A Review of Salmonella and Campylobacter in Broiler Meat: Emerging Challenges and Food Safety Measures
Abstract
:1. Introduction
2. Poultry Borne Pathogens
2.1. Salmonella
2.1.1. Prevalence in Broiler Meat
2.1.2. Illnesses and Outbreak Statistics
2.1.3. Performance Standards
2.1.4. Emerging Challenges
2.2. Campylobacter
2.2.1. Prevalence in Broiler Meat
2.2.2. Illnesses and Outbreak Statistics
2.2.3. Performance Standards
2.2.4. Emerging Challenges
3. Current Post-Harvest Antimicrobial Interventions
3.1. Peracetic Acid
3.2. Cetylpyridinium Chloride
3.3. Acidified Sodium Chlorite
3.4. Chlorine
3.5. Trisodium Phosphate
4. Emerging Technologies/Interventions
4.1. Amplon
4.2. Sodium Ferrate
4.3. Electrostatic Spraying
4.4. Cold Plasma Treatment
4.5. Bacteriophages
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Constance, D.H. The Southern Model of Broiler Production and Its Global Implications. Cult. Agric. 2008, 30, 17–31. [Google Scholar] [CrossRef]
- Hart, J.F.; Mayda, C. The Industrialization of Livestock Production in The United States. Southeast. Geogr. 1998, 38, 58–78. [Google Scholar] [CrossRef]
- Lasley, F.A. The US Poultry Industry: Changing Economics and Structure; Agricultural Economic Report-United States Dept. of Agriculture (USA): Washington, DC, USA, 1983. [Google Scholar]
- Brown, D. Poultry processing created more rural jobs than red-meat packing during the 1980’s. Rural Dev. Pers. 1994, 9, 33–39. [Google Scholar]
- Martinez, S.W. Vertical Coordination in the Pork and Broiler Industries: Implications for Pork and Chicken Products; Report No. 777; (No. 1473-2016-120713); Agricultural Economic Report-United States Dept. of Agriculture (USA): Washington, DC, USA; Food and Rural Economics Division, Economic Research Service USDA: Washington, DC, USA, 1999.
- United States Department of Agriculture, Food Safety Inspection Service. Pathogen reduction: Hazard analysis and critical control point (HACCP) systems; final rule. Fed. Reg. 1996, 61, 38806–38989. [Google Scholar]
- Perez, S.M. Evaluating the Impact of Cetylpyridinium Chloride and Peroxyacetic Acid When Applied to Broiler Frames on Salmonella Spp. and the Quality and Sensory Attributes of Mechanically Deboned Chicken Meat. Master’s Thesis, Master of Science, Mississippi State University, Starkville, MS, USA, 2016. [Google Scholar]
- Brenner, F.W.; Villar, R.G.; Angulo, F.J.; Tauxe, R.; Swaminathan, B. Salmonella Nomenclature. J. Clin. Microbiol. 2000, 38, 2465–2467. [Google Scholar] [CrossRef] [Green Version]
- Centers for Disease Control and Prevention (CDC). Salmonella Homepage (Final Update). 2020. Available online: https://www.cdc.gov/salmonella/index.html (accessed on 10 April 2020).
- Antunes, P.; Mourão, J.; Campos, J.; Peixe, L. Salmonellosis: The role of poultry meat. Clin. Microbiol. Infect. 2016, 22, 110–121. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Majowicz, S.E.; Musto, J.; Scallan, E.; Angulo, F.J.; Kirk, M.; O’Brien, S.J.; Jones, T.F.; Fazil, A.; Hoekstra, R.M. for the International Collaboration on Enteric Disease “Burden of Illness” Studies. The global burden of nontyphoidal Salmonella gastroenteritis. Clin. Infect. Dis. 2010, 50, 882–889. [Google Scholar] [CrossRef] [Green Version]
- Akil, L.; Ahmad, H.A. Quantitative Risk Assessment Model of Human Salmonellosis Resulting from Consumption of Broiler Chicken. Diseases 2019, 7, 19. [Google Scholar] [CrossRef] [Green Version]
- Schlisselberg, D.B.; Kler, E.; Kisluk, G.; Shachar, D.; Yaron, S. Biofilm formation ability of Salmonella enterica serovar Typhimurium acrAB mutants. Int. J. Antimicrob. Agents 2015, 46, 456–459. [Google Scholar] [CrossRef]
- Yang, Y.; Feye, K.M.; Shi, Z.; Pavlidis, H.O.; Kogut, M.; Ashworth, A.J.; Ricke, S.C. A Historical Review on Antibiotic Resistance of Foodborne Campylobacter. Front. Microbiol. 2019, 10, 1509. [Google Scholar] [CrossRef] [Green Version]
- Centers for Disease Control and Prevention (CDC). Campylobacter (Campylobacteriosis) (Final Update). 2019. Available online: https://www.cdc.gov/campylobacter/index.html (accessed on 14 April 2020).
- Llarena, A.-K.; Taboada, E.; Rossi, M. Whole-Genome Sequencing in Epidemiology of Campylobacter jejuni Infections. J. Clin. Microbiol. 2017, 55, 1269–1275. [Google Scholar] [CrossRef] [Green Version]
- Laughlin, M.E.; Chatham-Stephens, K.; Geissler, A.L. “Campylobacteriosis-Chapter 4-2020 Yellow Book.” Centers for Disease Control and Prevention, Centers for Disease Control and Prevention. Available online: https://wwwnc.cdc.gov/travel/yellowbook/2020/travel-related-infectious-diseases/campylobacteriosis (accessed on 15 April 2020).
