Characteristics, Chemical Composition, and Nutritional Value of Stoned Green Table Olives. Food Bioprocess Technol. 2012, 5, 1733–1742. [Google Scholar] [CrossRef]
- López, A.; Montaño, A.; García, P.; Garrido, A. Fatty acid profile of table olives and its multivariate characterization using unsupervised (PCA) and supervised (DA) chemometrics. J. Agric. Food Chem. 2006, 54, 6747–6753. [Google Scholar] [CrossRef] [PubMed]
- Moreno-Baquero, J.M.; Bautista-Gallego, J.; Garrido-Fernández, A.; López-López, A. Mineral and sensory profile of seasoned cracked olives packed in diverse salt mixtures. Food Chem. 2013, 138, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Saúde, C.; Barros, T.; Mateus, T.; Quintas, C.; Pires-Cabral, P. Effect of chloride salts on the sensory and nutritional properties of cracked table olives of the Maçanilha Algarvia cultivar. Food Biosci. 2017, 19, 73–79. [Google Scholar] [CrossRef]
- Savaş, E.; Uylaşer, V. Quality improvement of green table olive cv. “domat” (Olea europaea L.) grown in turkey using different de-bittering methods. Not. Bot. Horti Agrobot. Cluj-Napoca 2013, 41, 269–275. [Google Scholar] [CrossRef] [Green Version]
- Romero, C.; García, A.; Medina, E.; Ruíz-Méndez, M.V.; de Castro, A.; Brenes, M. Triterpenic acids in table olives. Food Chem. 2010, 118, 670–674. [Google Scholar] [CrossRef]
- Jiménez, A.; Rodríguez, R.; Fernández-Caro, I.; Guillén, R.; Fernández-Bolaños, J.; Heredia, A. Dietary fibre content of table olives processed under different european styles: Study of physico-chemical characteristics. J. Sci. Food Agric. 2000, 80, 1903–1908. [Google Scholar] [CrossRef]
- Arrojo-López, F.N.; Duran-Quintana, M.C.; Romero, C.; Rodríguez-Gómez, F.; Garrido-Fernández, A. Effect of Storage Process on the Sugars, Polyphenols, Color and Microbiological Changes in Cracked Manzanilla-Aloreña Table Olives. J. Agric. Food Chem. 2007, 55, 7434–7444. [Google Scholar] [CrossRef]
- Habibi, M.; Golmakani, M.T.; Farahnaky, A.; Mesbahi, G.; Majzoobi, M. NaOH-free debittering of table olives using power ultrasound. Food Chem. 2016, 192, 775–781. [Google Scholar] [CrossRef]
- Rastogi, N.K.; Raghavarao, K.S.M.S.; Balasubramaniam, V.M.; Niranjan, K.; Knorr, D. Opportunities and challenges in high pressure processing of foods. Crit. Rev. Food Sci. Nutr. 2007, 47, 69–112. [Google Scholar] [CrossRef] [PubMed]
- López, A.; Montaño, A.; Garrido, A. Provitamin A carotenoids in table olives according to processing styles, cultivars, and commercial presentations. Eur. Food Res. Technol. 2005, 221, 406–411. [Google Scholar] [CrossRef]
- López-López, A.; Montaño, A.; Cortés-Delgado, A.; Garrido-Fernández, A. Survey of vitamin B6 content in commercial presentations of table olives. Plant Foods Hum. Nutr. 2008, 63, 87–91. [Google Scholar] [CrossRef] [PubMed]
- Strüh, C.; Jäger, S.; Schempp, C.; Scheffler, A.; Martin, S. Solubilized triterpenes from mistletoe show anti-tumor effects on skin-derived cell lines. Planta Med. 2008, 74. [Google Scholar] [CrossRef]
- Lanza, B.; Di Serio, M.G.; Iannucci, E. Effects of maturation and processing technologies on nutritional and sensory qualities of Itrana table olives. Grasas y Aceites 2013, 64, 272–284. [Google Scholar] [CrossRef] [Green Version]
- Wood, J.D.; Enser, M.; Fisher, A.V.; Nute, G.R.; Sheard, P.R.; Richardson, R.I.; Hughes, S.I.; Whittington, F.M. Fat deposition, fatty acid composition and meat quality: A review. Meat Sci. 2008, 78, 343–358. [Google Scholar] [CrossRef]
- Kotzekidou, P.; Tsakalidou, E. Fermentation Biotechnology of Animal Based Traditional Foods of the Middle East and Mediterranean Region. In Food Biotechnology, 2nd ed.; Shetty, K., Paliyath, G., Pometto, A., Levin, R.E., Eds.; CRC Press: Boca Raton, FL, USA, 2005; pp. 1795–1828. [Google Scholar]
- Ruiz-Barba, J.L.; Jiménez-Díaz, R. A novel Lactobacillus pentosus-paired starter culture for Spanish-style green olivefermentation. Food Microbiol. 2012, 30, 253–259. [Google Scholar] [CrossRef] [Green Version]
- González, M.M.; Navarro, T.; Gómez, G.; Pérez, R.A.; De Lorenzo, C. Análisis sensorial de aceituna de mesa: II. Aplicabilidad práctica y correlación con el análisis instrumental. Grasas y Aceites 2007, 58, 231–236. [Google Scholar] [CrossRef] [Green Version]
- Marsilio, V.; Russi, F.; Iannucci, E.; Sabatini, N. Effects of alkali neutralization with CO2 on fermentation, chemical parameters and sensory characteristics in Spanish-style green olives (Olea europaea L.). LWT-Food Sci. Technol. 2008, 41, 796–802. [Google Scholar] [CrossRef]
- Yilmaz, E.; Aydeniz, B. Sensory evaluation and consumer perception of some commercial green table olives. Br. Food J. 2012, 114, 1085–1094. [Google Scholar] [CrossRef]
- Moreno-Baquero, J.M.; Bautista-Gallego, J.; Garrido-Fernández, A.; López-López, A. Mineral Content and Sensory Characteristics of Gordal Green Table Olives Fermented in Chloride Salt Mixtures. J. Food Sci. 2012, 77, S107–S114. [Google Scholar] [CrossRef] [PubMed]
