Natural Phenolic Compounds for the Control of Oxidation, Bacterial Spoilage, and Foodborne Pathogens in Meat
Abstract
:1. Introduction
2. Meat Oxidation, Spoilage, and Foodborne Pathogens
3. Natural Phenolic Compounds
3.1. Antioxidant Capacity of Phenolic Compounds
3.2. Antimicrobial Activity of Phenolic Compounds
3.2.1. Antimicrobial Activity Mechanisms
3.2.2. Antimicrobial Activity Associated Factors
3.2.3. Antimicrobial Activity Spectrum
In Vitro Antimicrobial Activity of Phenolic Compounds
In Situ Antimicrobial Activity of Phenolic Compounds in Meat Systems
4. Application of Phenolic Compounds in Meat
4.1. Direct Application in Meat
4.2. Incorporation in Animal Diets
5. Regulation, Limitations, and Challenges in the Use of Phenolic Compounds
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Schonfeldt, H.C.; Hall, N.G. Dietary protein quality and malnutrition in Africa. Br. J. Nutr. 2012, 108, s69–s76. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Doulgeraki, A.I.; Ercolini, D.; Villani, F.; Nychas, G.E. Spoilage microbiota associated to the storage of raw meat in different conditions. Int. J. Food Microbiol. 2012, 157, 130–141. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.H.; Ren, Y.; Seow, J.; Liu, T.; Bang, W.S.; Yuk, H.G. Intervention Technologies for Ensuring Microbiological Safety of Meat: Current and Future Trends. Compr. Rev. Food Sci. Food Saf. 2012, 11, 119–132. [Google Scholar] [CrossRef]
- FAO. Global food losses and food waste-extent, causes and prevention; FAO: Rome, Italy, 2011. Available online: http://www.fao.org/docrep/014/mb060e/mb060e.pdf (accessed on 15 April 2020).
- FAO. Food Wastage Footprint. Available online: http://www.fao.org/3/i3347e/i3347e.pdf (accessed on 15 April 2020).
- Niyonzima, E.; Ongol, M.P.; Kimonyo, A.; Sindic, M. Risk factors and control measures for bacterial contamination in the Bovine meat chain: A review on Salmonella and pathogenic E. coli. J. Food Res. 2015, 4, 98–121. [Google Scholar] [CrossRef]
- Burgess, C.M.; Rivas, L.; McDonnell, M.J.; Duffy, G. Biocontrol of pathogens in the meat chain. In Meat Biotechnology; Toldra, F., Ed.; Springer: New York, NY, USA, 2008. [Google Scholar]
- Saucier, L. Microbial spoilage, quality and safety within the context of meat sustainability. Meat Sci. 2016, 120, 78–84. [Google Scholar] [CrossRef]
- Regulation (EC) No 852/2004 of the European Parliament and of the Council of 29 April 2004 on the hygiene of foodstuffs. Off. J. Eur. Union 2004, L 139, 1–23.
- Gassara, F.; Kouassi, A.P.; Brar, S.K.; Belkacemi, K. Green alternatives to nitrates and nitrites in meat-based products—A Review. Crit. Rev. Food Sci. Nutr. 2016, 56, 2133–2148. [Google Scholar] [CrossRef] [Green Version]
- Huffman, R.D. Current and future technologies for the decontamination of carcasses and fresh meat. Meat Sci. 2002, 62, 285–294. [Google Scholar] [CrossRef]
- Aymerich, T.; Picouet, P.A.; Monfort, J.M. MEAT Decontamination technologies for meat products. Meat Sci. 2008, 78, 114–129. [Google Scholar] [CrossRef]
- Lucera, A.; Costa, C.; Conte, A.; Del Nobile, M.A. Food applications of natural antimicrobial compounds. Front. Microbiol. 2012, 3, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Veneziani, G.; Novelli, E.; Esposto, S.; Taticchi, A.; Servili, M. Chapter 11—Applications of recovered bioactive compounds in food products. In Olive Mill Waste: Recent Advances for Sustainable Management; Galanakis, C.M., Ed.; Academic Press: London, UK, 2017; pp. 231–253. [Google Scholar]
- Aminzare, M.; Hashemi, M.; Ansarian, E.; Bimkar, M.; Azar, H.H.; Mehrasbi, M.R.; Daneshamooz, S.; Raeisi, M.; Jannat, B.; Afshari, A. Using Natural Antioxidants in Meat and Meat Products as Preservatives: A Review. Adv. Anim. Vet. Sci. 2019, 7, 417–426. [Google Scholar] [CrossRef] [Green Version]
- Regulation (EC) No 853/2004 of the European Parliament and of the Council of 29 April 2004 laying down specific hygiene rules for food of animal origin. Off. J. Eur. Union 2004, L 139, 55–205.
- Fernandes, R.D.P.; Trindade, M.A.; de Melo, M.P. Natural antioxidants and food applications: Healthy Perspectives. In Handbook of Food Bioengineering, Alternative and Replacement Foods; Holban, A.M., Grumezescu, A.M., Eds.; Academic Press: London, UK, 2018; pp. 31–64. [Google Scholar]
- Brewer, M.S. Natural antioxidants: Sources, compounds, mechanisms of action, and potential applications. Compr. Rev. Food Sci. Food Saf. 2011, 10, 221–247. [Google Scholar] [CrossRef]
- Soladoye, O.P.; Juárez, M.L.; Aalhus, J.L.; Shand, P.; Estévez, M. Protein oxidation in processed meat: Mechanisms and potential implications on human health. Compr. Rev. Food Sci. Food Saf. 2015, 14, 106–122. [Google Scholar] [CrossRef]
- Estévez, M. Protein carbonyls in meat systems: A review. Meat Sci. 2011, 89, 259–279. [Google Scholar] [CrossRef]
- Maqsood, S.; Benjakul, S.; Abushelaibi, A.; Alam, A. Phenolic compounds and plant phenolic extracts as natural antioxidants in prevention of lipid oxidation in seafood: A detailed review. Compr. Rev. Food Sci. Food Saf. 2014, 13, 1125–1140. [Google Scholar] [CrossRef]
- O’Brien, S.J. The public health impact of food-related illness. Curr. Opin. Infect. Dis. 2012, 25, 537–545. [Google Scholar] [CrossRef]
- Mead, P.S.; Slutsker, L.; Dietz, V.; Mccaig, L.F.; Bresee, J.S.; Shapiro, C.; Griffin, P.M.; Tauxe, R.V. Food-related illness and death in the United States. Emerg. Infect. Dis. 1999, 5, 607–625. [Google Scholar] [CrossRef]
- Scallan, E.; Hoekstra, R.M.; Angulo, F.J.; Tauxe, R.V.; Widdowson, M.A.; Roy, S.L.; Jones, J.L.; Griffin, P.M. Foodborne illness acquired in the United States—Major pathogens. Emerg. Infect. Dis. 2011, 17, 7–15. [Google Scholar] [CrossRef]
- Chizzolini, R.; Novelli, E.; Zanardi, E. Oxidation in traditional Mediterranean meat products. Meat Sci. 1998, 49, S87–S99. [Google Scholar] [CrossRef]
- Kanner, J. Dietary advanced lipid oxidation endproducts are risk factors to human health. Mol. Nutr. Food Res. 2007, 51, 1094–1101. [Google Scholar] [CrossRef] [PubMed]
- European Food Safety Authority and European Centre for Disease Prevention and Control (EFSA and ECDC). The European Union One Health 2018 Zoonoses Report. EFSA J. 2019, 17, e05926. [CrossRef] [Green Version]
- Dewey-Mattia, D.; Kisselburgh, H. Surveillance for Foodborne Disease Outbreaks—United States, 2017: Annual Report; Centers for Disease Control and Prevention (CDC): Atlanta, GA, USA, 2017; pp. 1–10.
- Dewey-Mattia, D.; Manikonda, K.; Hall, A.J.; Wise, M.E.; Crowe, S.J. Surveillance for Foodborne Disease Outbreaks—United States, 2009–2015; Center for Surveillance, Epidemiology, and Laboratory Services, Centers for Disease Control and Prevention (CDC): Atlanta, GA, USA, 2018; pp. 1–11.
