Clotting Properties of Onopordum tauricum (Willd.) Aqueous Extract in Milk of Different Species
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material and Crude Extract Preparation
2.2. Substrates Preparation and Chemical Characterization
2.3. Characterization of Thistle Extracts
2.3.1. Total Protein Content
2.3.2. Total Polyphenol Content
2.3.3. Milk Clotting Activity (MCA) Assay
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ben Amira, A.; Besbes, S.; Attia, H.; Blecker, C. Milk-clotting properties of plant rennets and their enzymatic, rheological, and sensory role in cheese making: A review. Int. J. Food Prop. 2017, 20, 76–93. [Google Scholar] [CrossRef] [Green Version]
- Roseiro, L.B.; Barbosa, M.; Ames, J.M.; Wilbey, R.A. Cheesemaking with vegetable coagulants—The use of Cynara L. for the production of ovine milk cheeses. Int. J. Dairy Technol. 2003, 56, 76–85. [Google Scholar] [CrossRef]
- Cardinali, F.; Osimani, A.; Taccari, M.; Milanović, V.; Garofalo, C.; Clementi, F.; Polverigiani, S.; Zitti, S.; Raffaelli, N.; Mozzon, M.; et al. Impact of thistle rennet from Carlina acanthifolia All. subsp. acanthifolia on bacterial diversity and dynamics of a specialty Italian raw ewes' milk cheese. Int. J. Food Microbiol. 2017, 255, 7–16. [Google Scholar] [CrossRef] [PubMed]
- EUR-Lex. Council Regulation (EC) No 510/2006 of 20 March 2006 on the Protection of Geographical Indications and Designations of Origin for Agricultural Products and Foodstuffs. Available online: https://eur-lex.europa.eu/legal-content/en/ALL/?uri=CELEX%3A32006R0510 (accessed on 2 May 2020).
- Cardinali, F.; Taccari, M.; Milanović, V.; Osimani, A.; Polverigiani, S.; Garofalo, C.; Foligni, R.; Mozzon, M.; Zitti, S.; Raffaelli, N.; et al. Yeast and mould dynamics in Caciofiore della Sibilla cheese coagulated with an aqueous extract of Carlina acanthifolia All. Yeast 2016, 33, 403–414. [Google Scholar] [CrossRef] [Green Version]
- Silva, S.V.; Malcata, F.X. Influence of the coagulant level on early proteolysis in ovine cheese-like systems made with sterilized milk and Cynara cardunculus. J. Food Sci. 2004, 69, 579–584. [Google Scholar] [CrossRef]
- Tejada, L.; Vioque, M.; Gómez, R.; Fernández-Salguero, J. Effect of lyophilisation, refrigerated storage and frozen storage on the coagulant activity and microbiological quality of Cynara cardunculus L. extracts. J. Sci. Food Agric. 2008, 88, 1301–1306. [Google Scholar] [CrossRef]
- Brutti, C.; Pardo, M.; Caffini, N.; Natalucci, C. Onopordum acanthium L. (Asteraceae) flowers as coagulating agent for cheesemaking. LWT-Food Sci. Technol. 2012, 45, 172–179. [Google Scholar] [CrossRef]
- Tamer, I. Identification and partial purification of a novel milk clotting enzyme from Onopordum turcicum. Biotechnol. Lett. 1993, 15, 427–432. [Google Scholar] [CrossRef]
- Tamer, I.; Mutlu, M. A new approach to modelling enzyme kinetics by a novel enzyme from Onopordum turcicum and powdered calf rennet. Chem. Eng. J. 1994, 56, 87–90. [Google Scholar] [CrossRef]
