Light Microscopy as a Tool to Evaluate the Functionality of Starch in Food
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
3. Results and Discussion
3.1. Starch Gelatinisation
3.2. Starch Modification
3.2.1. Pregelatinisation
3.2.2. Chemical Modification
Oxidation
Esterification-Acetylation
Esterification–Crosslinking
Etherification
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Seidemann, J. Beiträge zur Geschichte der Stärke Mikroskopie. 1. Mitt. Die Stärke 1968, 20, 169–172. [Google Scholar] [CrossRef]
- Seidemann, J. Beiträge zur Geschichte der Stärke Mikroskopie. 2. Mitt. Die Stärke 1971, 23, 288–290. [Google Scholar] [CrossRef]
- Seidemann, J. Zur Mikroskopie der Stärkekörner von gekeimten Kartoffeln. Die Stärke 1971, 23, 132–135. [Google Scholar] [CrossRef]
- Evers, A.D. Scanning Electron Microscopy of Wheat Starch. III. Granule Development in the Endosperm. Die Stärke/Starch 1971, 23, 151–192. [Google Scholar] [CrossRef]
- Sterling, C. Fibrillar Structure in Lintnerized Potato Starch by Scanning Electron Microscopy. Die Stärke/Starch 1971, 23, 193–220. [Google Scholar]
- Ramadas Bhat, U.; Paramahans, S.V.; Tharanathan, R.N. Scanning Electron Microscopy of Enzyme-digested Starch Granules. Starch/Stärke 1983, 35, 261–265. [Google Scholar] [CrossRef]
- Gallant, D.J.; Bouchet, B.; Baldwin, P.M. Microscopy of starch: Evidence of a new level of granule organization. Carbohydr. Polym. 1997, 32, 177–191. [Google Scholar] [CrossRef]
- Van de Velde, F.; van Riel, J.; Tromp, R.H. Visualisation of starch granule morphologies using confocal scanning laser microscopy (CSLM). J. Sci. Food Agric. 2002. 82, 1528–1536. [CrossRef]
- Jane, J.-L.; Kasemsuwan, T.; Leas, S.; Zobel, H.; Robyt, J.F. Anthology of Starch Granule Morphology by Scanning Electron Microscopy. Starch/Stärke 1994, 46, 121–129. [Google Scholar] [CrossRef]
- Juszczak, L.; Fortuna, T.; Franciszek Krok, F. Non-contact Atomic Force Microscopy of Starch Granules Surface. Part I. Potato and Tapioca Starches. Starch/Stärke 2003, 55, 1–7. [Google Scholar] [CrossRef]
- Juszczak, L.; Fortuna, T.; Franciszek Krok, F. Non-contact Atomic Force Microscopy of Starch Granules Surface. Part II. Selected Cereal Starches. Starch/Stärke 2003, 55, 8–18. [Google Scholar] [CrossRef]
- Zhu, F. Atomic Force Microscopy of Starch Systems. Crit. Rev. Food Sci. Nutr. 2015, 57, 3127–3144. [Google Scholar] [CrossRef]
- Dang, J.M.C.; Braet, F.; Copeland, L. Nanostructural analysis of starch components by atomic force microscopy. J. Microsc. 2006, 224, 181–186. [Google Scholar] [CrossRef]
- Liu, P.; Chen, L.; Corrigan, P.A.; Yu, L.; Liu, Z. Application of Atomic Force Microscopy on Studying Micro- and Nano-Structures of Starch. Int. J. Food Eng. 2008, 7, 1–23. [Google Scholar] [CrossRef]
- Tang, M.C.; Copeland, L. Investigation of starch retrogradation using atomic force microscopy. Carbohydr. Polym. 2007, 70, 1–7. [Google Scholar] [CrossRef]
- Liu, Z.; Liu, B.; Li, M.; Wei, M.; Li, H.; Liu, P.; Wan, T. Scanning probe acoustic microscopy of extruded starch materials: Direct visual evidence of starch crystal. Carbohydr. Polym. 2013, 98, 372–379. [Google Scholar] [CrossRef]
- Kowsik, P.V.; Mazumder, N. Structural and chemical characterization of rice and potato starch granules using microscopy and spectroscopy. Microsc. Res. Tech. 2018, 81, 1533–1540. [Google Scholar] [CrossRef]
- Sujka, M.; Jamroz, J.; Kwiatkowski, R. Influence of α-amylolysis on the formation of electron density inhomogeneities on the surface of starch granules. Starch/Stärke 2011, 63, 17–23. [Google Scholar] [CrossRef]
- Svegmark, K.; Hermansson, A.M. Distribution of Amylose and Amylopectin in Potato Starch Pastes: Effects of Heating and Shearing. Food Struct. 1991, 10, 117–129. [Google Scholar]
- Lewandowicz, G.; Błaszczak, W.; Fornal, J. Effect of Acetylation on Microstructure of Potato Starch. Pol. J. Food Nutr. Sci. 1998, 6/48, 78–84. [Google Scholar]
- Lewandowicz, G.; Walkowski, A.; Błaszczak, W. Degree of Substitution of Crosslinked Starches vs. Functionality in Food Products. In Starch: From Starch Containing Sources to Isolation of Starches and Their Applications; Yuryev, V.P., Tomasik, P., Ruck, H., Eds.; Nova Science Publishers, Inc.: New York, NY, USA, 2004; pp. 75–95. [Google Scholar]
- Lewandowicz, G.; Fornal, J.; Voelkel, E. Starch ethers obtained by microwave radiation—Structure and functionality. In Starch, Advances in Structure and Function; Barsby, T.L., Donald, A.M., Frazier, P.J., Eds.; Royal Society of Chemistry: Cambridge, UK, 2001; pp. 82–96. [Google Scholar]
- Joint FAO/WHO Expert Committee on Food Additives. Compendium of Food Additive Specifications; Modified Starches; FAO JECFA Monographs 22: Geneva, Switzerland, 2018; pp. 53–86. ISBN 978-92-5-131100-4. [Google Scholar]