- Parr, A.J.; Bolwell, G.P. Phenols in the plant and in man. The potential for possible nutritional enhancement of the diet by modifying the phenols content or profile. J. Sci. Food Agric. 2000, 80, 985–1012. [Google Scholar] [CrossRef]
- De la Rosa, L.A.; Moreno-Escamilla, J.O.; Rodrigo-García, J.; Alvarez-Parrilla, E. Phenolic compounds. In Postharvest Physiology and Biochemistry of Fruits and Vegetables; Yahia, E.M., Ed.; Woodhead Publishing: Duxford, UK, 2018; pp. 253–271. [Google Scholar]
- Gan, R.-Y.; Chan, C.-L.; Yang, Q.-Q.; Li, H.-B.; Zhang, D.; Ge, Y.-Y.; Gunaratne, A.; Ge, J.; Corke, H. Bioactive compounds and beneficial functions of sprouted grains. In Sprouted Grains; Feng, H., Nemzer, B., DeVries, J.W., Eds.; AACC International Press: Duxford, UK, 2019; pp. 191–246. [Google Scholar]
- Lourdes Reis Giada, M. Food phenolic compounds: Main classes, sources and their antioxidant power. In Oxidative Stress and Chronic Degenerative Diseases—A Role for Antioxidants; Morales-Gonzalez, J.A., Ed.; IntechOpen: London, UK, 2013; pp. 87–112. [Google Scholar]
- Hintz, T.; Matthews, K.K.; Di, R. The use of plant antimicrobial compounds for food preservation. Biomed. Res. Int. 2015. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lafay, S.; Gil-Izquierdo, A. Bioavailability of phenolic acids. Phytochem. Rev. 2008, 7, 301–311. [Google Scholar] [CrossRef]
- Falowo, A.B.; Fayemi, P.O.; Muchenje, V. Natural antioxidants against lipid–protein oxidative deterioration in meat and meat products: A review. Food Res. Int. 2014, 64, 171–181. [Google Scholar] [CrossRef]
- Jayasena, D.D.; Jo, C. Essential oils as potential antimicrobial agents in meat and meat products: A review. Trends Food Sci. Technol. 2013, 34, 96–108. [Google Scholar] [CrossRef]
- Pateiro, M.; Barba, F.J.; Domínguez, R.; Sant’ Ana, A.S.; Khaneghahc, A.M.; Mohsen, G.; Gómez, B.; Lorenzo, J.M. Essential oils as natural additives to prevent oxidation reactions in meat and meat products: A review. Food Res. Int. 2018, 113, 156–166. [Google Scholar] [CrossRef]
- Hyldgaard, M.; Mygind, T.; Meyer, R.L.; Debabov, D. Essential oils in food preservation: Mode of action, synergies, and interactions with food matrix components. Front. Microbiol. 2012, 3, 1–24. [Google Scholar] [CrossRef] [Green Version]
- Christaki, E.; Bonos, E.; Giannenas, I.; Florou-paneri, P. Aromatic plants as a source of bioactive compounds. Agriculture 2012, 2, 228–243. [Google Scholar] [CrossRef] [Green Version]
- Parke, D.V.; Lewis, D.F.V. Safety aspects of food preservatives. Food Addit. Contam. 1992, 9, 561–577. [Google Scholar] [CrossRef] [PubMed]
- Karre, L.; Lopez, K.; Getty, K.J.K. Natural antioxidants in meat and poultry products. Meat Sci. 2013, 94, 220–227. [Google Scholar] [CrossRef] [PubMed]
- Dwivedi, S.; Prajapati, P.; Vyas, N.; Malviya, S.; Kharia, A. A review on food preservation: Methods, harmful effects and better alternatives. Asian J. Pharm. Pharmacol. 2017, 3, 193–199. [Google Scholar]
- Tesoriere, L.; Butera, D.; Gentile, C.; Livrea, M.A. Bioactive components of caper (Capparis spinosa L.) from Sicily and antioxidant effects in a red meat simulated gastric digestion. J. Agric. Food Chem. 2007, 55, 8465–8471. [Google Scholar] [CrossRef] [PubMed]
- Weng, C.; Yen, G. Chemopreventive effects of dietary phytochemicals against cancer invasion and metastasis: Phenolic acids, monophenol, polyphenol, and their derivatives. Cancer Treat. Rev. 2012, 38, 76–87. [Google Scholar] [CrossRef] [PubMed]
- Embuscado, M.E. Spices and herbs: Natural sources of antioxidants—A mini review. J. Funct. Foods 2015, 18, 811–819. [Google Scholar] [CrossRef]
- Huang, B.; He, J.; Ban, X.; Zeng, H.; Yao, X.; Wang, Y. Antioxidant activity of bovine and porcine meat treated with extracts from edible lotus (Nelumbo nucifera) rhizome knot and leaf. Meat Sci. 2011, 87, 46–53. [Google Scholar] [CrossRef]
- Lorenzo, J.M.; Batlle, R.; Gómez, M. Extension of the shelf-life of foal meat with two antioxidant active packaging systems. LWT Food Sci. Technol. 2014, 59, 181–188. [Google Scholar] [CrossRef]
- Haak, L.; Raes, K.; Smet, S. De Effect of plant phenolics, tocopherol and ascorbic acid on oxidative stability of pork patties. J. Sci. Food. Agric. 2009, 1360–1365. [Google Scholar] [CrossRef]
- Lorenzo, J.M.; Sineiro, J.; Amado, I.R.; Franco, D. Influence of natural extracts on the shelf life of modified atmosphere-packaged pork patties. Meat Sci. 2014, 96, 526–534. [Google Scholar] [CrossRef]
- Van Cuong, T.; Chin, K.B. Evaluation of Cudrania tricuspidata leaves on antioxidant activities and physicochemical properties of pork patties. Korean J. Food Sci. Anim. Resour. 2018, 38, 889–900. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jia, N.; Kong, B.; Liu, Q.; Diao, X.; Xia, X. Antioxidant activity of black currant (Ribes nigrum L.) extract and its inhibitory effect on lipid and protein oxidation of pork patties during chilled storage. Meat Sci. 2012, 91, 533–539. [Google Scholar] [CrossRef] [PubMed]
- Jiang, J.; Zhang, X.; True, A.D.; Zhou, L.; Xiong, Y.L. Inhibition of lipid oxidation and rancidity in precooked pork patties by radical-scavenging licorice (Glycyrrhiza glabra) Extract. J. Food Sci. 2013, 78, C1686–C1694. [Google Scholar] [CrossRef] [PubMed]
- Qin, Y.Y.; Yang, J.Y.; Lu, H.B.; Wang, S.S.; Yang, J.; Yang, X.C.; Chai, M.; Li, L.; Cao, J.X. Effect of chitosan film incorporated with tea polyphenol on quality and shelf life of pork meat patties. Int. J. Biol. Macromol. 2013, 61, 312–316. [Google Scholar] [CrossRef]
- Lara, M.S.; Gutierrez, J.I.; Timón, M.; Andrés, A.I. Evaluation of two natural extracts (Rosmarinus officinalis L. and Melissa officinalis L.) as antioxidants in cooked pork patties packed in MAP. Meat Sci. 2011, 88, 481–488. [Google Scholar] [CrossRef]
- Carpenter, R.; O’Grady, M.N.; O’Callaghan, Y.C.; O’Brien, N.M.; Kerry, J.P. Evaluation of the antioxidant potential of grape seed and bearberry extracts in raw and cooked pork. Meat Sci. 2007, 76, 604–610. [Google Scholar] [CrossRef]
- Ganhão, R.; Estévez, M.; Armenteros, M.; Morcuende, D. Mediterranean berries as inhibitors of lipid oxidation in porcine burger patties subjected to cooking and chilled storage. J. Integr. Agric. 2013, 12, 1982–1992. [Google Scholar] [CrossRef]
- Kobus-Cisowska, J.; Flaczyk, E.; Rudzi, M.; Kmiecik, D. Antioxidant properties of extracts from Ginkgo biloba leaves in meatballs. Meat Sci. 2014, 97, 174–180. [Google Scholar] [CrossRef]
- Pateiro, M.; Lorenzo, J.M.; Amado, I.R.; Franco, D. Effect of addition of green tea, chestnut and grape extract on the shelf-life of pig liver pâté. Food Chem. 2014, 147, 386–394. [Google Scholar] [CrossRef]
- Martín-Sánchez, A.M.; Ciro-Gómez, G.; Sayas, E.; Vilella-Esplá, J.; Ben-Abda, J.; Pérez-Alvarez, J.Á. Date palm by-products as a new ingredient for the meat industry: Application to pork liver pâté. Meat Sci. 2013, 93, 880–887. [Google Scholar] [CrossRef]
- Martin-Sanchez, A.; Ciro-Gomez, G.; Zapata-Montoya, J.; Vilella-Espla, J.; Perez-Alvarez, J.; Sayas-Barberá, E. Effect of date palm coproducts and annatto extract on lipid oxidation and microbial quality in a pork liver pâté. J. Food Sci. 2014, 79, 2301–2307. [Google Scholar] [CrossRef] [PubMed]
- Hayes, J.E.; Stepanyan, V.; Allen, P.; Grady, M.N.O.; Kerry, J.P. Evaluation of the effects of selected plant-derived nutraceuticals on the quality and shelf-life stability of raw and cooked pork sausages. LWT Food Sci. Technol. 2011, 44, 164–172. [Google Scholar] [CrossRef]
- Lorenzo, J.M.; González-rodríguez, R.M.; Sánchez, M.; Amado, I.R.; Franco, D. Effects of natural (grape seed and chestnut extract) and synthetic antioxidants (buthylatedhydroxytoluene, BHT) on the physical, chemical, microbiological and sensory characteristics of dry cured sausage “chorizo”. J. Food Sci. 2013, 54, 611–620. [Google Scholar] [CrossRef] [Green Version]
- Jayawardana, B.C.; Hirano, T.; Han, K.H.; Ishii, H.; Okada, T.; Shibayama, S.; Fukushima, M.; Sekikawa, M.; Shimada, K.I. Utilization of adzuki bean extract as a natural antioxidant in cured and uncured cooked pork sausages. Meat Sci. 2011, 89, 150–153. [Google Scholar] [CrossRef] [PubMed]
- De Almeida, P.L.; de Lima, S.N.; Costa, L.L.; de Oliveira, C.C.; Damasceno, K.A.; dos Santos, B.A.; Campagnol, P.C.B. Effect of jabuticaba peel extract on lipid oxidation, microbial stability and sensory properties of Bologna-type sausages during refrigerated storage. Meat Sci. 2015, 110, 9–14. [Google Scholar] [CrossRef] [PubMed]
- Jongberg, S.; Tørngren, M.A.; Gunvig, A.; Skibsted, L.H.; Lund, M.N. Effect of green tea or rosemary extract on protein oxidation in Bologna type sausages prepared from oxidatively stressed pork. Meat Sci. 2013, 93, 538–546. [Google Scholar] [CrossRef]