- Çakilcioǧlu, U.; Türkoǧlu, I. An ethnobotanical survey of medicinal plants in Sivrice (Elazidotlessĝ-Turkey). J. Ethnopharmacol. 2010, 132, 165–175. [Google Scholar] [CrossRef]
- Çakilcioǧlu, U.; Şengün, M.; Türkoǧlu, I. An ethnobotanical survey of medicinal plants of Yazıkonak and Yurtbaşı districts of Elaziǧ province, Turkey. J. Med. Plant Res. 2010, 4, 567–572. [Google Scholar] [CrossRef]
- Petkova, N.; Mihaylova, D. Flower heads of Onopordum tauricum Willd. and Carduus acanthoides L-source of prebiotics and antioxidants. Emir. J. Food Agric. 2016, 28, 732–736. [Google Scholar] [CrossRef]
- Bruno, M.; Maggio, A.; Rosselli, S.; Safder, M.; Banchev, S. The metabolites of the genus Onopordum (Asteraceae): Chemistry and biological properties. Curr. Org. Chem. 2011, 15, 888–927. [Google Scholar] [CrossRef]
- Targan, Ş.; Yelboğa, E.; Cittan, M. Macro and trace element contents of some wild plants consumed as vegetable in Manisa District, Turkey. J. Turkish Chem. Soc. 2018, 5, 751–762. [Google Scholar] [CrossRef]
- Erciyes, A.T.; Tuter-Erim, M.; Kabasakal, O.S.; Dandik, L. Seed oil characteristics of Onopordon tauricum Willd. and Prunus laurocerasus L. Fett Wissen. Technol. 1995, 97, 387–388. [Google Scholar] [CrossRef]
- Roncolini, A.; Milanović, V.; Aquilanti, L.; Cardinali, F.; Garofalo, C.; Sabbatini, R.; Clementi, F.; Belleggia, L.; Pasquini, M.; Mozzon, M.; et al. Lesser mealworm (Alphitobius diaperinus) powder as a novel baking ingredient for manufacturing high-protein, mineral-dense snacks. Food Res. Int. 2020, 131, 109031. [Google Scholar] [CrossRef]
- Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein dye binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef]
- Savini, S.; Loizzo, M.R.; Tundis, R.; Mozzon, M.; Foligni, R.; Longo, E.; Morozova, K.; Scampicchio, M.; Martin-Vertedor, D.; Boselli, E. Fresh refrigerated Tuber melanosporum truffle: Effect of the storage conditions on the antioxidant profile, antioxidant activity and volatile profile. Eur. Food Res. Technol. 2017, 243, 2255–2263. [Google Scholar] [CrossRef]
- Yolmeh, M.; Jafari, S.M. Applications of response surface methodology in the food industry processes. Food Bioprocess Technol. 2017, 10, 413–433. [Google Scholar] [CrossRef]
- Tabayehnejad, N.; Castillo, M.; Payne, F.A. Comparison of total milk-clotting activity measurement precision using the Berridge clotting time method and a proposed optical method. J. Food Eng. 2012, 108, 549–556. [Google Scholar] [CrossRef]
- Calvo, M.M. Influence of fat, heat treatments and species on milk rennet clotting properties and glycomacropeptide formation. Eur. Food Res. Technol. 2002, 214, 182–185. [Google Scholar] [CrossRef]
- Tavaria, F.K.; Sousa, M.M.F. Storage and lyophilization effects of extracts of Cynara cardunculus on the degradation of ovine and caprine caseins. Food Chem. 2001, 72, 79–88. [Google Scholar] [CrossRef]