- López-López, A.; Bautista-Gallego, J.; Moreno-Baquero, J.M.; Garrido-Fernández, A. Fermentation in nutrient salt mixtures affects green Spanish-style Manzanilla table olive characteristics. Food Chem. 2016, 211, 415–422. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cano-Lamadrid, M.; Hernández, F.; Corell, M.; Burló, F.; Legua, P.; Moriana, A.; Carbonell-Barrachina, Á.A. Antioxidant capacity, fatty acids profile, and descriptive sensory analysis of table olives as affected by deficit irrigation. J. Sci. Food Agric. 2017, 97, 444–451. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- López-López, A.; Sánchez-Gómez, A.H.; Montaño, A.; Cortés-Delgado, A.; Garrido-Fernández, A. Sensory profile of green Spanish-style table olives according to cultivar and origin. Food Res. Int. 2018, 108, 347–356. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- López-López, A.; Sánchez-Gómez, A.H.; Montaño, A.; Cortés-Delgado, A.; Garrido-Fernández, A. Sensory characterisation of black ripe table olives from Spanish Manzanilla and Hojiblanca cultivars. Food Res. Int. 2019, 116, 114–125. [Google Scholar] [CrossRef] [Green Version]
- Sánchez-Rodríguez, L.; Cano-Lamadrid, M.; Carbonell-Barrachina, Á.A.; Sendra, E.; Hernández, F. Volatile composition, sensory profile and consumer acceptability of hydrosostainable table olives. Foods 2019, 8, 470. [Google Scholar] [CrossRef] [Green Version]
- Panagou, E.Z.; Sahgal, N.; Magan, N.; Nychas, G.J.E. Table olives volatile fingerprints: Potential of an electronic nose for quality discrimination. Sens. Actuators B Chem. 2008, 134, 902–907. [Google Scholar] [CrossRef]
- Aponte, M.; Ventorino, V.; Blaiotta, G.; Volpe, G.; Farina, V.; Avellone, G.; Lanza, C.M.; Moschetti, G. Study of green Sicilian table olive fermentations through microbiological, chemical and sensory analyses. Food Microbiol. 2010, 27, 162–170. [Google Scholar] [CrossRef]
- Fadda, C.; Del Caro, A.; Sanguinetti, A.M.; Piga, A. Texture and antioxidant evolution of naturally green table olives as affected by different sodium chloride brine concentrations. Grasas y Aceites 2014, 65, e002. [Google Scholar]
- Lanza, B.; Amoruso, F. Sensory analysis of natural table olives: Relationship between appearance of defect and gustatory-kinaesthetic sensation changes. LWT-Food Sci. Technol. 2016, 68, 365–372. [Google Scholar] [CrossRef]
- Lee, S.M.; Kitsawad, K.; Sigal, A.; Flynn, D.; Guinard, J.X. Sensory Properties and Consumer Acceptance of Imported and Domestic Sliced Black Ripe Olives. J. Food Sci. 2012, 77, S438–S448. [Google Scholar] [CrossRef] [PubMed]
- García-García, P.; Sánchez-Gómez, A.H.; Garrido-Fernández, A. Changes of physicochemical and sensory characteristics of packed ripe table olives from Spanish cultivars during shelf-life. Int. J. Food Sci. Technol. 2014, 49, 895–903. [Google Scholar] [CrossRef]
- Sánchez, A.H.; López-López, A.; Cortés-Delgado, A.; de Castro, A.; Montaño, A. Aroma profile and volatile composition of black ripe olives (Manzanilla and Hojiblanca cultivars). Food Res. Int. 2020, 127, e108733. [Google Scholar] [CrossRef] [PubMed]
- Gambella, F.; Piga, A.; Agabbio, M.; Vacca, V.; D’hallewin, G. Effect of different pre-treatments on drying of green table olives (Ascolana tenera var.). Grasas y Aceites 2000, 51, 173–176. [Google Scholar]
- Piga, A.; Mincione, B.; Runcio, A.; Pinna, I.; Agabbio, M.; Poiana, M. Response to hot air drying of some olive cultivars of the south of Italy. Acta Aliment. 2005, 34, 427–440. [Google Scholar] [CrossRef]
- Değirmencioğlu, N.; Gürbüz, O.; Deǧirmencioǧlu, A.; Şahan, Y.; Özbey, H. Effect of MAP and vacuum sealing on sensory qualities of dry-salted olive. Food Sci. Biotechnol. 2011, 20, 1307–1313. [Google Scholar] [CrossRef]
- Galán-Soldevilla, H.; Ruiz Pérez-Cacho, P. Panel training programme for the Protected Designation of Origin “Aceituna Aloreña de Malaga. ” Grasas y Aceites 2012, 63, 109–117. [Google Scholar] [CrossRef] [Green Version]
- Rodríguez-Gómez, F.; Ruiz-Bellido, M.A.; Romero-Gil, V.; Benítez-Cabello, A.; Garrido-Fernández, A.; Arroyo-López, F.N. Microbiological and physicochemical changes in natural green heat-shocked Aloreña de Málaga table olives. Front. Microbiol. 2017, 8, e2209. [Google Scholar] [CrossRef]
- Galán-Soldevilla, H.; Ruiz Pérez-Cacho, P.; Hernández Campuzano, J.A. Determination of the characteristic sensory profiles of Aloreña table-olive. Grasas y Aceites 2013, 64, 442–452. [Google Scholar] [CrossRef] [Green Version]
- Bautista-Gallego, J.; Arroyo-López, F.N.; Romero-Gil, V.; Rodríguez-Gómez, F.; Garrido-Fernández, A. Evaluating the effects of zinc chloride as a preservative in cracked table olive packing. J. Food Prot. 2011, 74, 2169–2176. [Google Scholar] [CrossRef]
- Bautista-Gallego, J.; Moreno-Baquero, J.M.; Garrido-Fernández, A.; López-López, A. Development of a novel Zn fortified table olive product. LWT-Food Sci. Technol. 2013, 50, 264–271. [Google Scholar] [CrossRef]
- Romero-Gil, V.; Rodríguez-Gómez, F.; Ruiz-Bellido, M.; Cabello, A.B.; Garrido-Fernández, A.; Arroyo-López, F.N. Shelf-life of traditionally-seasoned aloreña de málaga table olives based on package appearance and fruit characteristics. Grasas y Aceites 2019, 70, e306. [Google Scholar] [CrossRef] [Green Version]
- Lanza, B.; Di Serio, M.G.; Giansante, L.; Di Loreto, G.; Russi, F.; Di Giacinto, L. Effects of pasteurisation and storage on quality characteristics of table olives preserved in olive oil. Int. J. Food Sci. Technol. 2013, 48, 2630–2637. [Google Scholar] [CrossRef]