- Zhang, L.; Lin, Y.H.; Leng, X.J.; Huang, M.; Zhou, G.H. Effect of sage (Salvia officinalis) on the oxidative stability of Chinese-style sausage during refrigerated storage. Meat Sci. 2013, 95, 145–150. [Google Scholar] [CrossRef]
- Qi, S.; Zhou, D. Lotus seed epicarp extract as potential antioxidant and anti-obesity additive in Chinese Cantonese Sausage. Meat Sci. 2013, 93, 257–262. [Google Scholar] [CrossRef]
- Pil-Nam, S.; Park, K.M.; Kang, G.H.; Cho, S.H.; Park, B.Y.; Van-Ba, H. The impact of addition of shiitake on quality characteristics of frankfurter during refrigerated storage. LWT Food Sci. Technol. 2015, 62, 62–68. [Google Scholar] [CrossRef]
- Rodrigues, A.S.; Kubota, E.H.; Giacomelli, C.; Alves, S.; Rodrigues, G.S.; Cezar, P.; Campagnol, B. Banana in florescences: A cheap raw material with great potential to be used as a natural antioxidant in meat products. Meat Sci. 2020, 161, 1–5. [Google Scholar] [CrossRef]
- Wang, Y.; Li, F.; Zhuang, H.; Li, L.; Chen, X.; Zhang, J. Effects of plant polyphenols and α-tocopherol on lipid oxidation, microbiological characteristics, and biogenic amines formation in dry-cured bacons. J. Food Sci. 2015, 80, 547–555. [Google Scholar] [CrossRef]
- Armenteros, M.; Morcuende, D.; Ventanas, J.; Estévez, M. The application of natural antioxidants via brine injection protects Iberian cooked hams against lipid and protein oxidation. Meat Sci. 2016, 116, 253–259. [Google Scholar] [CrossRef] [PubMed]
- Barbosa-Pereira, L.; Angulo, I.; Lagaron, J.M.; Paseiro-Losada, P.; Cruz, J.M. Development of new active packaging films containing bioactive nanocomposites. Innov. Food Sci. Emerg. Technol. 2014, 26, 310–318. [Google Scholar] [CrossRef]
- Bermúdez-Oria, A.; Rodríguez-Gutiérrez, G.; Rubio-Senent, F.; Fernández-Prior, Á.; Fernández-Bolaños, J. Effect of edible pectin-fish gelatin films containing the olive antioxidants hydroxytyrosol and 3,4-dihydroxyphenylglycol on beef meat during refrigerated storage. Meat Sci. 2019, 148, 213–218. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, S.; Cho, A.R.; Han, J. Antioxidant and antimicrobial activities of leafy green vegetable extracts and their applications to meat product preservation. Food Control 2013, 29, 112–120. [Google Scholar] [CrossRef]
- Zamuz, S.; López-Pedrouso, M.; Barba, F.J.; Lorenzo, J.M.; Domínguez, H.; Franco, D. Application of hull, bur and leaf chestnut extracts on the shelf-life of beef patties stored under MAP: Evaluation of their impact on physicochemical properties, lipid oxidation, antioxidant, and antimicrobial potential. Food Res. Int. 2018, 112, 263–273. [Google Scholar] [CrossRef]
- García-Lomillo, J.; Gonzalez-SanJose, M.L.; Del Pino-García, R.; Ortega-Heras, M.; Muñiz-Rodríguez, P. Antioxidant effect of seasonings derived from wine pomace on lipid oxidation in refrigerated and frozen beef patties. LWT Food Sci. Technol. 2017, 77, 85–91. [Google Scholar] [CrossRef]
- Akcan, T.; Estévez, M.; Serdaroğlu, M. Antioxidant protection of cooked meatballs during frozen storage by whey protein edible films with phytochemicals from Laurus nobilis L. and Salvia officinalis. LWT Food Sci. Technol. 2017, 77, 323–331. [Google Scholar] [CrossRef]
- Turgut, S.S.; Işıkçı, F.; Soyer, A. Antioxidant activity of pomegranate peel extract on lipid and protein oxidation in beef meatballs during frozen storage. Meat Sci. 2017, 129, 111–119. [Google Scholar] [CrossRef]
- Kulkarni, S.; Desantos, F.A.; Kattamuri, S.; Rossi, S.J.; Brewer, M.S. Effect of grape seed extract on oxidative, color and sensory stability of a pre-cooked, frozen, re-heated beef sausage model system. Meat Sci. 2011, 88, 139–144. [Google Scholar] [CrossRef] [Green Version]
- Alirezalu, K.; Hesari, J.; Eskandari, M.H.; Valizadeh, H.; Sirousazar, M. Effect of green tea, stinging nettle and olive leaves extracts on the quality and shelf life stability of frankfurter type sausage. J. Food Process. Preserv. 2017, 41, e13100. [Google Scholar] [CrossRef]
- Frasao, B.; Costa, M.; Silva, F.; Rodrigues, B.; Araujo, J.; Moreira, D.; Torrezan, R.; Id, C.C. Effect of pequi (Caryocar brasiliense) and jucara (Euterpe edulis) waste extract on oxidation process stability in broiler meat treated by UV-C. PLoS ONE 2018, 13, e0208306. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Biswas, A.K.; Beura, C.K.; Yadav, A.S.; Pandey, N.K.; Mendiratta, S.K.; Kataria, J.M. Influence of novel bioactive compounds from selected fruit by-products and plant materials on the quality and storability of microwave-assisted cooked poultry meat wafer during ambient temperature storage. LWT Food Sci. Technol. 2015, 62, 727–733. [Google Scholar] [CrossRef]
- Naveena, B.M.; Sen, A.R.; Vaithiyanathan, S.; Babji, Y.; Kondaiah, N. Comparative efficacy of pomegranate juice, pomegranate rind powder extract and BHT as antioxidants in cooked chicken patties. Meat Sci. 2008, 80, 1304–1308. [Google Scholar] [CrossRef] [PubMed]
- Andrés, A.I.; Petrón, M.J.; Adámez, J.D.; López, M.; Timón, M.L. Food by-products as potential antioxidant and antimicrobial additives in chill stored raw lamb patties. Meat Sci. 2017, 129, 62–70. [Google Scholar] [CrossRef]
- Fernandes, R.P.P.; Trindade, M.A.; Tonin, F.G.; Pugine, S.M.P.; Lima, C.G.; Lorenzo, J.M.; Melo, M.P. De Evaluation of oxidative stability of lamb burger with Origanum vulgare extract. Food Chem. 2017, 233, 101–109. [Google Scholar] [CrossRef]
- Fernandes, R.P.P.; Trindade, M.A.; Lorenzo, J.M.; Melo, M.P. De Assessment of the stability of sheep sausages with the addition of di ff erent concentrations of Origanum vulgare extract during storage. Meat Sci. 2018, 137, 244–257. [Google Scholar] [CrossRef]
- Bozkurt, H. Utilization of natural antioxidants: Green tea extract and Thymbra spicata oil in Turkish dry-fermented sausage. Meat Sci. 2006, 73, 442–450. [Google Scholar] [CrossRef]
- Šojić, B.; Tomović, V.; Kocić-Tanackov, S.; Škaljac, S.; Ikonić, P.; Džinić, N.; Živković, N.; Jokanović, M.; Tasić, T.; Kravić, S. Effect of nutmeg (Myristica fragrans) essential oil on the oxidative and microbial stability of cooked sausage during refrigerated storage. Food Control 2015, 54, 282–286. [Google Scholar] [CrossRef]
- Lule, S.U.; Xia, W. Food phenolics, pros and cons: A review. Food. Rev. Int. 2005, 21, 367–388. [Google Scholar] [CrossRef]
- Holley, R.A.; Patel, D. Improvement in shelf-life and safety of perishable foods by plant essential oils and smoke antimicrobials. Food Microbiol. 2005, 22, 273–292. [Google Scholar] [CrossRef]
- He, M.; Wu, T.; Pan, S.; Xu, X. Antimicrobial mechanism of flavonoids against Escherichia coli ATCC 25922 by model membrane study. Appl. Surf. Sci. 2014, 305, 515–521. [Google Scholar] [CrossRef]
- Rempe, C.S.; Burris, K.P.; Lenaghan, S.C.; Stewart, C.N. The potential of systems biology to discover antibacterial mechanisms of plant phenolics. Front. Microbiol. 2017, 8, 422. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pisoschi, A.M.; Pop, A.; Georgescu, C.; Turcuş, V.; Olah, N.K.; Mathe, E. An overview of natural antimicrobials role in food. Eur. J. Med. Chem. 2018, 143, 922–935. [Google Scholar] [CrossRef] [PubMed]
- Trombetta, D.; Castelli, F.; Sarpietro, M.G.; Venuti, V.; Cristani, M.; Daniele, C.; Saija, A.; Mazzanti, G.; Bisignano, G. Mechanisms of antibacterial action of three monoterpenes. Antimicrob. Agents Chemother. 2005, 49, 2474–2478. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Devi, K.P.; Nisha, S.A.; Sakthivel, R.; Pandian, S.K. Eugenol (an essential oil of clove) acts as an antibacterial agent against Salmonella typhi by disrupting the cellular membrane. J. Ethnopharmacol. 2010, 130, 107–115. [Google Scholar] [CrossRef] [PubMed]
- Burt, S. Essential oils: Their antibacterial properties and potential applications in foods—A review. Int. J. Food Microbiol. 2004, 94, 223–253. [Google Scholar] [CrossRef] [PubMed]
- Gill, A.O.; Holley, R.A. Inhibition of membrane bound ATPases of Escherichia coli and Listeria monocytogenes by plant oil aromatics. Int. J. Food Microbiol. 2006, 111, 170–174. [Google Scholar] [CrossRef]
- Ultee, A.; Bennik, M.H.J.; Moezelaar, R. The phenolic hydroxyl group of carvacrol is essential for action against the food-borne pathogen Bacillus cereus. Appl. Environ. Microbiol. 2002, 68, 1561–1568. [Google Scholar] [CrossRef] [Green Version]
- Lou, Z.; Wang, H.; Rao, S.; Sun, J.; Ma, C.; Li, J. P-Coumaric acid kills bacteria through dual damage mechanisms. Food Control 2012, 25, 550–554. [Google Scholar] [CrossRef]