- Fouts, D.E.; Mongodin, E.F.; Mandrell, R.E.; Miller, W.G.; Rasko, D.A.; Ravel, J.; Brinkac, L.M.; DeBoy, R.T.; Parker, C.T.; Daugherty, S.C.; et al. Major Structural Differences and Novel Potential Virulence Mechanisms from the Genomes of Multiple Campylobacter Species. PLoS Biol. 2005, 3, e15. [Google Scholar] [CrossRef] [PubMed]
- Dogan, O.B.; Clarke, J.; Mattos, F.; Wang, B. A quantitative microbial risk assessment model of Campylobacter in broiler chickens: Evaluating processing interventions. Food Control. 2019, 100, 97–110. [Google Scholar] [CrossRef]
- Hermans, D.; Van Deun, K.; Martel, A.; Van Immerseel, F.; Messens, W.; Heyndrickx, M.; Haesebrouck, F.; Pasmans, F. Colonization factors of Campylobacter jejuni in the chicken gut. Veter. Res. 2011, 42, 82. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Newell, D.G.; Fearnley, C. Sources of Campylobacter Colonization in Broiler Chickens. Appl. Environ. Microbiol. 2003, 69, 4343–4351. [Google Scholar] [CrossRef] [Green Version]
- Ricke, S.C.; Kundinger, M.M.; Miller, D.R.; Keeton, J.T. Alternatives to antibiotics: Chemical and physical antimicrobial interventions and foodborne pathogen response. Poult. Sci. 2005, 84, 667–675. [Google Scholar] [CrossRef]
- Chai, S.J.; Cole, D.; Nisler, A.; Mahon, B.E. Poultry: The most common food in outbreaks with known pathogens, United States, 1998–2012. Epidemiol. Infect. 2016, 145, 316–325. [Google Scholar] [CrossRef] [Green Version]
- Heredia, N.; Garcia, S. Animals as sources of food-borne pathogens: A review. Anim. Nutr. 2018, 4, 250–255. [Google Scholar] [CrossRef]
- Mead, G. Microbiological quality of poultry meat: A review. Braz. J. Poult. Sci. 2004, 6, 135–142. [Google Scholar] [CrossRef]
- Barrow, P.A.; Methner, U. Salmonella in Domestic Animals, 2nd ed.; CABI: Oxfordshire, UK, 2013; pp. 1–19. [Google Scholar]
- Wise, M.; Siragusa, G.R.; Plumblee, J.; Healy, M.; Cray, P.J.; Seal, B.S. Predicting Salmonella enterica serotypes by repetitive sequence-based PCR. J. Microbiol. Methods 2009, 76, 18–24. [Google Scholar] [CrossRef]
- Centers for Disease Control and Prevention (CDC). FoodNet 2018 Preliminary Data (Final Update) 2018. Available online: https://www.cdc.gov/foodnet/reports/prelim-data-intro-2018.html (accessed on 15 April 2020).
- Foley, S.L.; Lynne, A.M.; Nayak, R. Salmonella challenges: Prevalence in swine and poultry and potential pathogenicity of such isolates1, 2. J. Anim. Sci. 2008, 86, E149–E162. [Google Scholar] [CrossRef] [PubMed]
- Food Safety and inspection Service. Data Collection and Reports 2016. Available online: https://www.fsis.usda.gov/wps/portal/fsis/topics/data-collection-and-reports/microbiology/annual-serotyping-reports (accessed on 15 April 2020).
- Mouttotou, N.; Ahmad, S.; Kamran, Z.; Koutoulis, K.C. Prevalence, Risks and Antibiotic Resistance of Salmonella in Poultry Production Chain. In Current Topics in Salmonella and Salmonellosis; IntechOpen: Rijeka, Croatia, 2017; pp. 215–227. [Google Scholar]
- McCarthy, Z.; Smith, B.A.; Fazil, A.; Wu, J.; Ryan, S.D.; Munther, D. Individual based modeling and analysis of pathogen levels in poultry chilling process. Math. Biosci. 2017, 294, 172–180. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lillard, H.S. The Impact of Commercial Processing Procedures on the Bacterial Contamination and Cross-Contamination of Broiler Carcasses. J. Food Prot. 1990, 53, 202–204. [Google Scholar] [CrossRef] [PubMed]
- US Department of Agriculture, Food Safety and Inspection Service. Progress Report on Salmonella and Campylobacter Testing of Raw Meat and Poultry Products, 1998–2014. 2014. Available online: https://www.fsis.usda.gov/wps/wcm/connect/7b9ba8cd-de00-4d8d-8cf7-7cfbe24236f7/Progress-Report-Salmonella-Campylobacter-CY2014.pdf?MOD=AJPERES (accessed on 12 April 2020).
- Rajan, K.; Shi, Z.; Ricke, S.C. Current aspects of Salmonella contamination in the US poultry production chain and the potential application of risk strategies in understanding emerging hazards. Crit. Rev. Microbiol. 2016, 43, 370–392. [Google Scholar] [CrossRef]
- Lillard, H.S. Factors Affecting the Persistence of Salmonella during the Processing of Poultry. J. Food Prot. 1989, 52, 829–832. [Google Scholar] [CrossRef]
- M’Ikanatha, N.M.; Sandt, C.H.; Localio, A.R.; Tewari, D.; Rankin, S.C.; Whichard, J.M.; Altekruse, S.F.; Lautenbach, E.; Folster, J.P.; Russo, A.; et al. Multidrug-Resistant Salmonella Isolates from Retail Chicken Meat Compared with Human Clinical Isolates. Foodborne Pathog. Dis. 2010, 7, 929–934. [Google Scholar] [CrossRef]
- Zhao, C.; Ge, B.; De Villena, J.; Sudler, R.; Yeh, E.; Zhao, S.; White, D.G.; Wagner, D.; Meng, J. Prevalence of Campylobacter spp., Escherichia coli, and Salmonella Serovars in Retail Chicken, Turkey, Pork, and Beef from the Greater Washington, D.C., Area. Appl. Environ. Microbiol. 2001, 67, 5431–5436. [Google Scholar] [CrossRef] [Green Version]
- Food and Drug Administration (FDA). NARMS Now; U.S. Department of Health and Human Services: Rockville, MD, USA, 2019. Available online: https://www.fda.gov/animal-veterinary/national-antimicrobial-resistance-monitoring-system/narms-now-integrated-data (accessed on 24 April 2020).