- Alves, M.; Esteves, E.; Quintas, C. Effect of preservatives and acidifying agents on the shelf life of packed cracked green table olives from Maçanilha cultivar. Food Packag. Shelf Life 2015, 5, 32–40. [Google Scholar] [CrossRef]
- Rodrigues, N.; Marx, Í.M.G.; Dias, L.G.; Veloso, A.C.A.; Pereira, J.A.; Peres, A.M. Monitoring the debittering of traditional stoned green table olives during the aqueous washing process using an electronic tongue. LWT-Food Sci. Technol. 2019, 109, 327–335. [Google Scholar] [CrossRef] [Green Version]
- Marsilio, V.; D’Andria, R.; Lanza, B.; Russi, F.; Iannucci, E.; Lavini, A.; Morelli, G. Effect of irrigation and lactic acid bacteria inoculants on the phenolic fraction, fermentation and sensory characteristics of olive (Olea europaea L. cv. Ascolana tenera) fruits. J. Sci. Food Agric. 2006, 86, 1005–1013. [Google Scholar] [CrossRef]
- Randazzo, C.L.; Fava, G.; Tomaselli, F.; Romeo, F.V.; Pennino, G.; Vitello, E.; Caggia, C. Effect of kaolin and copper-based products and of starter cultures on green table olive fermentation. Food Microbiol. 2011, 28, 910–919. [Google Scholar] [CrossRef]
- Randazzo, C.L.; Todaro, A.; Pino, A.; Pitino, I.; Corona, O.; Mazzaglia, A.; Caggia, C. Giarraffa and Grossa di Spagna naturally fermented table olives: Effect of starter and probiotic cultures on chemical, microbiological and sensory traits. Food Res. Int. 2014, 62, 1154–1164. [Google Scholar] [CrossRef]
- Campus, M.; Sedda, P.; Cauli, E.; Piras, F.; Comunian, R.; Paba, A.; Daga, E.; Schirru, S.; Angioni, A.; Zurru, R.; et al. Evaluation of a single strain starter culture, a selected inoculum enrichment, and natural microflora in the processing of Tonda di Cagliari natural table olives: Impact on chemical, microbiological, sensory and texture quality. LWT-Food Sci. Technol. 2015, 64, 671–677. [Google Scholar] [CrossRef]
- Comunian, R.; Ferrocino, I.; Paba, A.; Daga, E.; Campus, M.; Di Salvo, R.; Cauli, E.; Piras, F.; Zurru, R.; Cocolin, L. Evolution of microbiota during spontaneous and inoculated Tonda di Cagliari table olives fermentation and impact on sensory characteristics. LWT-Food Sci. Technol. 2017, 84, 64–72. [Google Scholar] [CrossRef]
- Martorana, A.; Alfonzo, A.; Settanni, L.; Corona, O.; la Croce, F.; Caruso, T.; Moschetti, G.; Francesca, N. An innovative method to produce green table olives based on “pied de cuve” technology. Food Microbiol. 2015, 50, 126–140. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martorana, A.; Alfonzo, A.; Settanni, L.; Corona, O.; La Croce, F.; Caruso, T.; Moschetti, G.; Francesca, N. Effect of the mechanical harvest of drupes on the quality characteristics of green fermented table olives. J. Sci. Food Agric. 2016, 96, 2004–2017. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Campus, M.; Cauli, E.; Scano, E.; Piras, F.; Comunian, R.; Paba, A.; Daga, E.; Di Salvo, R.; Sedda, P.; Angioni, A.; et al. Towards Controlled Fermentation of Table Olives: LAB Starter Driven Process in an Automatic Pilot Processing Plant. Food Bioprocess Technol. 2017, 10, 1063–1073. [Google Scholar] [CrossRef]
- Pino, A.; De Angelis, M.D.; Todaro, A.; Van Hoorde, K.V.; Randazzo, C.L.; Caggia, C. Fermentation of Nocellara Etnea table olives by functional starter cultures at different low salt concentrations. Front. Microbiol. 2018, 9, e1125. [Google Scholar] [CrossRef] [Green Version]
- Randazzo, C.L.; Russo, N.; Pino, A.; Mazzaglia, A.; Ferrante, M.; Conti, G.O.; Caggia, C. Effects of selected bacterial cultures on safety and sensory traits of Nocellara Etnea olives produced at large factory scale. Food Chem. Toxicol. 2018, 115, 491–498. [Google Scholar] [CrossRef]
- Romeo, F.V.; Timpanaro, N.; Intelisano, S.; Rapisarda, P. Quality evaluation of Aitana, Caiazzana and Nocellara del Belice table olives fermented with a commercial starter culture. Emirates J. Food Agric. 2018, 30, 604–610. [Google Scholar]
- Pino, A.; Vaccalluzzo, A.; Solieri, L.; Romeo, F.V.; Todaro, A.; Caggia, C.; Arroyo-López, F.N.; Bautista-Gallego, J.; Randazzo, C.L. Effect of sequential inoculum of beta-glucosidase positive and probiotic strains on brine fermentation to obtain low salt sicilian table olives. Front. Microbiol. 2019, 10, e174. [Google Scholar] [CrossRef]
- De Angelis, M.; Campanella, D.; Cosmai, L.; Summo, C.; Rizzello, C.G.; Caponio, F. Microbiota and metabolome of un-started and started Greek-type fermentation of Bella di Cerignola table olives. Food Microbiol. 2015, 52, 18–30. [Google Scholar] [CrossRef]
- Chytiri, A.; Tasioula-Margari, M.; Bleve, G.; Kontogianni, V.G.; Kallimanis, A.; Kontominas, M.G. Effect of different inoculation strategies of selected yeast and LAB cultures on Conservolea and Kalamàta table olives considering phenol content, texture, and sensory attributes. J. Sci. Food Agric. 2020, 100, 926–935. [Google Scholar] [CrossRef]
- Ciafardini, G.; Zullo, B.A. Use of selected yeast starter cultures in industrial-scale processing of brined Taggiasca black table olives. Food Microbiol. 2019, 84, 103250. [Google Scholar] [CrossRef]
- Aponte, M.; Blaiotta, G.; La Croce, F.; Mazzaglia, A.; Farina, V.; Settanni, L.; Moschetti, G. Use of selected autochthonous lactic acid bacteria for Spanish-style table olive fermentation. Food Microbiol. 2012, 30, 8–16. [Google Scholar] [CrossRef]