- Carraro, L.; Fasolato, L.; Montemurro, F.; Martino, M.E.; Balzan, S.; Servili, M.; Novelli, E.; Cardazzo, B. Polyphenols from olive mill waste affect biofilm formation and motility in Escherichia coliK-12. Microb. Biotechnol. 2014, 7, 265–275. [Google Scholar] [CrossRef] [PubMed]
- Wagle, B.R.; Upadhyay, A.; Shrestha, S.; Arsi, K.; Upadhyaya, I.; Donoghue, A.M.; Donoghue, D.J. Pectin or chitosan coating fortified with eugenol reduces Campylobacter jejuni on chicken wingettes and modulates expression of critical survival genes. Poult. Sci. 2019, 98, 1461–1471. [Google Scholar] [CrossRef] [PubMed]
- Ahn, J.; Grun, I.U.; Mustapha, A. Antimicrobial and antioxidant activities of natural extracts in vitro and in ground beef. J. Food Prot. 2004, 67, 148–155. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.T.; Labbe, R.G.; Shetty, K. Inhibition of Listeria monocytogenes in fish and meat systems by use of oregano and cranberry phytochemical synergies. Appl. Environ. Microbiol. 2004, 70, 5672–5678. [Google Scholar] [CrossRef] [Green Version]
- Gutierrez, J.; Bourke, P. Antimicrobial activity of plant essential oils using food model media: Efficacy, synergistic potential and interactions with food components. Food Microbiol. 2009, 26, 142–150. [Google Scholar] [CrossRef]
- Tajkarimi, M.M.; Ibrahim, S.A.; Cliver, D.O. Antimicrobial herb and spice compounds in food. Food Control 2010, 21, 1199–1218. [Google Scholar] [CrossRef]
- Friedman, M.; Jürgens, H.S. Effect of pH on the stability of plant phenolic compounds. J. Agric. Food Chem. 2000, 48, 2101–2110. [Google Scholar] [CrossRef]
- Larson, A.E.; Yu, R.R.Y.; Lee, O.A.; Haas, G.J.; Johnsona, E.A. Antimicrobial activity of hop extracts against Listeria monocytogenes in media and in food. Food Microbiol. 1996, 33, 195–207. [Google Scholar] [CrossRef]
- Ozdal, T.; Capanoglu, E.; Altay, F. A review on protein-phenolic interactions and associated changes. Food Res. Int. 2013, 51, 954–970. [Google Scholar] [CrossRef]
- Gill, A.O.; Delaquis, P.; Russo, P.; Holley, R.A. Evaluation of antilisterial action of cilantro oil on vacuum packed ham. Int. J. Food Microbiol. 2002, 73, 83–92. [Google Scholar] [CrossRef]
- Delaquis, P.J.; Stanich, K.; Girard, B.; Mazza, G. Antimicrobial activity of individual and mixed fractions of dill, cilantro, coriander and eucalyptus essential oils. Int. J. Food Microbiol. 2002, 74, 101–109. [Google Scholar] [CrossRef]
- Gallucci, M.N.; Oliva, M.; Casero, C.; Dambolena, J.; Luna, A.; Zygadlo, J.; Demo, M. Antimicrobial combined action of terpenes against the food-borne microorganisms Escherichia coli, Staphylococcus aureus and Bacillus cereus. Flavour Fragr. J. 2009, 24, 348–354. [Google Scholar] [CrossRef]
- Apostolidis, E.; Kwon, Y.; Shetty, K. Inhibition of Listeria monocytogenes by oregano, cranberry and sodium lactate combination in broth and cooked ground beef systems and likely mode of action through proline metabolism. Int. J. Food Microbiol. 2008, 128, 317–324. [Google Scholar] [CrossRef] [PubMed]
- Cho, Y.S.; Schiller, N.L.; Oh, K.H. Antibacterial effects of green tea polyphenols on clinical isolates of methicillin-resistant Staphylococcus aureus. Curr. Microbiol. 2008, 57, 542–546. [Google Scholar] [CrossRef] [Green Version]
- Neyestani, T.R.; Khalaji, N.; Gharavi, A. Selective microbiologic effects of tea extract on certain antibiotics against Escherichia coli in vitro. J. Altern. Complement. Med. 2007, 13, 1119–1124. [Google Scholar] [CrossRef]
- Lee, Y.S.; Han, C.H.; Kang, S.H.; Lee, S.-J.; Kim, S.W.; Shin, O.R.; Sim, Y.-C.; Lee, S.-J.; Cho, Y.-H. Synergistic effect between catechin and ciprofloxacin on chronic bacterial prostatitis rat model. Int. J. Urol. 2005, 12, 383–389. [Google Scholar] [CrossRef]
- Oh, E.; Jeon, B. Synergistic anti-Campylobacter jejuni activity of fluoroquinolone and macrolide antibiotics with phenolic compounds. Front. Microbiol. 2015, 6, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Chusri, S.; Villanueva, I.; Voravuthikunchai, S.P.; Davies, J. Enhancing antibiotic activity: A strategy to control Acinetobacter infections. J. Antimicrob. Chemother. 2009, 64, 1203–1211. [Google Scholar] [CrossRef] [Green Version]
- Alves, M.J.; Ferreira, I.C.F.R.; Froufe, H.J.C.; Abreu, R.M.V.; Martins, A.; Pintado, M. Antimicrobial activity of phenolic compounds identified in wild mushrooms, SAR analysis and docking studies. J. Appl. Microbiol. 2013, 115, 346–357. [Google Scholar] [CrossRef]
- Vaquero, M.J.R.; Alberto, M.R.; de Nadra, M.C.M. Antibacterial effect of phenolic compounds from different wines. Food Control 2007, 18, 93–101. [Google Scholar] [CrossRef]
- Gutiérrez-Larraínzar, M.; Rúa, J.; Caro, I.; de Castro, C.; de Arriaga, D.; García-Armesto, M.R.; del Valle, P. Evaluation of antimicrobial and antioxidant activities of natural phenolic compounds against foodborne pathogens and spoilage bacteria. Food Control 2012, 26, 555–563. [Google Scholar] [CrossRef]
- Teke, G.N.; Kuiate, J.R.; Kueté, V.; Teponno, R.B.; Tapondjou, L.A.; Tane, P.; Giacinti, G.; Vilarem, G. Bio-guided isolation of potential antimicrobial and antioxidant agents from the stem bark of Trilepisium madagascariense. South African J. Bot. 2011, 77, 319–327. [Google Scholar] [CrossRef] [Green Version]
- Cetin-Karaca, H.; Newman, M.C. Antimicrobial efficacy of plant phenolic compounds against Salmonella and Escherichia Coli. Food Biosci. 2015, 11, 8–16. [Google Scholar] [CrossRef]
- Taguri, T.; Tanaka, T.; Kouno, I. Antimicrobial activity of 10 different plant polyphenols against bacteria causing food-borne disease. Biol. Pharm. Bull. 2004, 27, 1965–1969. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Orhan, D.D.; Özçelik, B.; Özgen, S.; Ergun, F. Antibacterial, antifungal, and antiviral activities of some flavonoids. Microbiol. Res. 2010, 165, 496–504. [Google Scholar] [CrossRef] [PubMed]
- Rozès, N.; Peres, C. Effects of phenolic compounds on the growth and the fatty acid composition of Lactobacillus plantarum. Appl. Microbiol. Biotechnol. 1998, 49, 108–111. [Google Scholar] [CrossRef]
- Nitiema, L.W.; Savadogo, A.; Simpore, J.; Dianou, D.; Traore, A.S. In vitro antimicrobial activity of some phenolic compounds (coumarin and quercetin) against gastroenteritis bacterial strains. Int. J. Microbiol. Res. 2012, 3, 183–187. [Google Scholar] [CrossRef]
- Fernández, M.A.; García, M.D.; Sáenz, M.T. Antibacterial activity of the phenolic acids fractions of Scrophularia frutescens and Scrophularia sambucifolia. J. Ethnopharmacol. 1996, 53, 11–14. [Google Scholar] [CrossRef]
- Carraturo, A. Antibacterial activity of phenolic compounds derived from Ginkgo biloba sarcotestas against food-borne pathogens. Br. Microbiol. Res. J. 2014, 4, 18–27. [Google Scholar] [CrossRef]
- Fasolato, L.; Cardazzo, B.; Balzan, S.; Carraro, L.; Taticchi, A.; Montemurro, F.; Novelli, E. Minimum bactericidal concentration of phenols extracted from oil vegetation water on spoilers, starters and food-borne bacteria. Ital. J. Food Saf. 2015, 4, 4–6. [Google Scholar] [CrossRef] [Green Version]
- Roila, R.; Ranucci, D.; Valiani, A.; Galarini, R.; Servili, M.; Branciari, R. Antimicrobial and anti-biofilm activity of olive oil. Acta Sci. Pol. Technol. Aliment. 2019, 18, 43–52. [Google Scholar] [CrossRef] [PubMed]
- Liaqat, A.; Zahoor, T.; Atif, M.; Muhammad, R. Characterization and antimicrobial potential of bioactive components of sonicated extract from garlic (Allium sativum) against foodborne pathogens. J. Food Process. Preserv. 2019, 43, 1–8. [Google Scholar] [CrossRef]
- Rivera Calo, J.; Crandall, P.G.; Bryan, C.A.O.; Ricke, S.C. Essential oils as antimicrobials in food systems e—A review. Food Control 2015, 54, 111–119. [Google Scholar] [CrossRef]
- Puupponen-Pimia, R.; Nohynek, L.; Meier, C.; Kahkonen, M.; Heinonen, M.; Hopia, A.; Oksman-Caldentey, K. Antimicrobial properties of phenolic compounds from berries. J. Appl. Microbiol. 2001, 90, 494–507. [Google Scholar] [CrossRef] [PubMed]
- Ambrosio, C.M.S.; Contreras-Castillo, C.J.; Da Gloria, E.M. In vitro mechanism of antibacterial action of a citrus essential oil on an enterotoxigenic Escherichia coli and Lactobacillus rhamnosus. J. Appl. Microbiol. 2020. [Google Scholar] [CrossRef]
- Georgantelis, D.; Ambrosiadis, I.; Katikou, P.; Blekas, G.; Georgakis, S. Effect of rosemary extract, chitosan and α-tocopherol on microbiological parameters and lipid oxidation of fresh pork sausages stored at 4 °C. Meat Sci. 2007, 76, 172–181. [Google Scholar] [CrossRef]
- Chaves-López, C.; Serio, A.; Mazzarrino, G.; Martuscelli, M.; Scarpone, E.; Paparella, A. Control of household myco fl ora in fermented sausages using phenolic fractions from olive mill wastewaters. Int. J. Food Microbiol. 2015, 207, 49–56. [Google Scholar] [CrossRef]