- Guran, H.S.; Mann, D.; Alali, W.Q. Salmonella prevalence associated with chicken parts with and without skin from retail establishments in Atlanta metropolitan area, Georgia. Food Control. 2017, 73, 462–467. [Google Scholar] [CrossRef]
- Gad, A.H.; Abo-Shama, U.H.; Harclerode, K.K.; Fakhr, M.K. Prevalence, Serotyping, Molecular Typing, and Antimicrobial Resistance of Salmonella Isolated From Conventional and Organic Retail Ground Poultry. Front. Microbiol. 2018, 9, 2653. [Google Scholar] [CrossRef]
- Zhao, S.; Young, S.R.; Tong, E.; Abbott, J.W.; Womack, N.; Friedman, S.L.; McDermott, P.F. Antimicrobial Resistance of Campylobacter Isolates from Retail Meat in the United States between 2002 and 2007. Appl. Environ. Microbiol. 2010, 76, 7949–7956. [Google Scholar] [CrossRef] [Green Version]
- Han, F.; Lestari, S.I.; Pu, S.; Ge, B. Prevalence and Antimicrobial Resistance among Campylobacter spp. in Louisiana Retail Chickens after the Enrofloxacin Ban. Foodborne Pathog. Dis. 2009, 6, 163–171. [Google Scholar] [CrossRef]
- Noormohamed, A.; Fakhr, M.K. Prevalence and Antimicrobial Susceptibility of Campylobacter spp. in Oklahoma Conventional and Organic Retail Poultry. Open Microbiol. J. 2014, 8, 130–137. [Google Scholar] [CrossRef] [Green Version]
- Williams, A.; Oyarzabal, O. Prevalence of Campylobacter spp. in skinless, boneless retail broiler meat from 2005 through 2011 in Alabama, USA. BMC Microbiol. 2012, 12, 184. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Whitehouse, C.A.; Young, S.; Li, C.; Hsu, C.-H.; Martin, G.; Zhao, S. Use of whole-genome sequencing for Campylobacter surveillance from NARMS retail poultry in the United States in 2015. Food Microbiol. 2018, 73, 122–128. [Google Scholar] [CrossRef]
- Berrang, M.; Meinersmann, R.J.; Cox, N.A.; Thompson, T.M. Multilocus Sequence Subtypes of Campylobacter Detected on the Surface and from Internal Tissues of Retail Chicken Livers. J. Food Prot. 2018, 81, 1535–1539. [Google Scholar] [CrossRef]
- Kumar, S.; Singh, M.; Cosby, D.; Cox, N.; Thippareddi, H. Efficacy of peroxy acetic acid in reducing Salmonella and Campylobacter spp. populations on chicken breast fillets. Poult. Sci. 2020, 99, 2655–2661. [Google Scholar] [CrossRef]
- Lanier, W.A.; Hale, K.R.; Geissler, A.L.; Dewey-Mattia, D. Chicken liver-associated outbreaks of campylobacteriosis and salmonellosis, United States, 2000–2016: Identifying opportunities for prevention. Foodbrone Pathog. Dis. 2018, 15, 726–733. [Google Scholar] [CrossRef]
- Pintar, K.; Cook, A.; Pollari, F.; Ravel, A.; Lee, S.; Odumeru, J.A. Quantitative Effect of Refrigerated Storage Time on the Enumeration of Campylobacter, Listeria, and Salmonella on Artificially Inoculated Raw Chicken Meat. J. Food Prot. 2007, 70, 739–743. [Google Scholar] [CrossRef]
- Bryan, F.L.; Doyle, M.P. Health Risks and Consequences of Salmonella and Campylobacter jejuni in Raw Poultry. J. Food Prot. 1995, 58, 326–344. [Google Scholar] [CrossRef]
- Food Safety and inspection Service. Safe Minimum Internal Temperature Chart. Available online: https://www.fsis.usda.gov/wps/portal/fsis/topics/food-safety-education/get-answers/food-safety-fact-sheets/safe-food-handling/safe-minimum-internal-temperature-chart/ct_index (accessed on 16 April 2020).
- Nikos-Rose, K. Risky Food Safety Practices in Home Kitchens. College of Agricultural and Environmental Sciences. 2018. Available online: Htttps://caes.ucdavis.edu/news/articles/2014/06/uc-davis-study-identifies-risky-food-safety-practices-in-home-kitchens (accessed on 10 April 2020).
- Tauxe, R.V. Salmonella: A Postmodern Pathogen1. J. Food Prot. 1991, 54, 563–568. [Google Scholar] [CrossRef]
- Scharff, R. Food Attribution and Economic Cost Estimates for Meat- and Poultry-Related Illnesses. J. Food Prot. 2020, 83, 959–967. [Google Scholar] [CrossRef]
- Food Safety and Inspection Service. Pathogen Reduction—Salmonella and Campylobacter Performance Standards Verification Testing. 2019. Available online: https://www.fsis.usda.gov/wps/wcm/connect/b0790997-2e74-48bf-9799-85814bac9ceb/28_IM_PR_Sal_Campy.pdf?MOD=AJPERES (accessed on 17 April 2020).
- Merino, L.; Procura, F.; Trejo, F.M.; Bueno, D.J.; Golowczyc, M.A. Biofilm formation by Salmonella sp. in the poultry industry: Detection, control and eradication strategies. Food Res. Int. 2017, 119, 530–540. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Costerton, J.W.; Stewart, P.S.; Greenberg, E.P. Bacterial Biofilms: A Common Cause of Persistent Infections. Science 1999, 284, 1318–1322. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peng, D. Biofilm formation of Salmonella. In Microbial Biofilms. Biofilms-Importance and Applications: Dharumadurai Dhanesekaran; InTech: Janeza Trdine, Croatia, 2016; pp. 231–242. [Google Scholar]
- Etter, A.J.; West, A.M.; Burnett, J.L.; Wu, S.T.; Veenhuizen, D.R.; Ogas, R.A.; Oliver, H.F. Salmonella Heidelberg Food Isolates Associated with a Salmonellosis Outbreak Have Enhanced Stress Tolerance Capabilities. Appl. Environ. Microbiol. 2019, 85, e01065-19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lianou, A.; Koutsoumanis, K.P. Evaluation of the strain variability of Salmonella enterica acid and heat resistance. Food Microbiol. 2013, 34, 259–267. [Google Scholar] [CrossRef]
- Johnson, T.; Thorsness, J.L.; Anderson, C.P.; Lynne, A.M.; Foley, S.L.; Han, J.; Fricke, W.F.; McDermott, P.F.; White, D.G.; Khatri, M.; et al. Horizontal Gene Transfer of a ColV Plasmid Has Resulted in a Dominant Avian Clonal Type of Salmonella enterica Serovar Kentucky. PLoS ONE 2010, 5, e15524. [Google Scholar] [CrossRef]
- Bauermeister, L.J.; Bowers, J.W.J.; Townsend, J.C.; McKee, S.R. The Microbial and Quality Properties of Poultry Carcasses Treated with Peracetic Acid as an Antimicrobial Treatment. Poult. Sci. 2008, 87, 2390–2398. [Google Scholar] [CrossRef]
- Vega, N.M.; Allison, K.R.; Samuels, A.N.; Klempner, M.S.; Collins, J.J. Salmonella typhimurium intercepts Escherichia coli signaling to enhance antibiotic tolerance. Proc. Natl. Acad. Sci. USA 2013, 110, 14420–14425. [Google Scholar] [CrossRef] [Green Version]
- Gruzdev, N.; Pinto, R.; Sela, S. Effect of desiccation on tolerance of Salmonella enterica to multiple stresses. Appl. Environ. Microbiol. 2011, 77, 1667–1673. [Google Scholar] [CrossRef] [Green Version]