- Marsilio, V. Sensory analysis of table olives. Olivae 2002, 90, 32–41. [Google Scholar]
- International Olive Oil Council (IOC). Method for the Sensory Analysis of Table Olives; International Olive Oil Council: Madrid, Spain, 2008. [Google Scholar]
- International Olive Oil Council (IOC). Sensory Analysis of Table Olives; International Olive Oil Council: Madrid, Spain, 2010. [Google Scholar]
- Vergara, J.V.; Blana, V.; Mallouchos, A.; Stamatiou, A.; Panagou, E.Z. Evaluating the efficacy of brine acidification as implemented by the Greek table olive industry on the fermentation profile of Conservolea green olives. LWT-Food Sci. Technol. 2013, 53, 113–119. [Google Scholar] [CrossRef]
- International Olive Oil Council (IOC). Method for the Sensory Analysis of Table Olives; International Olive Oil Council: Madrid, Spain, 2011. [Google Scholar]
- Bautista-Gallego, J.; Arroyo-López, F.N.; Romero-Gil, V.; Rodríguez-Gómez, F.; Garrido-Fernández, A. The effect of ZnCl2 on green Spanish-style table olive packaging, a presentation style dependent behaviour. J. Sci. Food Agric. 2015, 95, 1670–1677. [Google Scholar] [CrossRef] [PubMed]
- Piga, A.; Gambella, F.; Vacca, V.; Agabbio, M. Response of three Sardinian olive cultivars to Greek-style processing. Ital. J. Food Sci. 2001, 13, 29–40. [Google Scholar]
- Piga, A.; Agabbio, M. Quality improvement of naturally green table olives by controlling some processing parameters. Ital. J. Food Sci. 2003, 15, 259–268. [Google Scholar]
- Kanavouras, A.; Gazouli, M.; Tzouvelekis Leonidas, L.; Petrakis, C. Evaluation of black table olives in different brines. Grasas y Aceites 2005, 56, 106–115. [Google Scholar] [CrossRef]
- Hurtado, A.; Reguant, C.; Bordons, A.; Rozès, N. Influence of fruit ripeness and salt concentration on the microbial processing of Arbequina table olives. Food Microbiol. 2009, 26, 827–833. [Google Scholar] [CrossRef]
- UNE. UNE EN ISO 4120:2008. Análisis Sensorial. Metodología. Prueba Triangular; Asociación Española de Normalización: Madrid, Spain, 2008. [Google Scholar]
- UNI. UNI 10957. In Sensory Analysis—Method for Establishing a Sensory Profile in Foodstuffs and Beverages; Ente Nazionale Italiano di Normazione: Roma, Italy, 2003. [Google Scholar]
- Stone, E.; Sidel, J.L. Affective testing. In Sensory Evaluation Practices, 3rd ed.; Stone, E., Sidel, J.L., Eds.; Elsevier Academic Press: London, UK, 2004; pp. 262–264. [Google Scholar]
- Lawless, H.T.; Heymann, H. Sensory Evaluation of Food: Principles and Practices, 2nd ed.; Springer Science + Business Media, LLC: New York, NY, USA, 2010. [Google Scholar]
- Meilgaard, M.; Civille, G.V.; Carr, B.T. Sensory Evaluation Techniques, 2nd ed.; CRC Press: Boca Raton, FL, USA, 1991; pp. 201–235. [Google Scholar]
- Panagou, E.Z.; Tassou, C.C.; Katsaboxakis, K.Z. Microbiological, physicochemical and organoleptic changes in dry-salted olives of Thassos variety stored under different modified atmospheres at 4 and 20 °C. Int. J. Food Sci. Technol. 2002, 37, 635–641. [Google Scholar] [CrossRef]
- Panagou, E.Z. Effect of different packing treatments on the microbiological and physicochemical characteristics of untreated green olives of the Conservolea cultivar. J. Sci. Food Agric. 2004, 84, 757–764. [Google Scholar] [CrossRef]
- Pradas, I.; Del Pino, B.; Peña, F.; Ortiz, V.; Moreno-Rojas, J.M.; Fernández-Hernández, A.; García-Mesa, J.A. The use of high hydrostatic pressure (HHP) treatments for table olives preservation. Innov. Food Sci. Emerg. Technol. 2012, 13, 64–68. [Google Scholar] [CrossRef]
- López-López, A.; Garrido-Fernández, A. Producción, Elaboración, Composición y Valor Nutricional de la Aceituna Aloreña de Málaga; Edita Redagua: Málaga, Spain, 2010. [Google Scholar]
- Hibbert, D.B. Chemometric Analysis of Sensory Data. In Comprehensive Chemometrics. Chemical and Biochemical Data Analysis; Brown, S., Tauler, R., Walczak, B., Eds.; Elsevier: Oxford, UK, 2009; Volume 4, pp. 377–424. [Google Scholar]
- Panagou, E.Z.; Tassou, C.C.; Skandamis, P.N. Physicochemical, microbiological, and organoleptic profiles of Greek table olives from retail outlets. J. Food Prot. 2006, 69, 1732–1738. [Google Scholar] [CrossRef] [PubMed]
- Lanza, B.; Amoruso, F. Panel performance, discrimination power of descriptors, and sensory characterization of table olive samples. J. Sens. Stud. 2020, 35, e12542. [Google Scholar] [CrossRef]
- ISO. ISO 8586:2012. In Sensory Analysis—General Guidelines for the Selection, Training and Monitoring of Selected Assessors and Expert Sensory Assessors, 1st ed.; International Organization for Standardization: Geneva, Switzerland, 2012. [Google Scholar]
- Martorana, A.; Alfonzo, A.; Gaglio, R.; Settanni, L.; Corona, O.; La Croce, F.; Vagnoli, P.; Caruso, T.; Moschetti, G.; Francesca, N. Evaluation of different conditions to enhance the performances of Lactobacillus pentosus OM13 during industrial production of Spanish-style table olives. Food Microbiol. 2017, 61, 150–158. [Google Scholar] [CrossRef] [Green Version]