- Fasolato, L.; Carraro, L.; Facco, P.; Cardazzo, B.; Balzan, S.; Taticchi, A.; Andrea, N.; Montemurro, F.; Elena, M.; Di, G.; et al. Agricultural by-products with bioactive effects: A multivariate approach to evaluate microbial and physicochemical changes in a fresh pork sausage enriched with phenolic compounds from olive vegetation water. Int. J. Food Microbiol. 2016, 228, 34–43. [Google Scholar] [CrossRef]
- Busatta, C.; Mossi, A.J.; Regina, M.; Rodrigues, A.; Cansian, R.L.; de Oliveira, J.V. Evaluation of origanum vulgare essential oil as antimicrobial agent in sausage. Brazilian J. Microbiol. 2007, 38, 610–616. [Google Scholar] [CrossRef] [Green Version]
- Busatta, C.; Vidal, R.S.; Popiolski, A.S.; Mossi, A.J.; Dariva, C.; Rodrigues, M.R.A. Application of Origanum majorana L. essential oil as an antimicrobial agent in sausage. Food Microbiol. 2008, 25, 207–211. [Google Scholar] [CrossRef]
- Hayrapetyan, H.; Hazeleger, W.C.; Beumer, R.R. Inhibition of Listeria monocytogenes by pomegranate (Punica granatum) peel extract in meat paté at different temperatures. Food Control 2012, 23, 66–72. [Google Scholar] [CrossRef]
- Ravishankar, S.; Zhu, L.; Olsen, C.; McHugh, T.; Friedman, M. Edible apple film wraps containing plant antimicrobials inactivate foodborne pathogens on meat and poultry products. J. Food Microbiol. Saf. 2009, 74, 440–445. [Google Scholar] [CrossRef] [PubMed]
- Tamkute, L.; Gil, B.M.; Carbadillo, J.R.; Pukalskiene, M.; Venskutonis, P.R. Effect of cranberry pomace extracts isolated by pressurized ethanol and water on the inhibition of food pathogenic/spoilage bacteria and the quality of pork products. Food Res. Int. 2019, 120, 38–51. [Google Scholar] [CrossRef] [PubMed]
- Soares, J.M.; Franklin, P.; Maria, B.; Puton, S.; Brustolin, A.P.; Cansian, R.L.; Dallago, R.M.; Valduga, E. Antimicrobial and antioxidant activity of liquid smoke and its potential application to bacon. Innov. Food Sci. Emerg. Technol. 2016, 38, 189–197. [Google Scholar] [CrossRef]
- De Souza, E.L.; de Barros, J.C.; da Conceição, M.L.; Gomes Neto, N.J.; da Costa, A.C.V. Combined application of Origanum vulgare L. essential oil and acetic acid for controlling the growth of Staphylococcus aureus in foods. Braz. J. Microbiol. 2009, 40, 387–393. [Google Scholar] [CrossRef] [Green Version]
- Tremonte, P.; Sorrentino, E.; Succi, M.; Tipaldi, L.; Pannella, G.; Mendiola, J.A.; Di Renzo, T.; Reale, A.; Coppola, R. Antimicrobial Effect of Malpighia Punicifolia and Extension of Water Buffalo Steak Shelf-Life. J. Food Sci. 2016, 81, 97–105. [Google Scholar] [CrossRef] [Green Version]
- Hayouni, E.; Chraief, I.; Abedrabba, M.; Bouix, M.; Leveau, J.; Mohammed, H.; Hamdi, M. Tunisian Salvia officinalis L. and Schinus molle L. essential oils: Their chemical compositions and their preservative effects against Salmonella inoculated in minced beef meat. Int. J. Food Microbiol. 2008, 125, 242–251. [Google Scholar] [CrossRef]
- Palmeri, R.; Parafati, L.; Restuccia, C.; Fallico, B. Application of prickly pear fruit extract to improve domestic shelf life, quality and microbial safety of sliced beef. Food Chem. Toxicol. 2018, 118, 355–360. [Google Scholar] [CrossRef]
- Djenane, D.; Yangüela, J.; Montañés, L.; Djerbal, M.; Roncalés, P. Antimicrobial activity of Pistacia lentiscus and Satureja montana essential oils against Listeria monocytogenes CECT 935 using laboratory media: Efficacy and synergistic potential in minced beef. Food Control 2011, 22, 1046–1053. [Google Scholar] [CrossRef]
- Mhalla, D.; Bouaziz, A.; Ennouri, K.; Chawech, R.; Smaoui, S.; Jarraya, R.; Tounsi, S.; Trigui, M. Antimicrobial activity and bioguided fractionation of Rumex tingitanus extracts for meat preservation. Meat Sci. 2017, 125, 22–29. [Google Scholar] [CrossRef]
- Del Nobile, M.; Conte, A.; Cannarsi, M.; Sinigaglia, M. Strategies for prolonging the shelf life of minced beef patties. J. Food Saf. 2009, 29, 14–25. [Google Scholar] [CrossRef]
- García-Lomillo, J.; González-Sanjosé, M.L.; Del Pino-García, R.; Rivero-Pérez, M.D.; Muñiz-Rodríguez, P. Alternative natural seasoning to improve the microbial stability of low-salt beef patties. Food Chem. 2017, 227, 122–128. [Google Scholar] [CrossRef] [PubMed]
- Sagdic, O.; Ozturk, I.; Yilmaz, M.T.; Yetim, H. Effect of grape pomace extracts obtained from different grape varieties on microbial quality of beef patty. J. Food Sci. 2011, 76, 515–521. [Google Scholar] [CrossRef] [PubMed]
- Ekici, L.; Ozturk, I.; Karaman, S.; Caliskan, O.; Tornuk, F.; Sagdic, O.; Yetim, H. Effects of black carrot concentrate on some physicochemical, textural, bioactive, aroma and sensory properties of sucuk, a traditional Turkish dry-fermented sausage. LWT Food Sci. Technol. 2015, 62, 718–726. [Google Scholar] [CrossRef]
- Burt, S.A.; Fledderman, M.J.; Haagsman, H.P.; Van Knapen, F.; Veldhuizen, E.J.A. Inhibition of Salmonella enterica serotype Enteritidis on agar and raw chicken by carvacrol vapour. Int. J. Food Microbiol. 2007, 119, 346–350. [Google Scholar] [CrossRef]
- Chouliara, E.; Karatapanis, A.; Savvaidis, I.N.; Kontominas, M.G.Ã. Combined effect of oregano essential oil and modified atmosphere packaging on shelf-life extension of fresh chicken breast meat, stored at 4 °C. Food Microbiol. 2007, 24, 607–617. [Google Scholar] [CrossRef]
- Wafa, B.A.; Makni, M.; Ammar, S.; Khannous, L.; Ben Hassana, A.; Bouaziz, M.; Es-Safi, N.E.; Gdoura, R. Antimicrobial effect of the Tunisian Nana variety Punica granatum L. extracts against Salmonella enterica (serovars Kentucky and Enteritidis) isolated from chicken meat and phenolic composition of its peel extract. Int. J. Food Microbiol. 2017, 241, 123–131. [Google Scholar] [CrossRef]
- Muppalla, S.R.; Chawla, S. Effect of gum Arabic-polyvinyl alcohol films containing seed cover extract of zanthoxylum rhetsa on shelf life of refrigerated ground chicken meat. J. Food Saf. 2018, 38, 1–10. [Google Scholar] [CrossRef]
- Mulla, M.; Ahmed, J.; Al-attar, H.; Castro-aguirre, E.; Ali, Y.; Auras, R. Antimicrobial efficacy of clove essential oil infused into chemically modified LLDPE film for chicken meat packaging. Food Control 2017, 73, 663–671. [Google Scholar] [CrossRef]
- Liu, D.; Tsau, R.; Lin, Y.; Jan, S.; Tan, F. Effect of various levels of rosemary or Chinese mahogany on the quality of fresh chicken sausage during refrigerated storage. Food Chem. 2009, 117, 106–113. [Google Scholar] [CrossRef]
- Kharrat, N.; Salem, H.; Mrabet, A.; Aloui, F.; Triki, S.; Fendri, A.; Gargouri, Y. Synergistic effect of polysaccharides, betalain pigment and phenolic compounds of red prickly pear (Opuntia stricta) in the stabilization of salami. Int. J. Biol. Macromol. 2018, 111, 561–568. [Google Scholar] [CrossRef] [PubMed]
- Karabagias, I.; Badeka, A.; Kontominas, M.G. Shelf life extension of lamb meat using thyme or oregano essential oils and modified atmosphere packaging. Meat Sci. 2011, 88, 109–116. [Google Scholar] [CrossRef] [PubMed]
- Govaris, A.; Solomakos, N.; Pexara, A.; Chatzopoulou, P.S. The antimicrobial effect of oregano essential oil, nisin and their combination against Salmonella enteritidis in minced sheep meat during refrigerated storage. Int. J. Food Microbiol. 2010, 137, 175–180. [Google Scholar] [CrossRef] [PubMed]
- Upadhyay, A.; Upadhyaya, I.; Kollanoor-Johny, A.; Baskaran, S.A.; Mooyottu, S.; Karumathil, D.; Venkitanarayanan, K. Inactivation of Listeria monocytogenes on frankfurters by plant-derived antimicrobials alone or in combination with hydrogen peroxide. Int. J. Food Microbiol. 2013, 163, 114–118. [Google Scholar] [CrossRef]
- Xi, Y.; Sullivan, G.A.; Jackson, A.L.; Zhou, G.H.; Sebranek, J.G. Effects of natural antimicrobials on inhibition of Listeria monocytogenes and on chemical, physical and sensory attributes of naturally-cured frankfurters. Meat Sci. 2012, 90, 130–138. [Google Scholar] [CrossRef]
- Kurcubic, V.S.; Maskovic, P.Z.; Vujic, J.M.; Vranic, D.V.; Veskovic-Moracanin, S.M.; Okanovic, D.G.; Lilic, S.V. Antioxidant and antimicrobial activity of Kitaibelia vitifolia extract as alternative to the added nitrite in fermented dry sausage. Meat Sci. 2014, 97, 459–467. [Google Scholar] [CrossRef]
- Chattopadhyay, R.R.; Bhattacharyya, S.K. Herbal spices as alternative antimicrobial food preservatives: An update. Pharmacogn. Rev. 2007, 1, 239–247. [Google Scholar]
- Özvural, E.B.; Huang, Q.; Chikindas, M.L. The comparison of quality and microbiological characteristic of hamburger patties enriched with green tea extract using three techniques: Direct addition, edible coating and encapsulation. LWT Food Sci. Technol. 2016, 68, 385–390. [Google Scholar] [CrossRef]