- Lo Piero, A.R.; Puglisi, I.; Petrone, G. Characterization of “lettucine”: A serine-like protease from Lactuca sativa leaves, as a novel enzyme for milk clotting. J. Agric. Food Chem. 2002, 50, 2439–2443. [Google Scholar] [CrossRef] [PubMed]
- Silva, S.V.; Barros, R.M.; Malcata, F.X. Hydrolysis of caseins by extracts of Cynara cardunculus precipitated by ammonium sulfate. J. Food Sci. 2002, 67, 1746–1751. [Google Scholar] [CrossRef]
- Llorente, B.E.; Brutti, C.B.; Caffini, N.O. Purification and characterization of a milk-clotting aspartic proteinase from globe artichoke (Cynara scolymus L.). J. Agric. Food Chem. 2004, 52, 8182–8189. [Google Scholar] [CrossRef]
- Sofia, V.; Silva, F.; Malcata, X. Studies pertaining to coagulant and proteolytic activities of plant proteases from Cynara cardunculus. Food Chem. 2005, 89, 19–26. [Google Scholar] [CrossRef]
- Chazarra, S.; Sidrach, L.; López-Molina, D.; Rodríguez-López, J.N. Characterization of the milk-clotting properties of extracts from artichoke (Cynara scolymus, L.) flowers. Int. Dairy J. 2007, 17, 1393–1400. [Google Scholar] [CrossRef]
- Lo Piero, A.R.; Puglisi, I.; Petrone, G. Characterization of the purified actinidin as a plant coagulant of bovine milk. Eur. Food Res. Technol. 2011, 233, 517–524. [Google Scholar] [CrossRef]
- Lufrano, D.; Faro, R.; Castanheira, P.; Parisi, G.; Veríssimo, P.; Vairo-Cavalli, S.; Simões, I.; Faro, C. Molecular cloning and characterization of procirsin, an active aspartic protease precursor from Cirsium vulgare (Asteraceae). Phytochemistry 2012, 81, 7–18. [Google Scholar] [CrossRef]
- Tripathi, P.; Tomar, R.; Jagannadham, M. Purification and biochemical characterisation of a novel protease streblin. Food Chem. 2011, 125, 1005–1012. [Google Scholar] [CrossRef]
- Pontual, E.V.; Carvalho, B.E.; Bezerra, R.S.; Coelho, L.C.; Napoleão, T.H.; Paiva, P.M. Caseinolytic and milk-clotting activities from Moringa oleifera flowers. Food Chem. 2012, 135, 1848–1854. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Da Silva, A.C.; Nascimento, T.C.E.; da Silva, S.A.A.; Herculano, P.N.; Moreira, K.A. Potential of quixaba (Sideroxylon obtusifolium) latex as a milk-clotting agent. LWT-Food Sci. Technol. 2013, 33, 494–499. [Google Scholar] [CrossRef] [Green Version]
- Guiama, V.; Beka, R.; Ngah, E.; Libouga, D.; Vercaigne-Marko, D.; Mbofung, C. Milk-coagulating extract produced from Solanum aethiopicum Shum fruits: Multivariate techniques of preparation, thermal stability and effect on milk solids recovery in curd. Int. J. Food Eng. 2014, 10, 211–222. [Google Scholar] [CrossRef]
- Anusha, R.; Singh, M.; Bindhu, O. Characterisation of potential milk coagulants from Calotropis gigantea plant parts and their hydrolytic pattern of bovine casein. Eur. Food Res. Technol. 2014, 238, 997–1006. [Google Scholar] [CrossRef]