- de Castro, A.; Sánchez, A.H.; Cortés-Delgado, A.; López-López, A.; Montaño, A. Effect of Spanish-style processing steps and inoculation with Lactobacillus pentosus starter culture on the volatile composition of cv. Manzanilla green olives. Food Chem. 2019, 271, 543–549. [Google Scholar] [CrossRef] [Green Version]
- Marsilio, V.; Seghetti, L.; Iannucci, E.; Russi, F.; Lanza, B.; Felicioni, M. Use of a lactic acid bacteria starter culture during green olive (Olea europaea L cv Ascolana tenera) processing. J. Sci. Food Agric. 2005, 85, 1084–1090. [Google Scholar] [CrossRef]
Compound Class | Trade Preparation/Processing Style/Starters (LAB*, Y) | Olive Cultivar | Olive Ripening Stage | Nutritional Results Related to the Compound Class (Results Related to Other Compounds) | References |
---|---|---|---|---|---|
Polyphenols | Treated | Manzanilla | Green | A moderate level of irrigation increased oleuropein and oleoside diglucoside in table olives | Sánchez-Rodríguez et al. [24] |
Prasines Elies Chalkidikis | Green | Hydroxytyrosol, tyrosol and oleoside-11-methyl ester at higher concentrations in treated olives with respect to fresh ones (decrease of squalene in brine stored olives) | Mastralexi et al. [25] | ||
Natural | Various | Black | Greek-style olives are a good source of polyphenols | Boskou et al. [28] | |
Bella di Cerignola | Black | Presence of hydroxytyrosol acetate, caffeoyl-6′-secologanoside and comselogoside with good bioaccessibility | D’Antuono et al. [31] | ||
Cornezuelo | Green | Prevalence of oleuropeine and comselogoside isomers, polyphenols retain a good antioxidant activity after digestion (high Ca content) | Fernández-Poyatos et al. [34] | ||
Eight different Greek cultivars | Black | High concentration of the nutritional important compound 3,4-dihydroxyphenylglycol | Rodríguez et al. [35] | ||
Dried | Thassos | Black | Storage at 20 °c of dried olives allowed the best retention of polyphenols | Mantzouridou et al. [33] | |
Majatica di Ferrandina | Black | High content of biophenols | Lanza et al. [37] | ||
Other (Water debittering) | Megaritiki | Black | New compounds were detected, two are unique for the species (rengyoxide and cleroindicin C) and one for table olives (haleridone) | Mousori et al. [38] | |
Other (High Pressure Processing) | Different Turkish cultivars | Black | Increase of phenolics following the HPP treatment | Tokuşoğlu et al. [39] | |
Mixed (Natural and drying with salt) | Meski, Chemlali, Besbessi, Tounsi | Black | Olives of Tunisian market have an important content of polyphenols | Ben Othman et al. [40] | |
Mixed (Water dipping and Spanish Style) | Istrska belica, Storta | Green | Debittering with water dipping resulted in higher biophenol content in olives | Valenčič et al. [41] | |
Mixed (Five different processing styles) | Nine different Greek cultivars | Black | The highest oleuropein content was found on dry-salted Throuba Thassos olives | Zoidou et al. [42] | |
Mixed (Darkened by oxidation and drying with salt) | Manzanilla, Mission, Throuba Thassos | Black | Confirms results of Zoidou et al. [42] | Melliou et al. [43] | |
LAB (Natural) | Frantoio, Carolea, Coratina, Leccino | Black | LAB produced tissue skin degradation with consequent higher polyphenol leakage and reduced debittering time | Servili et al. [44] | |
Kalamata, Chalkidikis | Black, green | LAB fermented olives had a significantly higher content in phenols, especially hydroxytyrosol and tyrosol | Tataridou et al. [45] | ||
LAB + Y (Natural) | Taggiasca | Black | Polyphenol loss from flesh to brines depend on process temperature and not on starter use | Pistarino et al. [46] | |
Y + LAB (Natural) | Cellina di Nardò, Conservolea, Kalamàta, Leccino | Black | Olives are rich in polyphenolic compounds (rich in MUFA, polyphenols, tocopherols and triterpenic acids) | Durante et al. [47] | |
Bella di Cerignola, Termite di Bitetto, Cellina di Nardò | Black | The use of starters allowed to obtain olives with high content of tyrosol and hydroxytyrosol that were up to eight times higher with respect to the virgin olive oils obtained by the same olives | D’Antuono et al. [48] | ||
Y (Natural) | Picual, Manzanilla, Kalamàta | Black, green | The Y allowed an increase in hydroxytyrosol, tyrosol and verbascoside on the olives, with respect to the control sample, thus improving the nutritional value | Tufariello et al. [49] | |
Fatty acids | Treated | Meski, Picholine, Sayali | Black, cherry, green | Decrease of FA and increase of the PUFA/SFA ratio after processing (α-tocopherol decreased after fermentation, mainly in black olives) | Sakouhi et al. [19] |
Intosso d’Abruzzo | Green | Optimal MUFA/SFA ratio (appreciable amounts of polyphenols, α-tocopherol, minerals and fibre) | Lanza et al. [21] | ||
Manzanilla, Hojiblanca | PUFA/SFA ratio lower than 0.5 | Lopez-Lopez et al. [22] | |||
Manzanilla | Green | High PUFA content in olives grown under moderate irrigation regime | Cano-Lamadrid et al. [23] | ||
Natural | Maçanilha, Cobrançosa, Galega | Black | A serving size of Maçanilha olives provide 13.1% of the recommended daily intake of PUFA (important content of dietary fiber and polyphenols) | Pires-Cabral et al. [29] | |
Cellina di Nardò, Conservolea, Kalamàta, Leccino | Black | High content of MUFA | Durante et al. [47] | ||