- Havelaar, A.H.; Mangen, M.-J.; De Koeijer, A.A.; Bogaardt, M.-J.; Evers, E.G.; Jacobs-Reitsma, W.F.; Van Pelt, W.; Wagenaar, J.A.; De Wit, G.A.; Van Der Zee, H.; et al. Effectiveness and Efficiency of Controlling Campylobacter on Broiler Chicken Meat. Risk Anal. 2007, 27, 831–844. [Google Scholar] [CrossRef]
- Kim, S.A.; Park, S.H.; Lee, S.I.; Owens, C.M.; Ricke, S.C. Assessment of Chicken Carcass Microbiome Responses During Processing in the Presence of Commercial Antimicrobials Using a Next Generation Sequencing Approach. Sci. Rep. 2017, 7, 43354. [Google Scholar] [CrossRef] [Green Version]
- Habib, I.; Uyttendaele, M.; De Zutter, L. Survival of poultry-derived Campylobacter jejuni of multilocus sequence type clonal complexes 21 and 45 under freeze, chill, oxidative, acid and heat stresses. Food Microbiol. 2010, 27, 829–834. [Google Scholar] [CrossRef]
- Klančnik, A.; Guzej, B.; Jamnik, P.; Vučković, D.; Abram, M.; Možina, S.S. Stress response and pathogenic potential of Campylobacter jejuni cells exposed to starvation. Res. Microbiol. 2009, 160, 345–352. [Google Scholar] [CrossRef] [PubMed]
- Oh, E.; Chui, L.; Bae, J.; Li, V.; Ma, A.; Mutschall, S.K.; Taboada, E.N.; McMullen, L.M.; Jeon, B. Frequent Implication of Multistress-Tolerant Campylobacter jejuniin Human Infections. Emerg. Infect. Dis. 2018, 24, 1037–1044. [Google Scholar] [CrossRef] [PubMed]
- Nyati, K.K.; Nyati, R. Role of Campylobacter jejuni infection in the pathogenesis of Guillain-Barré syndrome: An update. Biomed Res. Int. 2013, 2013, 852195. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Costa, D.; Iraola, G. Pathogenomics of Emerging Campylobacter Species. Clin. Microbiol. Rev. 2019, 32, e00072-18. [Google Scholar] [CrossRef] [PubMed]
- Shane, S.M. The significance ofcampylobacter jejuniinfection in poultry: A review. Avian Pathol. 1992, 21, 189–213. [Google Scholar] [CrossRef] [PubMed]
- Logan, S.M.; Trust, T.J. Outer membrane characteristics of Campylobacter jejuni. Infect. Immun. 1982, 38, 898–906. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stanley, K.N.; Wallace, J.S.; Currie, J.; Diggle, P.; Jones, K. The seasonal variation of thermophilic campylobacters in beef cattle, dairy cattle and calves. J. Appl. Microbiol. 1998, 85, 472–480. [Google Scholar] [CrossRef]
- Korsak, D.; Maćkiw, E.; Rożynek, E.; Żyłowska, M. Prevalence of Campylobacter spp. in Retail Chicken, Turkey, Pork, and Beef Meat in Poland between 2009 and 2013. J. Food Prot. 2015, 78, 1024–1028. [Google Scholar] [CrossRef]
- Beery, J.T.; Hugdahl, M.B.; Doyle, M.P. Colonization of gastrointestinal tracts of chicks by Campylobacter jejuni. Appl. Environ. Microbiol. 1988, 54, 2365–2370. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Skarp, C.; Hänninen, M.-L.; Rautelin, H. Campylobacteriosis: The role of poultry meat. Clin. Microbiol. Infect. 2016, 22, 103–109. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oyarzabal, O. Reduction of Campylobacter spp. by Commercial Antimicrobials Applied during the Processing of Broiler Chickens: A Review from the United States Perspective. J. Food Prot. 2005, 68, 1752–1760. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mylius, S.D.; Nauta, M.J.; Havelaar, A. Cross-Contamination During Food Preparation: A Mechanistic Model Applied to Chicken-Borne Campylobacter. Risk Anal. 2007, 27, 803–813. [Google Scholar] [CrossRef]
- Pearson, A.D.; Greenwood, M.; Healing, T.D.; Rollins, D.; Shahamat, M.; Donaldson, J.; Colwell, R.R. Colonization of broiler chickens by waterborne Campylobacter jejuni. Appl. Environ. Microbiol. 1993, 59, 987–996. [Google Scholar] [CrossRef] [Green Version]
- Maziero, M.T.; De Oliveira, T.C.R.M. Effect of refrigeration and frozen storage on the Campylobacter jejuni recovery from naturally contaminated broiler carcasses. Braz. J. Microbiol. 2010, 41, 501–505. [Google Scholar] [CrossRef] [Green Version]
- Blankenship, L.C.; Craven, S.E. Campylobacter jejuni survival in chicken meat as a function of temperature. Appl. Environ. Microbiol. 1982, 44, 88–92. [Google Scholar] [CrossRef] [Green Version]
- Geissler, A.L.; Bustos Carrillo, F.; Swanson, K.; Patrick, M.E.; Fullerton, K.E.; Bennett, C.; Barrett, K.; Mahon, B.E. Increasing Campylobacter infections, outbreaks, and antimicrobial resistance in the United States, 2004–2012. Clin. Infect. Dis. 2017, 65, 1624–1631. [Google Scholar] [CrossRef] [Green Version]
- Tompkins, B.J.; Wirsing, E.; Devlin, V.; Kamhi, L.; Temple, B.; Weening, K.; Cavallo, S.; Allen, L.; Brinig, P.; Goode, B.; et al. Multistate Outbreak of Campylobacter jejuni Infections Associated with Undercooked Chicken Livers—Northeastern United States, 2012. MMWR. Morb. Mortal. Wkly. Rep. 2013, 62, 874–876. [Google Scholar]
- Ajene, A.N.; Walker, C.L.F.; Black, R.E. Enteric Pathogens and Reactive Arthritis: A Systematic Review of Campylobacter, Salmonella and Shigella-associated Reactive Arthritis. J. Health Popul. Nutr. 2013, 31, 299–307. [Google Scholar] [CrossRef]
- Devleesschauwer, B.; Bouwknegt, M.; Mangen, M.J.J.; Havelaar, A.H. Health and economic burden of Campylobacter. In Campylobacter: Features, Detection and Prevention of Foodborne Disease; Klein, G., Ed.; Academic Press: Cambridge, MA, USA, 2017; pp. 27–40. [Google Scholar]
- Scharff, R.L. Economic Burden from Health Losses Due to Foodborne Illness in the United States. J. Food Prot. 2012, 75, 123–131. [Google Scholar] [CrossRef] [PubMed]
- Joshua, G.W.P.; Guthrie-Irons, C.; Karlyshev, A.; Wren, B.W. Biofilm formation in Campylobacter jejuni. Microbiology 2006, 152, 387–396. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Teh, A.H.T.; Lee, S.M.; Dykes, G.A. Does Campylobacter jejuni Form Biofilms in Food-Related Environments? Appl. Environ. Microbiol. 2014, 80, 5154–5160. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dykes, G.A.; Sampathkumar, B.; Korber, D. Planktonic or biofilm growth affects survival, hydrophobicity and protein expression patterns of a pathogenic Campylobacter jejuni strain. Int. J. Food Microbiol. 2003, 89, 1–10. [Google Scholar] [CrossRef]