- Coma, V. Bioactive packaging technologies for extended shelf life of meat-based products. Meat Sci. 2008, 78, 90–103. [Google Scholar] [CrossRef]
- Bajpai, V.K.; Baek, K.; Chul, S. Control of Salmonella in foods by using essential oils: A review. J. Food Sci. 2012, 45, 722–734. [Google Scholar] [CrossRef]
- Ha, J.U.; Kim, Y.M.; Lee, D.S. Multilayered antimicrobial polyethylene films applied to the packaging of ground beef. Packag. Technol. Sci. 2001, 14, 55–62. [Google Scholar] [CrossRef]
- Arcan, I.; Yemenicio, A. Incorporating phenolic compounds opens a new perspective to use zein films as flexible bioactive packaging materials. Food Res. Int. 2011, 44, 550–556. [Google Scholar] [CrossRef] [Green Version]
- Widsten, P.; Mesic, P.; Cruz, C.; Fletcher, G.; Chycka, M. Inhibition of foodborne bacteria by antibacterial coatings printed onto food packaging films. J. Food Sci. Technol. 2017, 54, 2379–2386. [Google Scholar] [CrossRef] [PubMed]
- Guarda, A.; Rubilar, J.F.; Miltz, J.; Jose, M. The antimicrobial activity of microencapsulated thymol and carvacrol. Int. J. Food Microbiol. 2011, 146, 144–150. [Google Scholar] [CrossRef] [PubMed]
- Esfanjani, A.F.; Jafari, S.M. Biopolymer nano-particles and natural nano-carriers for nano-encapsulation of phenolic compounds. Colloids Surf. B Biointerfaces 2016, 146, 532–543. [Google Scholar] [CrossRef]
- Donsì, F.; Annunziata, M.; Sessa, M.; Ferrari, G. Nanoencapsulation of essential oils to enhance their antimicrobial activity in foods. LWT Food Sci. Technol. 2011, 44, 1908–1914. [Google Scholar] [CrossRef]
- Tornuk, F.; Hancer, M.; Sagdic, O.; Yetim, H. LLDPE based food packaging incorporated with nanoclays grafted with bioactive compounds to extend shelf life of some meat products. LWT Food Sci. Technol. 2015, 64, 540–546. [Google Scholar] [CrossRef]
- Rezaei, A.; Fathi, M.; Mahdi, S. Nanoencapsulation of hydrophobic and low-soluble food bioactive compounds within di ff erent nanocarriers. Food Hydrocoll. 2019, 88, 146–162. [Google Scholar] [CrossRef]
- Spigno, G.; Donsì, F.; Amendola, D.; Sessa, M.; Ferrari, G.; Faveri, D.M. De Nanoencapsulation systems to improve solubility and antioxidant efficiency of a grape marc extract into hazelnut paste. J. Food Eng. 2013, 114, 207–214. [Google Scholar] [CrossRef]
- Wen, P.; Zhu, D.; Wu, H.; Zong, M.; Jing, Y. Encapsulation of cinnamon essential oil in electrospun nanofibrous film for active food packaging. Food Control 2016, 59, 366–376. [Google Scholar] [CrossRef]
- Jayanegara, A.; Kreuzer, M.; Wina, E.; Leiber, F. Significance of phenolic compounds in tropical forages for the ruminal bypass of polyunsaturated fatty acids and the appearance of biohydrogenation intermediates as examined in vitro. Anim. Prod. Sci. 2011, 51, 1127–1136. [Google Scholar] [CrossRef]
- Patra, A.K.; Saxena, J. Exploitation of dietary tannins to improve rumen metabolism and ruminant nutrition. J. Sci. Food Agric. 2011, 91, 24–37. [Google Scholar] [CrossRef] [PubMed]
- Vasta, V.; Daghio, M.; Cappucci, A.; Buccioni, A.; Serra, A.; Viti, C.; Mele, M. Invited review: Plant polyphenols and rumen microbiota responsible for fatty acid biohydrogenation, fiber digestion, and methane emission: Experimental evidence and methodological approaches. J. Dairy Sci. 2019, 102, 3781–3804. [Google Scholar] [CrossRef] [PubMed]
- Brenes, A.; Viveros, A.; Chamorro, S.; Arija, I. Use of polyphenol-rich grape by-products in monogastric nutrition. A review. Anim. Feed Sci. Technol. 2016, 211, 1–17. [Google Scholar] [CrossRef]
- Branciari, R.; Galarini, R.; Giusepponi, D.; Trabalza-Marinucci, M.; Forte, C.; Roila, R.; Miraglia, D.; Servili, M.; Acuti, G.; Valiani, A. Oxidative status and presence of bioactive compounds in meat from chickens fed polyphenols extracted from olive oil industry waste. Sustainability 2017, 9, 1566. [Google Scholar] [CrossRef] [Green Version]
- Jung, S.; Choe, J.H.; Kim, B.; Yun, H.; Kruk, Z.A.; Jo, C. Effect of dietary mixture of gallic acid and linoleic acid on antioxidative potential and quality of breast meat from broilers. Meat Sci. 2010, 86, 520–526. [Google Scholar] [CrossRef]
- Giannenas, I.; Tzora, A.; Sarakatsianos, I.; Karamoutsios, A.; Skoufos, S.; Papaioannou, N.; Anastasiou, I.; Skoufos, I. The effectiveness of the use of oregano and laurel essential oils in chicken feeding. Ann. Anim. Sci. 2016, 16, 779–796. [Google Scholar] [CrossRef] [Green Version]
- Govaris, A.; Florou-Paneri, P.; Botsoglou, E.; Giannenas, I.; Amvrosiadis, I.; Botsoglou, N. The inhibitory potential of feed supplementation with rosemary and/or α-tocopheryl acetate on microbial growth and lipid oxidation of turkey breast during refrigerated storage. LWT Food Sci. Technol. 2007, 40, 331–337. [Google Scholar] [CrossRef]
- García, E.M.; López, A.; Zimerman, M.; Hernández, O.; Arroquy, J.I.; Nazareno, M.A. Enhanced oxidative stability of meat by including tannin-rich leaves of woody plants in goat diet. Asian Australas. J. Anim. Sci. 2019, 32, 1439–1447. [Google Scholar] [CrossRef] [Green Version]
- Liu, H.; Zhou, D.; Tong, J.; Vaddella, V. Influence of chestnut tannins on welfare, carcass characteristics, meat quality, and lipid oxidation in rabbits under high ambient temperature. Meat Sci. 2012, 90, 164–169. [Google Scholar] [CrossRef]
- Liu, H.; Li, K.; Mingbin, L.; Zhao, J.; Xiong, B. Effects of chestnut tannins on the meat quality, welfare, and antioxidant status of heat-stressed lambs. Meat Sci. 2016, 116, 236–242. [Google Scholar] [CrossRef] [PubMed]
- Ranucci, D.; Beghelli, D.; Trabalza-Marinucci, M.; Branciari, R.; Forte, C.; Olivieri, O.; Badillo Pazmay, G.V.; Cavallucci, C.; Acuti, G. Dietary effects of a mix derived from oregano (Origanum vulgare L.) essential oil and sweet chestnut (Castanea sativa Mill.) wood extract on pig performance, oxidative status and pork quality traits. Meat Sci. 2015, 100, 319–326. [Google Scholar] [CrossRef] [PubMed]
- Serrano, R.; Jordán, M.J.; Bañón, S. Use of dietary rosemary extract in ewe and lamb to extend the shelf life of raw and cooked meat. Small Rumin. Res. 2014, 116, 144–152. [Google Scholar] [CrossRef]
- Simitzis, P.E.; Deligeorgis, S.G.; Bizelis, J.A.; Dardamani, A.; Theodosiou, I.; Fegeros, K. Effect of dietary oregano oil supplementation on lamb meat characteristics. Meat Sci. 2008, 79, 217–223. [Google Scholar] [CrossRef]
- Luciano, G.; Vasta, V.; Monahan, F.J.; López-Andrés, P.; Biondi, L.; Lanza, M.; Priolo, A. Antioxidant status, colour stability and myoglobin resistance to oxidation of longissimus dorsi muscle from lambs fed a tannin-containing diet. Food Chem. 2011, 124, 1036–1042. [Google Scholar] [CrossRef]
- Carocho, M.; Morales, P.; Ferreira, I.C.F.R. Reviewing the chemistry, food applications, legislation and role as preservatives. Trends Food Sci. Technol. 2018, 71, 107–120. [Google Scholar] [CrossRef] [Green Version]
- European Parliament and Council Commission Regulation (EU). Amending Annex II to Regulation (EC) No 1333/2008 of the European Parliament and of the Council by establishing a Union list of food additives. Off. J. Eur. Union 2011, L295, 1–177. [CrossRef]
- Commission Implementing Regulation (EU). Adopting the list of flavouring substances provided for by Regulation (EC) No 2232/96 of the European Parliament and of the Council, introducing it in Annex I to Regulation (EC) No 1334/2008 of the European Parliament and of the Council and repealing Commission Regulation (EC) No 1565/2000 and Commission Decision 1999/217/EC. Off. J. Eur. Union 2012, L 267, 1–161.
- European Commission Regulation (EC). On active and intelligent materials and articles intended to come into contact with food. Off. J. Eur. Union 2009, L 135, 3–11.
- Paibon, W.; Yimnoi, C.; Tembab, N.; Boonlue, W.; Jampachaisri, K.; Nuengchamnong, N.; Waranuch, N.; Ingkaninan, K. Comparison and evaluation of volatile oils from three different extraction methods for some Thai fragrant flowers. Int. J. Cosmet. Sci. 2011, 33, 150–156. [Google Scholar] [CrossRef]
- Mohammadhosseini, M.; Sarker, S.D.; Akbarzadeh, A. Chemical composition of the essential oils and extracts of Achillea species and their biological activities: A review. J. Ethnopharmacol. 2017, 199, 257–315. [Google Scholar] [CrossRef] [PubMed]
- Swamy, M.K.; Akhtar, M.S.; Sinniah, U.R. Antimicrobial properties of plant essential oils against human pathogens and their mode of action: An updated review. Evid Based Complement Alternat Med. 2016. [Google Scholar] [CrossRef] [PubMed]