Oven-dried | Ferrandina | Black | PUFA/SFA ratio higher than 0.5 (dried fruits contained appreciable amounts of phenols and tocopherols) | Lanza et al. [37] | |
Other (Alcaparras) | Not reported | Green | Oleic acid content up to 81% (lower content of Vitamin E if compared to olives prepared with other styles) | Sousa et al. [50] | |
Cobrançosa, Madural, Negrinha de Freixo, Santulhana, Verdeal, Transmontana | Green | Content of some fatty acids and of SFA, MUFA and PUFA permitted a statistical discrimination among cultivars | Malheiro et al. [51] | ||
Mixed (Treated, natural, darkened by oxidation) | Alorena, Arbequiña, Cacereña, Carrasqueña, Gordal, Hojiblanca, Manzanilla, Verdial | Green, black | The fat profile was useful to discriminate olive cultivars | López-López et al. [52] | |
Minerals | Cracked | Aloreña | Green | Packing brines with combinations of CaCl2, KCl and NaCl resulted in significant reduction of flesh Na content, with respect to the traditional packed product | Moreno-Baquero et al. [53] |
Maçanilha Algarvia | Green | Brines at 4% NaCl + 4% KCl gave olives with increased K and reduced Na contents (lower fat, similar dietary fiber, phenolic compounds and Ca content with respect to the control brine (8% NaCl) | Saúde et al. [54] | ||
Mixed (Treated, water dip, scratched plus CaCl2 dipping and reduced salt brines) | Domat | Green | Reduced salt content in scratched olives processed in low-salt brines | Savas et al. [55] | |
Triterpenic acids | Mixed (Treated, natural, darkened by oxidation) | Seventeen different cultivars | Black, green | Natural-style olives have the highest content of triterpenic acids, with respect to the other trade preparations and to virgin olive oil | Romero et al. [56] |
Fibres | Mixed (Natural, darkened by oxidation, dried) | Douro, Hojiblanca, Cassanese, Conservolia, Taggiasca, Thasos | Black, green | High content of fibers in all samples | Jiménez et al. [57] |
Trade Preparation/Processing Style/Starters (LAB*, Y) | Olive Cultivar | Test Used | Descriptors | Main Results | References |
---|---|---|---|---|---|
Treated | Not reported | QDA | Acidity, bitterness, color, saltiness, intensity and persistency of nasal aroma | Color, firmness, acidity and saltiness best characterized the olive | González et al. [68] |
Nocellara messinese | QDA | Appearance, color, odor, flavor, texture, overall | Olives treated with CO2 are more acidic that control | Marsilio et al. [69] | |
Çelebi, Domat, Kaba, Ayvalık | QDA Preference | Appearance, aroma, flavor, texture | Cultivars were sensorially different | Yilmaz et al. [70] | |
Gordal | QDA | Abnormal fermentation type, cooking effect, earthy, metallic, musty, rancid, soapy, winey-vinegary; acidity, bitterness, saltiness; crunchiness, fibrousnesses, hardness | Saltiness was significantly related to NaCl and KCl levels; bitterness, hardness, fibrousness, and crunchiness were related to the CaCl2 percentage | Moreno-Baquero et al. [71] | |
Manzanilla | QDA | As previous | Decrease in saltiness and increase in bitterness at increasing Ca amounts in the pulp. Ca content highly correlated with some kinaesthetic and taste attributes | López-López et al. [72] | |
Manzanilla | QDA Acceptability | Color and size; aftertaste, bitter, green olive flavor, salt, sour, sweet; crunchiness, fibrousness, hardness, pit removal | Olives grown under soft stress conditions were preferred and rated as the best for the more important descriptors | Cano-Lamadrid et al. [73] | |
Gordal, Manzanilla, Hojiblanca | QDA | Acetic acid, grass, green fruit, hay, lactic acid, lupin, ripe fruit, musty, winery; alcohol, bitter, salty, sour; astringent, piquant, pungent | Development of a lexicon for the sensory characteristics of Spanish-style olives | López-López et al. [74] | |
Manzanilla and Hojiblanca | QDA | A total of 33 descriptors (see paper) | A certain number of the descriptors attributes fit sample discrimination | López-López et al. [75] | |
Manzanilla | QDA Acceptability | As in López-López et al. [72] | Increase of the green olive flavor and decrease of bitter taste in olives subjected to deficit of irrigation. Consumer preference for the same samples. | Rodríguez et al. [76] | |
Natural | Not reported | QDA | Abnormal fermentation, cooking effect, musty, rancid | Data analysis gave a good discrimination between unacceptable, acceptable and marginal samples and evidenced that olives could be discriminated by an electronic nose developed in the study | Panagou et al. [77] |
Brandofino, Castriciana, Manzanilla, Nocellara del Belice, Passalunara | Brightness, intensity of the green color; odor of green olives, off odor; crispness, easy peeling, juiciness; acid, bitter, salt, sweet; astringent; green olive flavor, off flavor; overall | Sensory data were affected mainly by cultivar and the overall assessment was below the imposed threshold of acceptability after 150 days of fermentation | Aponte et al. [78] | ||
Tonda di Cagliari | Preference | Assessors preferred olives obtained with the lowest salt concentration for the lower salt and bitter taste | Fadda et al. [79] | ||