- Bae, J.; Oh, E.; Jeon, B. Enhanced Transmission of Antibiotic Resistance in Campylobacter jejuni Biofilms by Natural Transformation. Antimicrob. Agents Chemother. 2014, 58, 7573–7575. [Google Scholar] [CrossRef] [Green Version]
- Murphy, C.; Carroll, C.; Jordan, K.N. The effect of different media on the survival and induction of stress responses by Campylobacter jejuni. J. Microbiol. Methods 2005, 62, 161–166. [Google Scholar] [CrossRef]
- Zhang, L.; Morey, A.; Bilgili, S.F.; McKee, S.R.; Garner, L.J. Effectiveness of Several Antimicrobials and the Effect of Contact Time in Reducing Salmonella and Campylobacter on Poultry Drumsticks. J. Appl. Poult. Res. 2019, 28, 1143–1149. [Google Scholar] [CrossRef]
- Capita, R.; Alonso-Calleja, C.; García Arias, M.T.; Moreno, B.; García-Fernández, M.C. Note. Effect of trisodium phosphate on mesophilic and psychrotrophic bacterial flora attached to the skin of chicken carcasses during refrigerated storage. Food Sci. Technol. Int. 2000, 64, 345–350. [Google Scholar] [CrossRef]
- Chen, X.; Bauermeister, L.J.; Hill, G.N.; Singh, M.; Bilgili, S.F.; McKee, S.R. Efficacy of Various Antimicrobials on Reduction of Salmonella and Campylobacter and Quality Attributes of Ground Chicken Obtained from Poultry Parts Treated in a Postchill Decontamination Tank. J. Food Prot. 2014, 77, 1882–1888. [Google Scholar] [CrossRef]
- Moore, A.; Nannapaneni, R.; Kiess, A.; Sharma, C.S. Evaluation of USDA approved antimicrobials on the reduction of Salmonella and Campylobacter in ground chicken frames and their effect on meat quality. Poult. Sci. 2017, 96, 2385–2392. [Google Scholar] [CrossRef]
- Nagel, G.; Bauermeister, L.; Bratcher, C.; Singh, M.; McKee, S. Salmonella and Campylobacter reduction and quality characteristics of poultry carcasses treated with various antimicrobials in a post-chill immersion tank. Int. J. Food Microbiol. 2013, 165, 281–286. [Google Scholar] [CrossRef] [PubMed]
- Bertram, R.; Kehrenberg, C.; Seinige, D.; Krischek, C. Peracetic acid reduces Campylobacter spp. numbers and total viable counts on broiler breast muscle and drumstick skins during modified atmosphere package storage. Poult. Sci. 2019, 98, 5064–5073. [Google Scholar] [CrossRef] [PubMed]
- Beers, K.; Rheingans, J.; Chinault, K.; Cook, P.; Smith, B.; Waldroup, A. Microbial efficacy of commercial application of Cecure® CPC antimicrobial to ingesta-contaminated pre-chill broiler carcasses. Int. J. Poult. Sci. 2006, 5, 698–703. [Google Scholar]
- Ilhak, O.I.; Incili, G.K.; Durmuşoğlu, H. Effect of some chemical decontaminants on the survival of Listeria monocytogenes and Salmonella Typhimurium with different attachment times on chicken drumstick and breast meat. J. Food Sci. Technol. 2018, 55, 3093–3097. [Google Scholar] [CrossRef]
- Purnell, G.; James, C.; James, S.J.; Howell, M.; Corry, J.E.L. Comparison of Acidified Sodium Chlorite, Chlorine Dioxide, Peroxyacetic Acid and Tri-Sodium Phosphate Spray Washes for Decontamination of Chicken Carcasses. Food Bioprocess Technol. 2013, 7, 2093–2101. [Google Scholar] [CrossRef]
- Schambach, B.T.; Berrang, M.; Harrison, M.A.; Meinersmann, R.J. Chemical Additive To Enhance Antimicrobial Efficacy of Chlorine and Control Cross-Contamination during Immersion Chill of Broiler Carcasses†. J. Food Prot. 2014, 77, 1583–1587. [Google Scholar] [CrossRef]
- Saranraj, P.; Alfaris, A.A.S.; Karunya, S.K. Preservation of Broiler Chicken from Food Borne Microorganisms: A Review. Glob. Vet. 2016, 17, 282–294. [Google Scholar]
- Yoon, K.S.; Oscar, T. Survival of Salmonella typhimurium on Sterile Ground Chicken Breast Patties after Washing with Salt and Phosphates and During Refrigerated and Frozen Storage. J. Food Sci. 2002, 67, 772–775. [Google Scholar] [CrossRef]
- Sarjit, A.; Dykes, G.A. Trisodium phosphate and sodium hypochlorite are more effective as antimicrobials against Campylobacter and Salmonella on duck as compared to chicken meat. Int. J. Food Microbiol. 2015, 203, 63–69. [Google Scholar] [CrossRef]
- Saad, S.M.; Ibrahim, H.M.; Amin, R.A.; Hafez, S.M. Decontamination of inoculated chicken carcasses by using some microbial decontaminators. Benha Veter. Med J. 2015, 28, 83–90. [Google Scholar] [CrossRef] [Green Version]
- Rajkumar, R.S.; Yadav, A.S.; Kirupasankar, M.; Sharma, B.D.; Singh, R.P. Efficacy of acidified sodium chlorite (ASC) and tri-sodium phosphate (TSP) in decontaminating chicken carcass against Campylobacter coli. Indian J. Anim. Sci. 2010, 80, 864–866. [Google Scholar]
- Barnas, M.; Jeewantha, A.; McNaughton, J.; Auman, S.; Parveen, S.; Schwarz, J.; Roberts, M. An Evaluation of Sodium Ferrate as a Green Processing Chemistry. Int. Poult. Sci. Forum. 2020, 7–8. [Google Scholar]
- Lee, H.; Yong, H.I.; Kim, H.-J.; Choe, W.; Yoo, S.J.; Jang, E.J.; Jo, C. Evaluation of the microbiological safety, quality changes, and genotoxicity of chicken breast treated with flexible thin-layer dielectric barrier discharge plasma. Food Sci. Biotechnol. 2016, 25, 1189–1195. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.H.; Kim, H.J.; Jung, S.J.; Mizan, F.R.; Park, S.H.; Ha, S.-D. Characterization of Salmonella spp.-specific bacteriophages and their biocontrol application in chicken breast meat. J. Food Sci. 2020, 85, 526–534. [Google Scholar] [CrossRef]
- Hungaro, H.M.; Mendonça, R.C.S.; Gouvêa, D.M.; Vanetti, M.C.D.; Pinto, C.L.D.O. Use of bacteriophages to reduce Salmonella in chicken skin in comparison with chemical agents. Food Res. Int. 2013, 52, 75–81. [Google Scholar] [CrossRef] [Green Version]
- Duc, H.M.; Son, H.M.; Honjoh, K.-I.; Miyamoto, T. Isolation and application of bacteriophages to reduce Salmonella contamination in raw chicken meat. LWT 2018, 91, 353–360. [Google Scholar] [CrossRef]
- Yeh, Y.; Purushothaman, P.; Gupta, N.; Ragnone, M.; Verma, S.; De Mello, A. Bacteriophage application on red meats and poultry: Effects on Salmonella population in final ground products. Meat Sci. 2017, 127, 30–34. [Google Scholar] [CrossRef]
- USDA-FSIS. Safe and Suitable Ingredients in the Production of Meat, Poultry, and Egg Products. FSIS Directive 7120.1 Revision 15. 2019. Available online: https://www.fsis.usda.gov/wps/wcm/connect/bab10e09-aefa-483b8be8809a1f051d4c/7120.1.pdf?MOD=AJPERES (accessed on 7 May 2020).