- Albuquerque de Farias, V.; Dias da Rocha Lima, A.; Santos Costa, A.; de Freitas, C.D.T.; da Silva Araújo, I.M.; dos Santos Garruti, D.; Altina Teixeira de Figueiredo, E.; de Oliveira, E.D. Noni (Morinda citrifolia L.) fruit as a new source of milk-clotting cysteine proteases. Food Res. Int. 2020, 127, 108689. [Google Scholar] [CrossRef]
- Gutiérrez-Méndez, N.M.; Dely Rubí, C.G.; Héctor, J.C. Exploring the milk-clotting properties of a plant coagulant from the berries of S. elaeagnifolium var. Cavanilles. J. Food Sci. 2012, 71, 89–94. [Google Scholar] [CrossRef]
- Mazorra-Manzano, M.A.; Perea-Gutiérrez, T.C.; Lugo-Sánchez, M.E.; Ramirez-Suarez, J.C.; Torres-Llanez, M.J.; González-Córdova, A.F.; Vallejo-Cordoba, B. Comparison of the milk-clotting properties of three plant extracts. Food Chem. 2013, 141, 1902–1907. [Google Scholar] [CrossRef]
- Mazorra-Manzano, M.A.; Moreno-Hernández, J.M.; Ramírez-Suarez, J.C.; Torres-Llanez, M.D.J.; González-Córdova, A.F.; Vallejo-Córdoba, B. Sour orange Citrus aurantium L. flowers: A new vegetable source of milk-clotting proteases. LWT-Food Sci. Technol. 2013, 54, 325–330. [Google Scholar] [CrossRef]
- Silva, M.Z.R.; Oliveira, J.P.B.; Ramos, M.V.; Farias, D.F.; de Sá, C.A.; Ribeiro, J.A.C.; Silva, A.F.B.; de Sousa, J.S.; Zambelli, R.A.; da Silva, A.C.; et al. Biotechnological potential of a cysteine protease (CpCP3) from Calotropis procera latex for cheesemaking. Food Chem. 2020, 307, 125574. [Google Scholar] [CrossRef]
- Liburdi, K.; Boselli, C.; Giangolini, G.; Amatiste, S.; Esti, M. An evaluation of the clotting properties of three plant rennets in the milks of different animal species. Foods 2019, 8, 600. [Google Scholar] [CrossRef] [Green Version]
- Roseiro, L.B.; Viala, D.J.; Besle, M.; Carnat, A.; Fraisse, D.; Chezal, J.M.; Lamaison, J.L. Preliminary observations of flavonoid glycosides from the vegetable coagulant Cynara L. in protected designation of origin cheeses. Int. Dairy J. 2005, 15, 579–584. [Google Scholar] [CrossRef]
- Barros, R.M.; Ferreira, C.A.; Silva, S.V.; Malcata, F.X. Quantitative studies on the enzymatic hydrolysis of milk proteins brought about by cardosins precipitated by ammonium sulfate. Enzyme Microb. Technol. 2001, 29, 541–547. [Google Scholar] [CrossRef]
- Kethireddipalli, P.; Hill, A.R. Rennet coagulation and cheesemaking properties of thermally processed milk: Overview and recent developments. J. Agric. Food Chem. 2015, 63, 9389–9403. [Google Scholar] [CrossRef] [PubMed]
- Ordiales, E.; Martín, A.; Benito, M.; Hernández, A.; Ruiz-Moyano, S.; Córdoba, M. Technological characterisation by free zone capillary electrophoresis (FCZE) of the vegetable rennet (Cynara cardunculus) used in “torta del Casar” cheese-making. Food Chem. 2012, 133, 227–235. [Google Scholar] [CrossRef]
- Llorente, B.; Obregón, W.D.; Avilés, F.; Caffini, N.O.; Vairo-Cavalli, S. Use of artichoke (Cynara scolymus) flower extract as a substitute for bovine rennet in the manufacture of Gouda-type cheese: Characterization of aspartic proteases. Food Chem. 2014, 159, 55–63. [Google Scholar] [CrossRef]