Itrana | QDA | Butyric fermentation, putrid fermentation; acid, bitter, salty; crunchiness, fibrousness, hardness | All sample were rated as “Extra or Fancy”, or as “First, 1st, Choice or Select”. The analysis was able to separate in different areas the defected and un-defected samples | Lanza and Amoruso [80] | |
Darkened by oxidation | Not reported | QDA Degree of liking | A total of 34 descriptors (see paper) of appearance, aroma, flavor, taste and texture | The QDA showed that country of origin well separated samples for showed that aroma and flavor, while appearance and texture were the descriptors that best discriminated the olive products. The American consumers expressed an important score of acceptability for samples produced in California | Lee et al. [81] |
Cacereña, Gordal, Hojiblanca, Manzanilla | QDA | Brightness, skin defects, surface color; acid, bitter, salty; abnormal fermentation, other defects; crunchiness, fibrousnesses, hardness, pit release, skin strength; metallic taste, soap taste, typical flavur | The sensory analysis found significant changes only for surface color of whole olives. The classification of ‘extra’ was attributed to almost all samples | García-García et al. [82] | |
Hojiblanca, Manzanilla | QDA | Alcohol, artificial fruity/floral, briny, cheesy, earthy/soil-like, fishy/ocean-like, natural fruity/floral, nutty, oak barrel, sautéed mushroom, vinegary | Cultivars were sensorially discriminated only for the briny descriptor. Analysis of data accurately predicted the nutty flavor and permitted the identification of the aroma compounds volatiles that highly contributed to the attributes of olives processed at the black stage | Sanchez et al. [83] | |
Dried (hot air or salt) | Ascolana Tenera | Preference | The highest preference was expressed for the least bitter olives, that were also judged saltier, with respect to the other samples | Gambella et al. [84] | |
Various (see paper) | Preference | Assessors preferred the salted olives as salt had a masking effect on bitterness | Piga et al. [85] | ||
Gemlik | QDA | Black, black-brown, brown; bitterness, off flavor, rancidity, saltiness; softness, pit-flesh detachment; overall eating quality | MAP and vacuum-packaged olives as well as those stored at 4 °C obtained the best scores | Değirmencioğlu et al. [86] | |
Other (Cured, fresh green, traditional) | Aloreña de Málaga | QDA | Descriptors were developed in the work | The panel developed nine specific descriptors: odour (fruity, green, seasoning, lactic), aroma (fruit, seasoning), basic tastes (acid, bitter), texture (crunchy) | Galán-Soldevilla and Ruiz Perez-Cacho [87] |
Aloreña de Málaga | QDA | Acidic, bitterness, crunchiness; hardness, salty; appreciation of defects, darkening, overall acceptability | Olives subjected to a hot water dipping maintained a better green color, with respect to the control | Rodríguez-Gómez et al. [88] | |
Other (Fresh) | Aloreña de Málaga | QDA | Descriptors were developed in the work | Assessors selected 15 descriptors for aroma, basic, odor, aroma, trigeminal and texture attributes. The processing style significantly influenced fruit odor, bitter taste, firmness and odor, while each style resulted in differences for all the descriptors | Galán-Soldevilla et al. [89] |
Aloreña de Málaga | QDA | Acidity, bitterness, saltiness; color; crispness, firmness, fibrousness; odor | Olives treated with 0.075 ZnCl2 obtained higher scores for acidic taste, color, odor, saltiness | Bautista-Gallego et al. [90]; Bautista-Gallego et al. [91] | |
Other (Traditional) | Aloreña de Málaga | QDA Acceptability | Acidic, bitter, salty; crunchiness, hardness, appreciation of external damages and any kind of defects, browning | The highest acceptance was obtained by olives with a shelf life from 6 to 42 days, while a drastic decrease in sensorial quality was found at 131 days | Romero-Gil et al. [92] |
Other (Pitted, reduction to a paste) | Taggiasca | QDA | Abnormal fermentation, cooking effects, musty, rancid, other defects present; acid, bitter, salty | Assessors rated the rancidity defect with a defect predominant perceived <3, which is the threshold for the extra category, for paste olives up to 18 months storage, while for pitted olives this limit was overcome after 12 months | Lanza et al. [93] |
Other (Cracked) | Maçanilha | Acceptability | Assessors gave the highest acceptability to olives brined with HCl and with the mixture of citric and lactic acid | Alves et al. [94] | |
Other (Alcaparras) | Cobrançosa, Negrinha de Freixo | Bitter, pungent, salty, sweet | Data of sensory analysis were corelated with those obtained with an electronic tongue and revealed that this device is effective in monitoring the changes in bitter, pungent and sweet intensities | Rodrigues et al. [95] | |
LAB (Natural) | Ascolana Tenera | QDA | Acid/sour, bitter; color; odor; crispness, firmness | The LAB olives were more appreciated than non-inoculated ones, for their less bitter taste, a higher odor intensity, and good textural attributes | Marsilio et al. [96] |
Nocellara Etnea | QDA | Acid, bitter, salty, sweet; crunchiness, fibrousness, hardness | Panelists judged olives treated and fermented by LAB the best for acidic and salty tastes and for gave the highest scores for acidity, crunchiness and saltiness | Randazzo et al. [97] | |