- Bauermeister, L.J.; Bowers, J.W.J.; Townsend, J.C.; McKee, S.R. Validating the Efficacy of Peracetic Acid Mixture as an Antimicrobial in Poultry Chillers. J. Food Prot. 2008, 71, 1119–1122. [Google Scholar] [CrossRef]
- Guastalli, B.; Batista, D.; Souza, A.; Guastalli, E.; Lopes, P.; Almeida, A.; Prette, N.; Barbosa, F.O.; Stipp, D.; Neto, O.F.; et al. Evaluation of Disinfectants Used in Pre-Chilling water Tanks of Poultry Processing Plants. Braz. J. Poult. Sci. 2016, 18, 217–224. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.-W.; Slavik, M.F. Cetylpyridinium Chloride (CPC) Treatment on Poultry Skin To Reduce Attached Salmonella. J. Food Prot. 1996, 59, 322–326. [Google Scholar] [CrossRef]
- Simmons, M.; Bond, M.C.; Drescher, K.; Bucci, V.; Nadell, C.D. Evolutionary dynamics of phage resistance in bacterial biofilms. bioRxiv. Available online: https://www.biorxiv.org/content/10.1101/552265v1.full (accessed on 7 May 2020).
- Corry, J.; Jørgensen, F.; Purnell, G.; James, C.; Pinho, R.; James, S.J. FS990010 (M01039) Reducing Campylobacter Cross-Contamination During Poultry Processing; 2017 Final Technical Report; Food Standards Agency: Petty France, UK, 2017. [Google Scholar]
- Kemp, G.K.; Aldrich, M.L.; Waldroup, A.L. Acidified Sodium Chlorite Antimicrobial Treatment of Broiler Carcasses. J. Food Prot. 2000, 63, 1087–1092. [Google Scholar] [CrossRef]
- U.S. Department of Agriculture. Acidified Sodium Chlorite—Agricultural Marketing Service. 2008. Available online: https://www.ams.usda.gov/sites/default/files/media/S%20Chlorite%20A2%20report.pdf (accessed on 7 May 2020).
- Tamblyn, K.C.; E Conner, D. Bactericidal Activity of Organic Acids against Salmonella typhimurium Attached to Broiler Chicken Skint†. J. Food Prot. 1997, 60, 629–633. [Google Scholar] [CrossRef]
- Potenski, C.; Gandhi, M.; Matthews, K.R. Exposure ofSalmonellaEnteritidis to chlorine or food preservatives increases susceptibility to antibiotics. FEMS Microbiol. Lett. 2003, 220, 181–186. [Google Scholar] [CrossRef] [Green Version]
- Stopforth, J.D.; O’Connor, R.; Lopes, M.; Kottapalli, B.; Hill, W.E.; Samadpour, M. Validation of Individual and Multiple-Sequential Interventions for Reduction of Microbial Populations during Processing of Poultry Carcasses and Parts. J. Food Prot. 2007, 70, 1393–1401. [Google Scholar] [CrossRef]
- Lillard, H.S. Effect of Trisodium Phosphate on Salmonellae Attached to Chicken Skin. J. Food Prot. 1994, 57, 465–469. [Google Scholar] [CrossRef]
- Rouger, A.; Tresse, O.; Zagorec, M. Bacterial Contaminants of Poultry Meat: Sources, Species, and Dynamics. Microorganisms 2017, 5, 50. [Google Scholar] [CrossRef]
- Del Río, E.; Muriente, R.; Prieto, M.; Alonso-Calleja, C.; Capita, R. Effectiveness of Trisodium Phosphate, Acidified Sodium Chlorite, Citric Acid, and Peroxyacids against Pathogenic Bacteria on Poultry during Refrigerated Storage. J. Food Prot. 2007, 70, 2063–2071. [Google Scholar] [CrossRef]
- MacRitchie, L.; Hunter, C.; Strachan, N. Consumer acceptability of interventions to reduce Campylobacter in the poultry food chain. Food Control. 2014, 35, 260–266. [Google Scholar] [CrossRef] [Green Version]
- El Maghraoui, A.; Zerouale, A.; Ijjaali, M.; Fikri Benbrahim, K. The role of ferrates (VI) as a disinfectant: Quantitative and qualitative evaluation for the inactivation of pathogenic bacteria. Afr. J. Microbiol. Res. 2013, 7, 3690–3697. [Google Scholar]
- Shen, C.; Lemonakis, L.; Etienne, X.; Li, K.; Jiang, W.; Adler, J.M. Evaluation of commercial antimicrobials against stress-adapted Campylobacter jejuni on broiler wings by using immersion and electrostatic spray and an economic feasibility analysis. Food Control. 2019, 103, 161–166. [Google Scholar] [CrossRef] [Green Version]
- Davis, H.E. Efficacy of Antimicrobials Using an Innovative, New Electrostatic Application System on Salmonella-Inoculated Poultry Parts. Ph.D. Thesis, Colorado State University, Fort Collins, CO, USA, 2016. [Google Scholar]
- Kostaki, M.; Chorianopoulos, N.; Braxou, E.; Nychas, G.J.; Giaouris, E. Differential biofilm formation and chemical disinfection resistance of sessile cells of Listeria monocytogenes strains under monospecies and dual-species (with Salmonella enterica) conditions. Appl. Environ. Microbiol. 2012, 78, 2586–2595. [Google Scholar] [CrossRef] [Green Version]
- Pankaj, S.K.; Wan, Z.; Keener, K.M. Effects of cold plasma on food quality: A review. Foods 2018, 7, 4. [Google Scholar] [CrossRef] [Green Version]
- Scott, B.R.; Yang, X.; Geornaras, I.; Delmore, R.J.; Woerner, D.R.; Reagan, J.O.; Morgan, J.B.; Belk, K.E. Antimicrobial Efficacy of a Sulfuric Acid and Sodium Sulfate Blend, Peroxyacetic Acid, and Cetylpyridinium Chloride against Salmonella on Inoculated Chicken Wings. J. Food Prot. 2015, 78, 1967–1972. [Google Scholar] [CrossRef]
- Ciampi, L.E.; Daly, L.J. Ferrate Treatment Technologies LLC. Methods of Synthesizing an Oxidant and Applications Thereof. U.S. Patent Application 15/617,970, 23 November 2017. [Google Scholar]
- Scientists Found an Alternative to Water Chlorination. 2018. Available online: https://phys.org/news/2018-02-scientists-alternative-chlorination.html (accessed on 19 May 2020).