- Martins, S.; Mussatto, S.I.; Martínez-avila, G.; Montañez-saenz, J.; Aguilar, C.N.; Teixeira, J.A. Bioactive phenolic compounds: Production and extraction by solid-state fermentation. A review. Biotechnol. Adv. 2011, 29, 365–373. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, W.; Xiao, S.; Samaraweera, H.; Joo, E.; Ahn, D.U. Improving functional value of meat products. Meat Sci. 2010, 86, 15–31. [Google Scholar] [CrossRef] [PubMed]
- Toldrá, F.; Reig, M. Innovations for healthier processed meats. Trends Food Sci. Technol. 2011, 22, 517–522. [Google Scholar] [CrossRef]
- Olmedilla-Alonso, B.; Jiménez-Colmenero, F.; Sánchez-Muniz, F.J. Development and assessment of healthy properties of meat and meat products designed as functional foods. Meat Sci. 2013, 95, 919–930. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abdallah, A.; Zhang, P.; Elemba, E.; Zhong, Q.; Sun, Z. Carcass characteristics, meat quality, and functional compound deposition in sheep fed diets supplemented with Astragalus membranaceus by-product. Anim. Feed Sci. Technol. 2019, 259, 114346. [Google Scholar] [CrossRef]
- Pogorzelska-Nowicka, E.; Atanasov, A.G.; Horbanczuk, J.; Wierzbicka, A. Bioactive compounds in functional meat products. Molecules 2018, 23, 307. [Google Scholar] [CrossRef] [Green Version]
- Ono, Y.; Hattori, E.; Fukaya, Y.; Imai, S.; Ohizumi, Y. Anti-obesity effect of Nelumbo nucifera leaves extract in mice and rats. J. Ethnopharmacol. 2006, 106, 238–244. [Google Scholar] [CrossRef]
- Jeong, C.H.; Choi, G.N.; Kim, J.H.; Kwak, J.H.; Jeong, H.R.; Kim, D.O.; Heo, H.J. Protective effects of aqueous extract from Cudrania tricuspidata on oxidative stress-induced neurotoxicity. Food Sci. Biotechnol. 2010, 19, 1113–1117. [Google Scholar] [CrossRef]
- Lin, D.; Xiao, M.; Zhao, J.; Li, Z.; Xing, B.; Li, X.; Kong, M.; Li, L.; Zhang, Q.; Liu, Y.; et al. An overview of plant phenolic compounds and their importance in human nutrition and management of type 2 diabetes. Molecules 2016, 21, 1374. [Google Scholar] [CrossRef] [PubMed]
- Chakroun, M.; Khemakhem, B.; Ben Mabrouk, H.; El Abed, H.; Makni, M.; Bouaziz, M.; Drira, N.; Marrakchi, N.; Mejdoub, H. Evaluation of anti-diabetic and anti-tumoral activities of bioactive compounds from Phoenix dactylifera L.’s leaf: In vitro and in vivo approach. Biomed. Pharmacother. 2016, 84, 415–422. [Google Scholar] [CrossRef] [PubMed]
- Kchaou, W.; Abbès, F.; Ben Mansour, R.; Blecker, C.; Attia, H.; Besbes, S. Phenolic profile, antibacterial and cytotoxic properties of second grade date extract from Tunisian cultivars (Phoenix dactylifera L.). Food Chem. 2016, 194, 1048–1055. [Google Scholar] [CrossRef] [PubMed]
Meat/Meat-Based Product | Treatment (Main Phenolic Compound) | LA 1 | PA 2 | COL 3 | FL/TA 4 | FA 5 | Ref 6 |
---|---|---|---|---|---|---|---|
Pork meat and meat-based products | |||||||
Fresh meat | Lotus extract (tannins, flavonoids) | ++ | N/A | ++ | 0/++ | N/A | [47] |
Foal steaks | Oregano essential oil (N/A) * | ++ | ++ | + | ++ | N/A | [48] |
Green tea extract (N/A) * | ++ | ++ | 0 | 0 | |||
Patties | Rosemary extract (N/A) | ++ | + | 0 | N/A | AA (-) | [49] |
Green tea extract (N/A) | ++ | + | 0 | N/A | AA (-) | ||
Green tea extract (N/A) | ++ | N/A | ++ | N/A | [50] | ||
Grape extract (N/A) | ++ | N/A | - | N/A | BHT (-) | ||
Cudrania tricuspidata leaf powder (flavonoids) | ++ | N/A | ++ | N/A | N/A | [51] | |
Black currant (Ribes nigrum L.) extract (anthocyanins) | ++ | ++ | + | 0 | N/A | [52] | |
Licorice (Glycyrrhiza glabra) extract [hispaglabridin (A and B), glabridin,4′-O-methylglabridin, isoprenylchalcone, liquiritigenin, isoliquir-itigenin, formononetin] | ++ | N/A | N/A | + | BHA (0) | [53] | |
Tea polyphenols (catechins) * | ++ | N/A | ++ | ++ | N/A | [54] | |
Rosemary extract (N/A) | ++ | ++ | + | 0 | BHT (-) | [55] | |
Lemon balm extract (N/A) | ++ | ++ | + | 0 | BHT (-) | ||
Grape seed extract (N/A) | ++ | N/A | 0 | 0 | N/A | [56] | |
Bearberry extract (N/A) | ++ | N/A | 0 | 0 | N/A | ||
Berries extract (N/A) | ++ | N/A | N/A | N/A | N/A | [57] | |
Meatballs | Ginkgo biloba leaves extract (polyphenols, phenolic acids, flavonols) | ++ | N/A | N/A | N/A | BHT (-) | [58] |
Liver pâté | Chestnut extract (N/A) | ++ | N/A | N/A | 0 | BHT (+) | [59] |
Grape extract (N/A) | ++ | N/A | N/A | 0 | BHT (-) | ||
Tea extract (N/A) | ++ | N/A | N/A | 0 | BHT (-) | ||
Date palm by-products (N/A) | ++ | 0 | - | 0 | N/A | [60] | |
Date palm paste & annatto extract (N/A) | + | N/A | N/A | N/A | N/A | [61] | |
Sausages | Lutein (lutein) | 0/+ | N/A | 0 | 0 | N/A | [62] |
Seasamol (seasamol) | ++ | N/A | 0 | 0 | N/A | ||
Ellagic acid (ellargic acid) | ++ | N/A | 0 | - | N/A | ||
Olive leaf extract (Oleuropein, verbascoside, luteolin- | ++ | N/A | 0 | 0 | N/A | ||
7-O-glucoside, apigenin-7-O-glucoside, tyrosol, hydroxytyrosol) | |||||||
Grape seed extract (N/A) | ++ | N/A | + | ++ | BHT (-) | [63] | |
Chestnut extract (N/A) | ++ | N/A | + | ++ | BHT (-) | ||
Adzuki bean extract (N/A) | ++ | N/A | -/0 | 0 | BHT (0) | [64] | |
Jaboticaba peel extract (N/A) | ++ | N/A | 0 | 0 | N/A | [65] | |
Green tea extract (N/A) | ++ | - | - | 0 | N/A | [66] | |
Rosemary extra (N/A) | ++ | - | - | - | N/A | ||
Sage (N/A) | ++ | + | ++ | 0 | N/A | [67] | |
Lotus seed epicarp extract (flavonoids) | ++ | N/A | N/A | N/A | N/A | [68] | |
Shiitake powder (N/A) | ++ | N/A | 0 | + | SN (-) | [69] | |
Banana male flowers extract (flavonoids) | ++ | N/A | 0 | 0 | N/A | [70] | |
Bacon | Tea polyphenols (N/A) | ++ | N/A | N/A | N/A | TC (-) | [71] |
Ham | Garlic, cinnamon, clove and rosemary essential oils (N/A) | ++ | ++ | ++ | N/A | SC-SE [LA (-), PA (0)] | [72] |
Rosa canina L. extract (N/A) | ++ | ++ | 0 | N/A | SC-SE [LA (0), PA (-)] | ||
Beef meat and meat-based products | |||||||
Fresh meat | Rosemary extract (carnosic acid, carnosol) | ++ | N/A | N/A | N/A | BHT (-), PG (+) | [73] |
Polyvinylpolypyrrolidone brewery washing solution (benzoic acid derivatives, flavan-3-ols, cinnamic acids, flavanones, flavones, flavonols, acetophenone derivates, stilbenoids) * | ++ | N/A | N/A | N/A | BHT (-),PG (0) | ||
Lotus rhizome knot and lotus leaf extracts (tannins and flavonoids) | ++ | N/A | ++ | 0/++ | N/A | [47] | |
Olive hydroxytyrosol or 4-dihydroxyphenylglycol (hydroxytyrosol, 4-dihydroxyphenylglycol) * | ++ | N/A | N/A | N/A | N/A | [74] | |
Patties | Chamnamul (Pimpinella brachycarpa) extract (N/A) | ++ | N/A | ++ | N/A | BHT (+) | [75] |
Fatsia (Aralia elata) extract (N/A) | ++ | N/A | ++ | N/A | BHT (0) | ||
Chestnut extract (N/A) | ++ | N/A | + | 0 | BHT | [76] | |
Seasonings derived from wine pomace (N/A) | ++ | N/A | N/A | N/A | Sulfites (-) | [77] | |
Meatballs | Film with sage (Salvia officinalis) (N/A) * | ++ | N/A | 0 | - | N/A | [78] |
Film with Laurus nobilis (N/A) * | ++ | N/A | 0 | - | N/A | ||
Pomegranate peel extract (N/A) | ++ | ++ | + | 0 | BHT (-) | [79] | |
Sausages | Grape seed extract (N/A) | ++ | N/A | + | + | AA, PG (-) | [80] |
Green tea extract (N/A) | ++ | N/A | + | 0 | N/A | [81] | |
Stinging nettle extract (N/A) | ++ | N/A | - | 0 | N/A | ||
Olive leaves extract (N/A) | ++ | N/A | - | 0 | N/A | ||
Poultry meat and meat-based products | |||||||
Fresh meat | Pequi (Caryocar brasiliense) waste extract (phenolic acids, flavonoids, anthocyanins) | ++ | ++ | - | N/A | BHT (-) | [82] |
Jucara (Euterpe edulis) waste extract (phenolic acids, flavonoids, anthocyanins) | 0 | ++ | - | N/A | BHT (+) | ||
Meat wafer | Apple peel (N/A) | ++ | N/A | ++ | ++ | N/A | [83] |
Banana peel (N/A) | ++ | N/A | ++ | ++ | N/A | ||
Aloe vera gel (N/A) | ++ | N/A | ++ | ++ | N/A | ||
Drumstick leaf powder (N/A) | ++ | N/A | ++ | ++ | N/A | ||
Patties | Pomegranate juice, pomegranate rind powder extract (N/A) | ++ | N/A | 0 | 0 | BHT (-) | [84] |
Lamb meat and meat-based products | |||||||
Patties | Tomato by-products extract (N/A) | 0 | 0 | 0 | N/A | SA (0) | [85] |
Red grape by-products extract (N/A) | ++ | ++ | 0 | N/A | SA (-) | ||
Olive by-products extract (N/A) | ++ | ++ | 0 | N/A | SA (-) | ||
Pomegranate by-products extract (N/A) | 0 | 0 | 0 | N/A | SA (0) | ||
Burger | Origanum vulgare extract (rosmarinic acid, cathechin/ epicatechin derivative, 4-(3,4-Dihydroxybenzoyloxymethyl)phenyl-β-D-glucopyranoside, naringenin) | ++ | ++ | + | 0 | SE (-) | [86] |
Sausages | Origanum vulgare extract (N/A) | ++ | ++ | - | 0/- | SE (0) | [87] |
Mixed meat sausages | |||||||
Sucuk | Green tea extract (N/A) | ++ | N/A | 0 | ++ | BHT (-) | [88] |
(lamb- beef) | Thymbra spicata oil (N/A) | ++ | N/A | 0 | ++ | BHT (-) | |
Poultry- pork | Nutmeg essential oil (N/A) | ++ | N/A | 0 | ++ | N/A | [89] |
Phenolic Compound | Targeted Microorganisms | Ref 1 |
---|---|---|
Phenolic acids | ||