Giarraffa, Grossa di Spagna | QDA | Bright, green color; green olive aroma, off odor; crisp, easy stone, juicy; acid, bitter, salt, sweet; astringent; green olive flavor, off flavor; overall | Results evidenced that the sensory characteristics were cultivar dependent | Randazzo et al. [98] | |
Tonda di Cagliari | QDA | Bitterness | Samples obtained with LAB were debittered at the end of processing, while control olives needed 12 months | Campus et al. [99] | |
Tonda di Cagliari | QDA | Acidity, bitterness, saltiness; crunchiness, fibrousness, freestone, hardness | The use of L. pentosus resulted in olives with a sensory profile very close to the natural-style samples, naturally fermented ones, with respect to L. plantarum | Communian et al. [100] | |
Nocellara del Belice | QDA | Green olive aroma; crunchiness; acid, bitter, complexity, salty, sweet; off odor, off flavor | The use of pied de cuve resulted in olives with the highest scores of sensory complexities and with the absence of off-odors and off flavors | Martorana et al. [101] | |
Nocellara del Belice | QDA | Green color intensity; green olive aroma, off odors; crispness, easy stone detachment; astringent, bitter, complexity, juicy, salt, sour, sweet; off flavors | Mechanically harvested and LAB fermented olives were sensorially like the manually harvested olives | Martorana et al. [102] | |
Tonda di Cagliari | QDA | Acetic, acid, bitter, fruity, mushroom, saltiness, silage; astringent, crunchiness, fibrousness, fleshy, freestone, hardness, juiciness | Samples fermented in an automated pilot plant obtained the same bitterness of commercial sample after 90 days, while control olives had a significantly higher bitter taste after 180 days | Campus et al. [103] | |
Nocellara Etnea | QDA | Cooking effect, earthy, metallic, musty, rancid, soapy, winey-vinegary; acidity, bitterness, saltiness; crunchiness, fibrousness, hardness | LAB fermented olives obtained the significantly highest overall acceptability score and the sample brined with the 5% NaCl obtained the best appreciation | Pino et al. [104] | |
Nocellara Etnea | QDA | Green color, bright; green olive aroma, off odor; green olive flavor, off flavor; acid, bitter, salty, sweet; crunchiness, easy stone separation, juiciness; astringent | Significant differences in bitterness, bright, crunchiness, green color, green olive aroma and juiciness for LAB samples, control olives had the highest bitterness value | Randazzo et al. [105] | |
Aitana, Caiazzana, Nocellara del Belice | QDA | Acid, bitter, salty; crunchiness, fibrousness, hardness; abnormal fermentation, other defects | All the tested cultivars had good sensory characteristics, and the highest scores for flesh consistency and crunchiness was obtained by Nocellara del Belice olives | Romeo et al. [106] | |
Nocellara Etnea | QDA | See Pino et al. [104] | The control olives obtained the highest scores for acidity, the highest bitter taste was scored in the olives without LAB. The samples at 5% and 8% NaCl added with the LAB received the highest overall acceptability | Pino et al. [107] | |
LAB + Y (Natural) | Bella di Cerignola | QDA | Crunchiness; acid, bitter, salty, sweet; olive flavor, off flavor | The assessors ranked better the olives fermented with starters, with respect to the control that obtained the lowest values for crunchiness and olive flavor and the best evaluations for acid, bitter and off flavor | De Angelis et al. [108] |
Conservolea, Kalamata | QDA | Acidity, bitterness, saltiness; odor; hardness; overall | Kalamàta olives obtained the best scores for aroma and overall acceptability when the Y+LAB and MIX inoculations were used, while Conservolea olives showed the same results when LAB+Y were inoculated | Chytiri et al. [109] | |
Y (Natural) | Taggiasca | Acid, bitter, salty; crunchiness, fibrousness, hardness | The best combination may be obtained with the use of Y on acidified brines at the highest NaCl concentration | Ciafardini et al. [110] | |
LAB (treated) | Nocellara del Belice | QDA | Bright, green color; green olive aroma, off odor; crisp, easy stone, juicy; acid, bitter, salt, sweet; astringent; green olive flavor, off flavor; overall. | Data highlighted that L. pentosus improved the sensory characteristics of olives, with respect to control samples | Aponte et al. [111] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Conte, P.; Fadda, C.; Del Caro, A.; Urgeghe, P.P.; Piga, A. Table Olives: An Overview on Effects of Processing on Nutritional and Sensory Quality. Foods 2020, 9, 514. https://doi.org/10.3390/foods9040514
Conte P, Fadda C, Del Caro A, Urgeghe PP, Piga A. Table Olives: An Overview on Effects of Processing on Nutritional and Sensory Quality. Foods. 2020; 9(4):514. https://doi.org/10.3390/foods9040514
Chicago/Turabian StyleConte, Paola, Costantino Fadda, Alessandra Del Caro, Pietro Paolo Urgeghe, and Antonio Piga. 2020. "Table Olives: An Overview on Effects of Processing on Nutritional and Sensory Quality" Foods 9, no. 4: 514. https://doi.org/10.3390/foods9040514
APA StyleConte, P., Fadda, C., Del Caro, A., Urgeghe, P. P., & Piga, A. (2020). Table Olives: An Overview on Effects of Processing on Nutritional and Sensory Quality. Foods, 9(4), 514. https://doi.org/10.3390/foods9040514