- Clarkson, S.; Morison, D. The U.S.S.R. and Africa. Int. J. Can. J. Glob. Policy Anal. 1965, 20, 442. [Google Scholar] [CrossRef]
- Juvinall, J.W. Electrostatic spray coating methods and apparatus. U.S. Patent No. 3,155,539, 3 November 1964. [Google Scholar]
- Hudson, J.C. Comparison of Antimicrobial Treatments Applied via Conventional Spray or Electrostatic Spray to Reduce Shiga-Toxigenic Escherichia coli (STEC) on Chilled Beef Outside Rounds. Ph.D. Thesis, Texas A&M University, College Station, TX, USA, 2015. [Google Scholar]
- Misra, N.; Jo, C. Applications of cold plasma technology for microbiological safety in meat industry. Trends Food Sci. Technol. 2017, 64, 74–86. [Google Scholar] [CrossRef]
- Jayasena, D.D.; Kim, H.-J.; Yong, H.I.; Park, S.; Kim, K.; Choe, W.; Jo, C. Flexible thin-layer dielectric barrier discharge plasma treatment of pork butt and beef loin: Effects on pathogen inactivation and meat-quality attributes. Food Microbiol. 2015, 46, 51–57. [Google Scholar] [CrossRef]
- Misra, N.; Tiwari, B.K.; Raghavarao, K.S.M.S.; Cullen, P.J. Nonthermal Plasma Inactivation of Food-Borne Pathogens. Food Eng. Rev. 2011, 3, 159–170. [Google Scholar] [CrossRef] [Green Version]
- Moye, Z.D.; Woolston, J.; Sulakvelidze, A. Bacteriophage Applications for Food Production and Processing. Viruses 2018, 10, 205. [Google Scholar] [CrossRef] [Green Version]
- Sukumaran, A.T.; Nannapaneni, R.; Kiess, A.; Sharma, C.S. Reduction of Salmonella on chicken meat and chicken skin by combined or sequential application of lytic bacteriophage with chemical antimicrobials. Int. J. Food Microbiol. 2015, 207, 8–15. [Google Scholar] [CrossRef] [PubMed]
- Sukumaran, A.T.; Nannapaneni, R.; Kiess, A.; Sharma, C.S. Reduction of Salmonella on chicken breast fillets stored under aerobic or modified atmosphere packaging by the application of lytic bacteriophage preparation SalmoFreshTM. Poult. Sci. 2016, 95, 668–675. [Google Scholar] [CrossRef]
- Mahony, J.; McAuliffe, O.; Ross, R.P.; Van Sinderen, D.; Mauliffe, O. Bacteriophages as biocontrol agents of food pathogens. Curr. Opin. Biotechnol. 2011, 22, 157–163. [Google Scholar] [CrossRef] [PubMed]
Bacteria | Name of Product | Level of Prevalence | Year of Sampling | Reference |
---|---|---|---|---|
Salmonella | Retail Chicken | 84//378 (22%) | 2006–2007 | [37] |
Salmonella | Retail Chicken | 9/212 (4.2%) | 2000 | [38] |
Salmonella | Retail Chicken | 158/1320 (12%) | 2011 | [39] |
Salmonella | Chicken Breast | 1345/10097 (13.3%) | 2000–2010 | [39] |
Salmonella | Chicken Breast | 60/210 (28.5%) | 2000–2010 | [39] |
Salmonella | Chicken Breast | 47/105 (44.7%) | 2014–2015 | [40] |
Salmonella | Drums Stick | 43/105 (41%) | 2014–2015 | [40] |
Salmonella | Ground Chicken | 13/49 (26%) | 2009 | [41] |
Campylobacter | Chicken Breast | 3064/6138 (49.9%) | 2002–2007 | [42] |
Campylobacter | Whole carcass | 84/194 (43.3%) | 2006–2007 | [43] |
Campylobacter | Retail Chicken | 42/156 (26.9%) | 2010 | [44] |
Campylobacter | Retail Chicken | 130/174 (70.6%) | 2000 | [38] |
Campylobacter | Chicken Breast | 4659/9968 (46.7%) | 2000–2010 | [39] |
Campylobacter | Boneless meat | 308/755 (41%) | 2005–2011 | [45] |
Campylobacter | Chicken Breast | 584/2376 (24.6%) | 2015 | [46] |
Campylobacter | Chicken liver | 29/45 (64.4%) | 2018 | [47] |
Bacteria | Issue | Findings | Source |
---|---|---|---|
Salmonella | Biofilm | Increased biofilm forming ability in Salmonella | [59] |
Salmonella | Heat tolerance | S. Senftenberg 775 W extreme tolerance to heat | [60] |
Salmonella | Acid tolerance | S. Enterica Increased tolerance to low pH (3.0) | [61] |
Salmonella | Antibiotic resistance | S. Typhimurium exhibited increased ciprofloxacin tolerance | [64] |
Salmonella | Cross-tolerance | Exposure to single stressor resulting in increased tolerance to multiple stressors | [65] |
Salmonella | Thermal processing tolerance | S. Typhimurium exhibited high levels of tolerance to dry heat | [65] |
Campylobacter | Reactive Arthritis | Human infections leading to reactive arthritis | [66] |
Campylobacter | Biofilm | Increased tolerance to antimicrobials | [67] |
Campylobacter | Stress tolerance | Increased tolerance to heat and oxygen | [68] |
Campylobacter | Heat tolerance | Increased tolerance to heat | [69] |
Campylobacter | Aerotolerance | Increased tolerance to oxygen | [70] |
Campylobacter | Heat tolerance | Increased tolerance to high temperatures | [70] |
Campylobacter | Guillain–Barré Syndrome | Chickens infected with C. jejuni developed GBS-like paralytic neuropathy | [71] |
Antimicrobial | Chicken Product | Bacteria | Type of Treatment | Result (Log CFU Reduction) | Reference |
---|---|---|---|---|---|
PAA (1000 ppm) | Chicken breast | Salmonella | Immersion | 1.92 | [48] |
PAA (750 ppm) | Chicken Breast | Salmonella | Immersion | 2.23 | [48] |
PAA (0.1%) | Drumsticks | Salmonella | Dip | 2.0 | [94] |
PAA (0.1%) | Ground Chicken | Salmonella | Immersion | 1.5 | [95] |
PAA (0.1%) | Ground Chicken | Salmonella | Immersion | 1.4 | [96] |
PAA (750 ppm) | Chicken Breast | Campylobacter | Immersion | 4.08 | [48] |