p-coumaric acid | Saccharomyces cerevisiae, Escherichia coli, Salmonella enterica serovar Typhimurium, MRSA, Staphylococcus aureus, Bacillus subtilis, Shigella dysenteriae, Streptococcus pneumoniae | [90,100,119] |
Ferulic acid | S. cerevisiae, Lactobacillus plantarum, S. aureus, Staphylococcus epidermidis, MRSA | [90,119] |
Caffeic acid | L. plantarum, E. coli, S. aureus, S. epidermidis, MRSA, Serratia marcescens, Proteus mirabilis | [90,119,120] |
Gallic acid | E. coli, S. aureus. Klebsiella pneumoniae | [120,121] |
Vanillic cid | E. coli, S. aureus, MRSA, P. mirabilis, K. pneumonia, Candida albicans, C. neoformans | [119,120,122] |
Protocatechuic acid | E. coli, S. aureus, L. monocytogenes, Streptococcus agalactiae | [119,120] |
Syringic acid | MRSA, L. monocytogenes | [119] |
2,4-dihydroxybenzoic acid | E. coli, MRSA, Enterococcus faecalis | [119] |
Flavonoids | ||
Epicatechin | E. coli, E. coli O157:H7, S. enterica serovar Choleraesuis, Salmonella enterica serovar Enteritidis, Salmonella enterica serovar Paratyphi | [123] |
Epigallocatechin | E. coli, Salmonella spp., S. aureus, Vibrio spp. | [124] |
Εpigallocatechin-3-O-gallate | E. coli, Salmonella spp., S. aureus, Vibrio spp. | [124] |
Procyanidins | S. aureus | [124] |
Theaflavins | S. aureus, Vibrio spp. | [124] |
Prodelphinidin | E. coli, Salmonella spp., S. aureus, Vibrio spp. | |
Myricetin | E. coli, E. coli O157:H7, S. Choleraesuis, S. Enteritidis, S. Paratyphi | [123] |
Quercetin | E. coli, E. coli O157:H7, S. Choleraesuis, S. Enteritidis, S. Paratyphi, S. marcescens, P. mirabilis, K. pneumonia | [123] |
[120] | ||
Rutin | E. coli, E. coli O157:H7, S. Choleraesuis, S. Enteritidis, S. Paratyphi, S. marcescens, P. mirabilis, K. pneumoniae, Pseudomonas aeruginosa, Acinetobacter baumannii | [123] |
[120,125] | ||
Xanthohumol | E. coli, E. coli O157:H7, S. Choleraesuis, S. Enteritidis, S. Paratyphi | [123] |
Quinones | ||
Thymoquinone | E. coli, E. coli O157:H7, S. Choleraesuis, S. Enteritidis, S. Paratyphi | [123] |
Hydroquinone | S. aureus | [121] |
Tannins | ||
Tannins | L. plantarum | [126] |
Castalagin | E. coli, Salmonella spp., S. aureus, Vibrio spp. | [124] |
Punicalagin | S. aureus, Vibrio spp. | [124] |
Tannic acid | S. aureus, Vibrio spp. | [124] |
Geraniin | S. aureus, Vibrio spp. | [124] |
Coumarins | ||
Coumarin | E.coli, S. Typhimurium, Salmonella enterica serovar Infantis, Enterobacter aerogenes | [127] |
Curcuminoids | ||
Curcumin | E. coli, E. coli O157:H7, S. Choleraesuis, S. Enteritidis, S. Paratyphi | [123] |
Other polyphenols | ||
Chlorogenic acid | E. coli, E. coli O157:H7, S. Choleraesuis, S. Enteritidis, S. Paratyphi | [123] |
Terpenes | ||
Carvacrol | E. coli, STEC, S. aureus, P. fluorescens, Bacillus cereus | [112,121] |
Carvone | S. aureus | [112] |
Eugenol | E. coli, E. coli O157:H7, S. Choleraesuis, S. Enteritidis, S. Paratyphi, S. aureus, B. cereus | [112,123] |
Thymol | E. coli, E. coli O157:H7, STEC, S. Choleraesuis, S. Enteritidis, S. Paratyphi, S. aureus, Pseudomonas fluorescens, B. cereus | [121,123] |
Phenolic fractions | ||
Scrophularia frutescens | Bacillus sp. | [128] |
Ginkgo biloba | E. coli, S. Typhimurium, S. aureus, Listeria monocytogenes, Listeria innocua, Streptococcus pyogenes, Shigella dysenteriae, E. aerogenes, Vibrio vulnificus | [129] |
Oil vegetation water | LAB, E. coli O:157 H7, S. Typhimurium, S. aureus, S. xylosus, L. monocytogenes, L. innocua, Pseudomonas spp. | [130] |
Olive oil | Campylobacter jejuni, C. coli | [131] |
Garlic | E. coli, S. aureus | [132] |
Meat/Meat-Based Products | Treatment | Targeted Microorganisms | FA 1 | Ref 2 |
---|---|---|---|---|
Pork meat and meat-based products | ||||
Foal steak | Oregano (O) * | TVC, LAB | N/A | [48] |
Green tea (E) * | Pseudomonas spp., Enterobacteriaceae, yeasts, molds | |||
Patties | Green tea (E) | TVC, LAB, psychrotrophic anaerobic bacteria, Pseudomonas spp. | BHT (-) | [50] |
Grape (E) | ||||
Tea polyphenols (P) * | TVC | N/A | [54] | |
Sausages | Rosemary (E) | Enterobacteriaceae, Pseudomonas spp., yeasts, molds | CH(0), TC (-) | [136] |
Olive mill wastewater (E) | Molds | Ethanol (-) | [137] | |
Olive vegetation water (E) | Staphylococcus spp., molds | N/A | [138] | |
Oregano (O) | Aerobic heterotrofic bacteria, Escherichia coli | N/A | [139,140] | |
Shiitake (P) | TVC | SN (0) | [69] | |
Liver pâté | Date palm and annatto (E) | TVC | N/A | [61] |
Pomegranate peel (E) | Listeria monocytogenes | N/A | [141] | |
Ham | Carvacrol, cinnamaldehyde * | L. monocytogenes | N/A | [142] |
Hamburger | Cranberry pomace (E) | LAB, TVC, L. monocytogenes, Brochothrix thermosphacta, Pseudomonas putida | N/A | [143] |
Bacon | Tea polyphenols, grape seed (E) | TVC, Enterobacteriaceae, Micrococcaceae, yeasts, molds | TC (-) | [71] |
Gingerol | TVC, Enterobacteriaceae, Micrococcaceae | |||
Liquid smoke | E. coli, Salmonella enterica serovar Choleraesuis, Staphylococcus aureus, L. monocytogenes | N/A | [144] | |
Salami | Olive mill wastewater (E) | L. monocytogenes | Nitrate (-) | [14] |
Beef meat and meat-based products | ||||
Fresh meat | Oregano (O) | S. aureus | AC (-) | [145] |
Oregano and cranberry (EP) | L. monocytogenes | LA (-) | [104] | |
Grape seed (E) | E. coli O157:H7, Salmonella enterica serovar Typhimurium, L. monocytogenes | BHA/BHT (-) | [103] | |
Pine bark (E) | ||||
Malpighia punicifolia (E) | B. thermosphacta, Pseudomonas spp. | N/A | [146] | |
Minced meat | Sage (O) | TVC, Enterobacteriaceae, Salmonella enterica serovar Anatum, Salmonella enterica serovar Enteritidis, S. aureus, Bacillus cereus, yeasts, molds | N/A | [147] |
Prickly pear (E) | TVC, Enterobacteriaceae, Pseudomonas spp. | N/A | [148] | |
Pistacia lentiscus (O) Satureja montana (O) | L. monocytogenes | N/A | [149] | |
Rumex tingitanus (E) | L. monocytogenes | N/A | [150] | |
Patties | Thymol | Enterobacteriaceae, Coliforms | N/A | [151] |
Wine pomace seasoning | TVC, LAB | Sulfites (+) | [152] | |
Grape pomace (E) | Coliforms, Enterobacteriaceae, yeasts, molds | N/A | [153] | |
Chamnamul and fatsia (E) | Coliforms | BHT (0) | [75] | |
Sucuk | Black carrot concentrate | Yeasts, molds | SN (-) | [154] |
Poultry meat and meat-based products | ||||
Fresh meat | Carvacrol, cinnamaldehyde | E. coli O157:H7, S. Enteritidis | N/A | [142] |
Carvacrol vapor | S. Enteritidis, | N/A | [155] | |
Oregano (O) | LAB, Enterobacteriaceae, B. thermosphacta, Pseudomonas spp., yeasts | N/A | [156] | |
Pomegranate (E) | Salmonella enterica serovar Kentucky, S. Enteritidis | N/A | [157] | |
Zanthoxylum rhetsa (E) * | TVC, Staphylococcus spp., Coliforms | N/A | [158] | |
Eugenol * | Campylobacter jejuni | AC (-) | [102] | |
Minced meat | Clove (O) * | S. Typhimurium, L. monocytogenes | N/A | [159] |
Sausages | Rosemary, Chinese mahogany (E) | TVC | N/A | [160] |
Salami | Prickly pear (E) | LAB, Staphylococcus spp. | SN-CO (-) | [161] |
Lamb meat and meat-based products | ||||
Fresh meat | Oregano (O) | TVC, Enterobacteriaceae | N/A | [162] |
Thyme (O) | Pseudomonas spp. | |||
Patties | Tomato by-products (E) | Mesophile and psycrotrophic microorganisms, Enterobacteriaceae | [85] | |
Pomegranate by-products (E) | SA (0) | |||
Red grape by-products (E) | Mesophile microorganisms | |||
Olive by-products (E) | SA (0) | |||
Minced meat | Oregano (O) | S. Enteritidis | Nisin (-) | [163] |
Mixed meat sausages | ||||
Beef & pork | β-resorcylic acid, carvacrol, trans-cinnamaldehyde | L. monocytogenes | DMSO (-) | [164] |
Cranberry (P) | L. monocytogenes | NLD (0) | [165] | |
Kitaibelia vitifolia (E) | E. coli | N/A | [166] | |
Poultry & pork | Nutmeg essential (O) | TVC | N/A | [89] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kalogianni, A.I.; Lazou, T.; Bossis, I.; Gelasakis, A.I. Natural Phenolic Compounds for the Control of Oxidation, Bacterial Spoilage, and Foodborne Pathogens in Meat. Foods 2020, 9, 794. https://doi.org/10.3390/foods9060794
Kalogianni AI, Lazou T, Bossis I, Gelasakis AI. Natural Phenolic Compounds for the Control of Oxidation, Bacterial Spoilage, and Foodborne Pathogens in Meat. Foods. 2020; 9(6):794. https://doi.org/10.3390/foods9060794
Chicago/Turabian StyleKalogianni, Aphrodite I., Thomai Lazou, Ioannis Bossis, and Athanasios I. Gelasakis. 2020. "Natural Phenolic Compounds for the Control of Oxidation, Bacterial Spoilage, and Foodborne Pathogens in Meat" Foods 9, no. 6: 794. https://doi.org/10.3390/foods9060794
APA StyleKalogianni, A. I., Lazou, T., Bossis, I., & Gelasakis, A. I. (2020). Natural Phenolic Compounds for the Control of Oxidation, Bacterial Spoilage, and Foodborne Pathogens in Meat. Foods, 9(6), 794. https://doi.org/10.3390/foods9060794