- Ai, Y.; Jane, J.-L. Gelatinization and rheological properties of starch. Starch/Stärke 2015, 67, 213–224. [Google Scholar]
- Ashogbon, A.O.; Akintayo, E.T. Recent trend in the physical and chemical modification of starches from different botanical sources: A review. Starch/Stärke 2014, 66, 41–57. [Google Scholar] [CrossRef]
- Nakorn, K.N.; Tongdang, T.; Sirivongpaisal, P. Crystallinity and Rheological Properties of Pregelatinized Rice Starches Differing in Amylose Content. Starch/Stärke 2009, 61, 101–108. [Google Scholar] [CrossRef]
- Chanvrier, H.; Uthayakumarin, S.; Appelqvist, I.A.M.; Gidley, M.J.; Gilbert, E.P.; López-Rubio, A. Influence of storage conditions on the structure, thermal behavior and formation of enzyme resistant starch in extruded starches. J. Agric. Food Chem. 2007, 55, 9883–9890. [Google Scholar] [CrossRef]
- Vanier, N.L.; Halal, S.L.M.E.; Dias, A.R.G.; Zavareze, E.R. Molecular structure, functionality and applications of oxidized starches: A review. Food Chem. 2017, 221, 1546–1559. [Google Scholar] [CrossRef]
- Compendium of Food Additive Specifications. Joint FAO/WHO Expert Committee on Food Additives (JECFA). In Proceedings of the 86th Meeting, Geneva, Switzerland, 12–21 June 2018; FAO JECFA Monographs 22: Geneva, Switzerland, 2018. [Google Scholar]
- Vilaplana, F.; Hasjim, J.; Gilbert, R.G. Amylose content in starches: Toward optimal definition and validating experimental methods. Carbohydr. Polym. 2012, 88, 103–111. [Google Scholar] [CrossRef]
- Han, F.; Gao, C.; Liu, M.; Huang, F.; Zhang, B. Synthesis, optimization and characterization of acetylated corn starch with the high degree of substitution. Int. J. Biol. Macromol. 2013, 59, 372–376. [Google Scholar] [CrossRef]
- Singh, J.; Kaur, L.; McCarthy, O.J. Factors influencing the physico-chemical, morphological, thermal and rheological properties of some chemically modified starches for food applications—A review. Food Hydrocoll. 2007, 21, 1–22. [Google Scholar] [CrossRef]
- Le Thanh, J.; Błaszczak, W.; Lewandowicz, G. Digestibility vs Structure of Food Grade Modified Starches. EJPAU 2007, 10. Available online: http://www.ejpau.media.pl/volume10/issue3/art-10.html (accessed on 14 April 2020).
- Han, F.; Liu, M.; Gong, H.; Lü, S.; Ni, B.; Zhang, B. Synthesis, characterization and functional properties of low substituted acetylated corn starch. Int. J. Biol. Macromol. 2012, 50, 1026–1034. [Google Scholar] [CrossRef]
- Szwengiel, A.; Le Thanh-Blicharz, J.; Lewandowicz, G. Molecular structure of acetylated starches with different degree of substitution. In Proceedings of the 13th International Conference on Polysaccharides-Glycoscience, Prague, Czech Republic, 8–10 November 2017; Řápkova, R., Čopíková, J., Šárka, E., Eds.; Czech Chemical Society: Prague, Czech Republic, 2017; pp. 180–182. [Google Scholar]
- Lewandowicz, J.; Baranowska, H.M.; Le Thanh-Blicharz, J.; Lewandowicz, G. The effect of degree of substitution on the macroscopic and molecular properties of the pastes of acetylated starches. In Proceedings of the 11th International Conference on Polysaccharides-Glycoscience, Prague, Czech Republic, 7–9 October 2015; Řápkova, R., Čopíková, J., Šárka, E., Eds.; Czech Chemical Society: Prague, Czech Republic, 2015; pp. 45–49. [Google Scholar]
- Kaur, L.; Singh, N.; Singh, J. Factors influencing the properties of hydroxypropylated potato starches. Carbohydr. Polym. 2004, 55, 211–223. [Google Scholar] [CrossRef]
- Moin, A.; Ali, T.M.; Hasnain, A. Characterization and utilization of hydroxypropylated rice starches for improving textural and storage properties of rice puddings. Int. J. Biol. Macromol. 2017, 105, 843–851. [Google Scholar] [CrossRef]
- Liu, Q.X.; Li, J.L.; Xu, W.C. Preparation and Properties of Cationic Starch with High Degree of Substitution. Mater. Sci. Forum 2011, 663–665, 1264–1267. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Błaszczak, W.; Lewandowicz, G. Light Microscopy as a Tool to Evaluate the Functionality of Starch in Food. Foods 2020, 9, 670. https://doi.org/10.3390/foods9050670
Błaszczak W, Lewandowicz G. Light Microscopy as a Tool to Evaluate the Functionality of Starch in Food. Foods. 2020; 9(5):670. https://doi.org/10.3390/foods9050670
Chicago/Turabian StyleBłaszczak, Wioletta, and Grażyna Lewandowicz. 2020. "Light Microscopy as a Tool to Evaluate the Functionality of Starch in Food" Foods 9, no. 5: 670. https://doi.org/10.3390/foods9050670
APA StyleBłaszczak, W., & Lewandowicz, G. (2020). Light Microscopy as a Tool to Evaluate the Functionality of Starch in Food. Foods, 9(5), 670. https://doi.org/10.3390/foods9050670