PAA (1000 ppm) | Chicken Breast | Campylobacter | Immersion | 1.87 | [48] |
PAA (0.1%) | Whole Carcass | Campylobacter | Dip | 2.0 | [97] |
PAA (0.1%) | Ground Chicken | Campylobacter | Immersion | 1.3 | [95] |
PAA (1200 ppm) | Drumsticks | Campylobacter | Spray | 1.14 | [98,99] |
CPC (0.6%) | Drumsticks | Salmonella | Spray | 4.0 | [94] |
CPC (0.6%) | Ground Chicken | Salmonella | Spray | 0.8 | [96] |
CPC (0.5%) | Ground Chicken | Salmonella | Spray | 0.5 | [97] |
CPC (0.6%) | Drumsticks | Campylobacter | Spray | 0.8 | [94] |
CPC (0.6%) | Ground Chicken | Campylobacter | Spray | 0.8 | [96] |
CPC (0.5%) | Whole Carcass | Campylobacter | Spray | 1.2 | [100] |
ASC (1200 ppm) | Drumsticks | Salmonella | Dip | 1.8 | [101] |
ASC (1200 ppm) | Chicken Breast | Salmonella | Dip | 0.9 | [101] |
ASC (1000 ppm) | Chicken Breast | Campylobacter | Spray | 1.6 | [102] |
Chlorine (30 ppm) | Whole Carcass | Salmonella | Chiller tank | 56.8% | [63] |
Chlorine (0.003%) | Whole Carcass | Salmonella | Chiller tank | No significant difference | [96] |
Chlorine (50 ppm) | Broiler Wing Drumettes | Salmonella | Chiller tank | No significant difference | [103] |
Chlorine (30 ppm) | Whole Carcass | Campylobacter | Chiller tank | 12.8% | [63] |
Chlorine (0.003%) | Whole Carcass | Campylobacter | Chiller tank | No significant difference | [96] |
Chlorine (50 ppm) | Broiler Wing Drumettes | Campylobacter | Chiller tank | No significant difference | [103] |
TSP (10%) | Whole Carcass | Salmonella | Dip | 2.0 | [104] |
TSP (10%) | Chicken patty | Salmonella | Immersion | 1.18 | [105] |
TSP (12%) | Chicken Breast Skin | Salmonella | Spin Chiller | 1.4 | [106] |
TSP (8%) | Whole Carcass | Salmonella | Dip | 2.27 | [107] |
TSP (12%) | Chicken Breast Skin | Campylobacter | Spin chiller | 1.8 | [106] |
TSP (10%) | Whole Carcass | Campylobacter | Dip | 2.27 | [108] |
Amplon (3–4 gpm) | Whole Carcass | Campylobacter | Spray | 3.25 | [67] |
Amplon (15 s) | Whole Carcass | Campylobacter | Post-Chill Immersion | 1.53 | [67] |
Sodium Ferrate (0.15%) | Chicken Thighs | Salmonella | Spray | 0.65 | [109] |
Sodium Ferrate (0.3%) | Chicken Thighs | Salmonella | Spray | 0.89 | [109] |
Cold plasma | Chicken Breast | Salmonella | Spray | 2.71 | [110] |
Bacteriophage | Chicken Breast | Salmonella | Not specified | 3.12 | [111] |
Bacteriophage | Chicken Skin | Salmonella | Immersion | 1 | [112] |
Bacteriophage | Chicken Breast | Salmonella | Not specified | 1.86 | [113] |
Bacteriophage | Chicken Thighs | Salmonella | Pipette | 1.1 | [114] |
Technology | Advantages | Limitations | Max Permissible Limit | Reference |
---|---|---|---|---|
Chlorine | -Industry standard for many years | -Decreasing efficacy due to chlorine tolerance -Efficacy reduced by high pH and organic load | 50 ppm | [63] |
Amplon | -Improved antimicrobial activity | -Limited research | Mixture flow between 5–10 gal/min in water | [67] |
Cetylpyridinium chloride | -Effective antimicrobial as a spray application | -efficacy limited by current USDA restrictions on maximum permissible limits and contact time | Spray: 0.3 g/lb of raw poultry Liquid aqueous solution: 0.8% | [94] |
Acidified Sodium Chlorite | -Viable alternative to current chemical antimicrobials | -Can cause deleterious effects on sensory characteristics | Spray or dip: 1200 ppmImmersion: 150 ppm | [98,123] |
Trisodium phosphate | -High microbiocidal capacity for gram negative bacteria | -Accelerated spoilage in retail products -Accelerated gram positive bacterial growth | 12% in mixed solution | [128] |
Sodium Ferrate | -Strong biocidal capabilities | -Limited studies on meat products | NA | [130] |
Electrostatic Spray | -Improved antimicrobial coverage on meat -requires less antimicrobials and water | -Mixed results on efficacy -Not effective with certain compounds | NA | [131] [132] |
Bacteriophage | -Target specificity | -Limited research in commercial processing | Applied to achieve a level of 1 × 107–1 × 109 plaque forming units | [111] |
Peracetic acid | -Most effective antimicrobial in chilling applications | -Limited activity against biofilms | 2000 ppm | [67,133] |
Cold Plasma | -Cost effective -microbiocidal | -May affect quality attributes | NA | [134] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Thames, H.T.; Theradiyil Sukumaran, A. A Review of Salmonella and Campylobacter in Broiler Meat: Emerging Challenges and Food Safety Measures. Foods 2020, 9, 776. https://doi.org/10.3390/foods9060776
Thames HT, Theradiyil Sukumaran A. A Review of Salmonella and Campylobacter in Broiler Meat: Emerging Challenges and Food Safety Measures. Foods. 2020; 9(6):776. https://doi.org/10.3390/foods9060776
Chicago/Turabian StyleThames, Hudson T., and Anuraj Theradiyil Sukumaran. 2020. "A Review of Salmonella and Campylobacter in Broiler Meat: Emerging Challenges and Food Safety Measures" Foods 9, no. 6: 776. https://doi.org/10.3390/foods9060776
APA StyleThames, H. T., & Theradiyil Sukumaran, A. (2020). A Review of Salmonella and Campylobacter in Broiler Meat: Emerging Challenges and Food Safety Measures. Foods, 9(6), 776. https://doi.org/10.3390/foods9060776