- Zamora, A.; Ferragut, V.; Jaramillo, P.D.; Guamis, B.; Trujillo, A.J. Effects of Ultra-High Pressure Homogenization on the cheese-making properties of milk. J. Dairy Sci. 2007, 90, 13–23. [Google Scholar] [CrossRef] [Green Version]
- Thomann, S.; Schenkel, P.; Hinrichs, J. The impact of homogenization and microfiltration on rennet-induced gel formation. J. Texture Stud. 2008, 39, 326–344. [Google Scholar] [CrossRef]
- Robson, E.; Dalgleish, D. Coagulation of homogenized milk particles by rennet. J. Dairy Res. 1984, 51, 417–424. [Google Scholar] [CrossRef]
- Fox, P.F.; Uniacke-Lowe, T.; McSweeney, P.L.H.; O’Mahony, J.A. Milk Proteins. In Dairy Chemistry and Biochemistry, 2nd ed.; Fox, P.F., Uniacke-Lowe, T., McSweeney, P.L.H., O’Mahony, J.A., Eds.; Springer International Publishing AG: Cham, Switzerland, 2015; pp. 145–239. [Google Scholar]
- Esteves, C.L.C.; Lucey, A.J.; Pires, E.M.V. Rheological properties of milk gels made with coagulants of plant origin and chymosin. Int. Dairy J. 2002, 12, 427–434. [Google Scholar] [CrossRef] [Green Version]
- Ordiales, E.; Martín, A.; Benito, M.J.; Fernández, M.; Casquete, R.; de Guía Córdoba, M. Influence of the technological properties of vegetable rennet (Cynara cardunculus) on the physicochemical, sensory and rheological characteristics of ‘Torta del Casar’ cheese. Int. J. Dairy Technol. 2014, 67, 402–409. [Google Scholar] [CrossRef]
Milk | pH | Dry Matter % w/w | Protein % w/w | Fat % w/w | Lactose % w/w | Ash % w/w |
---|---|---|---|---|---|---|
Bovine 1 | 6.67 | 12.2 | 3.5 | 1.6 | 5.8 | 1.3 |
Goat 1 | 6.72 | 10.8 | 3.6 | 1.6 | 4.8 | 0.8 |
Ewe 2 | 6.76 | 13.9 | 5.9 | 1.8 | 5.3 | 0.9 |
Term | Ewe’s Milk | Goat’s Milk | Cow’s Milk | ||||||
---|---|---|---|---|---|---|---|---|---|
Estimates | F Ratio | p-Value | Estimates | F Ratio | p-Value | Estimates | F Ratio | p-Value | |
Intercept | 2105.10 | 5553.6 * | −32,483.55 | ||||||
Linear | |||||||||
T | 83.30 | 4.66 | 0.0563 | 57.42 | 3.10 | 0.1087 | 39.73 | 0.23 | 0.6493 |
EV | 0.34 | 0.01 | 0.9107 | −0.34 | 0.01 | 0.9129 | 14.48 | 5.14 | 0.0726 |
pH | −1145.98 | 4.75 | 0.0543 | −2153.02 | 21.90 | 0.0009 * | 9198.39 | 1.77 | 0.2408 |
Quadratic | |||||||||
T × T | 0.29 | 0.50 | 0.4962 | 0.43 | 1.58 | 0.2367 | 2.01 | 12.12 | 0.017 * |
EV × EV | −0.00 | 0.16 | 0.6989 | −0.00 | 0.05 | 0.8205 | −0.01 | 4.68 | 0.0827 |
pH × pH | 114.41 | 7.37 | 0.021 * | 202.00 | 27.55 | 0.000 * | 1.06 | 0.3504 | |
Interactions | |||||||||
T × EV | −0.03 | 3.07 | 0.1104 | −0.03 | 2.82 | 0.1238 | 0.04 | 2.32 | 0.1885 |
T × pH | −13.05 | 39.00 | <0.0001 * | −12.27 | 40.19 | <0.0001 * | −34.89 | 12.32 | 0.017 * |
EV × pH | 0.30 | 2.75 | 0.1281 | 0.35 | 3.38 | 0.0957 | −1.25 | 2.75 | 0.1581 |
Term | Ewe’s Milk | Goat’s Milk | Cow’s Milk | ||||||
---|---|---|---|---|---|---|---|---|---|
Estimates | F Ratio | p-Value | Estimates | F Ratio | p-Value | Estimates | F Ratio | p-Value | |
Intercept | 31,246.16 | 47,947.18 * | −211,167.38 | ||||||
Linear | |||||||||
T | 1508.17 | 3.59 | 0.0873 | 193.76 | 0.20 | 0.6669 | 362.66 | 1.25 | 0.3145 |
EV | −59.52 | 1.31 | 0.2791 | −22.67 | 0.56 | 0.4723 | −19.89 | 0.65 | 0.4558 |
pH | −13,742.13 | 1.62 | 0.2316 | −15,695.82 | 6.58 | 0.0282 * | 69,645.77 | 6.49 | 0.0514 |
Quadratic | |||||||||
T × T | 1.71 | 0.04 | 0.8435 | 5.44 | 1.43 | 0.2594 | −3.86 | 2.85 | 0.1524 |
EV × EV | 0.04 | 0.97 | 0.3476 | 0.01 | 0.37 | 0.5579 | 0.01 | 0.25 | 0.6390 |
pH × pH | 1395.31 | 2.60 | 0.1378 | 1411.55 | 7.59 | 0.0203 * | −5846.04 | 6.61 | 0.0500 * |
Interactions | |||||||||
T × EV | −0.55 | 2.78 | 0.1262 | −0.35 | 3.53 | 0.0898 | −0.01 | 0.01 | 0.9145 |
T × pH | −187.60 | 18.96 | 0.0014 * | −69.72 | 7.24 | 0.0227 * | 12.30 | 0.10 | 0.7672 |
EV × pH | 4.83 | 2.32 | 0.1588 | 3.26 | 3.01 | 0.1134 | 1.39 | 0.23 | 0.6505 |
MCA 1 | R2 | Adjusted R2 | F Ratio | p-Value | |
---|---|---|---|---|---|
Ewe’s milk | |||||
RE | =114.41 (pH)2 − 13.05 (T) (pH) | 0.9648 | 0.9330 | 30.43 | <0.0001 * |
CR | =−187.60 (T) (pH) | 0.9315 | 0.8698 | 15.11 | 0.0001 * |
Goat’s milk | |||||
RE | =5553.69 − 2153.02 (pH) − 12.27 (T) + 202.00 (pH)2 | 0.9698 | 0.9427 | 35.72 | <0.0001 * |
CR | =−47,947.18 − 15,695.82 (pH) − 69.72 (T) (pH) + 1411.55 (pH)2 | 0.8622 | 0.7383 | 6.95 | 0.0028 * |
Cow’s milk | |||||
RE | =2.01 (T)2 − 34.89 (T) (pH) | 0.9636 | 0.8980 | 14.70 | 0.0043 * |
CR | =−5846.04 (pH)2 | 0.9701 | 0.9163 | 18.03 | 0.0027 * |
T (°C) | EV (μL) | pH (Units) | Predicted MCA 1 | Desirability | Measured MCA | |
---|---|---|---|---|---|---|
Ewe’s milk + RE | 55 | 300 | 5.0 | 1005 | 0.9852 | 989 |
Ewe’s milk + CR | 55 | 400 | 4.9 | 15,015 | 0.9829 | 14,634 |
Goat’s milk + RE | 55 | 300 | 4.9 | 798 | 0.8711 | 821 |
Goat’s milk + CR | 55 | 400 | 4.9 | 5155 | 0.8645 | 5254 |
Cow’s milk + RE | 55 | 500 | 5.7 | 940 | 0.9946 | 892 |
Cow’s milk + CR | 55 | 400 | 6.1 | 4775 | 0.9965 | 4651 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mozzon, M.; Foligni, R.; Mannozzi, C.; Zamporlini, F.; Raffaelli, N.; Aquilanti, L. Clotting Properties of Onopordum tauricum (Willd.) Aqueous Extract in Milk of Different Species. Foods 2020, 9, 692. https://doi.org/10.3390/foods9060692
Mozzon M, Foligni R, Mannozzi C, Zamporlini F, Raffaelli N, Aquilanti L. Clotting Properties of Onopordum tauricum (Willd.) Aqueous Extract in Milk of Different Species. Foods. 2020; 9(6):692. https://doi.org/10.3390/foods9060692
Chicago/Turabian StyleMozzon, Massimo, Roberta Foligni, Cinzia Mannozzi, Federica Zamporlini, Nadia Raffaelli, and Lucia Aquilanti. 2020. "Clotting Properties of Onopordum tauricum (Willd.) Aqueous Extract in Milk of Different Species" Foods 9, no. 6: 692. https://doi.org/10.3390/foods9060692
APA StyleMozzon, M., Foligni, R., Mannozzi, C., Zamporlini, F., Raffaelli, N., & Aquilanti, L. (2020). Clotting Properties of Onopordum tauricum (Willd.) Aqueous Extract in Milk of Different Species. Foods, 9(6), 692. https://doi.org/10.3390/foods9060692