Effect of Black Tea Infusion on Physicochemical Properties, Antioxidant Capacity and Microstructure of Acidified Dairy Gel during Cold Storage
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Black Tea Infusion (BTI)
2.3. (Stirred) ADG Preparation
2.4. pH and Ca2+ Content Measurement
2.5. Texture Characteristics
2.6. Phase Stability
2.7. Antioxidant Capacity Evaluation
2.8. Microstructure of ADG
2.9. Statistical Analysis
3. Results and Discussion
3.1. Physicochemical Characteristics
3.2. Texture Characteristics
3.3. Antioxidant Capacity
3.4. Principle Component Analysis (PCA)
3.5. Microstructure
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Ben Hlel, T.; Borges, T.; Rueda, A.; Smaali, I.; Marzouki, M.N.; Seiquer, I. Polyphenols bioaccessibility and bioavailability assessment in ipecac infusion using a combined assay of simulated in vitro digestion and Caco-2 cell model. Int. J. Food Sci. Technol. 2019, 54, 1566–1575. [Google Scholar] [CrossRef]
- Muniandy, P.; Shori, A.B.; Baba, A.S. Influence of green, white and black tea addition on the antioxidant activity of probiotic yogurt during refrigerated storage. Food Packag. Shelf Life 2016, 8, 1–8. [Google Scholar] [CrossRef]
- Chen, D.; Sun, J.; Dong, W.; Shen, Y.; Xu, Z. Effects of polysaccharides and polyphenolics fractions of Zijuan tea (Camellia sinensis var. kitamura) on α-glucosidase activity and blood glucose level and glucose tolerance of hyperglycaemic mice. Int. J. Food Sci. Technol. 2018, 53, 2335–2341. [Google Scholar] [CrossRef]
- Garcia Santos, F.A.; Freire, S.A.; Vieira, D.P.; Papa, P.d.C.; De Barros, G.F.; Castilho, C.; Guaberto, L.M.; Souza, L.F.A.d.; Laposy, C.B.; Nogueira, R.M.B.; et al. White tea intake interferes with the expression of angiogenic factors in the corpora lutea of superovulated rats. Int. J. Food Sci. Technol. 2018, 53, 1666–1671. [Google Scholar] [CrossRef]
- Del Rio, D.; Stewart, A.J.; Mullen, W.; Burns, J.; Lean, M.E.J.; Brighenti, F.; Crozier, A. HPLC-MSn Analysis of Phenolic Compounds and Purine Alkaloids in Green and Black Tea. J. Agric. Food Chem. 2004, 52, 2807–2815. [Google Scholar] [CrossRef]
- Gadow, A.V.; Joubert, E.; Hansmann, C.F. Comparison of the antioxidant activity of rooibos tea (Aspalathus linearis) with green, oolong and black tea. Food Chem. 1997, 60, 73–77. [Google Scholar] [CrossRef]
- Islam, S.N.; Farooq, S.; Sehgal, A. Effect of consecutive steeping on antioxidant potential of green, oolong and black tea. Int. J. Food Sci. Technol. 2018, 53, 182–187. [Google Scholar] [CrossRef]
- Donovan, S.M.; Shamir, R. Introduction to the Yogurt in Nutrition Initiative and the First Global Summit on the Health Effects of Yogurt. Am. J. Clin. Nutr. 2014, 99, 1209–1211. [Google Scholar] [CrossRef] [Green Version]
- Zhang, S.; Zhang, Y.; Li, M.; Luo, X.; Xiao, M.; Sun, Q.; Xie, F.; Zhang, L. The effect of Lactobacillus delbrueckii subsp bulgaricus proteinase on properties of milk gel acidified with glucono-δ-lactone. Int. J. Food Sci. Technol. 2019, 54, 2094–2100. [Google Scholar] [CrossRef]
- Eshpari, H.; Tong, P.S.; Corredig, M. Changes in the physical properties, solubility, and heat stability of milk protein concentrates prepared from partially acidified milk. J. Dairy Sci. 2014, 97, 7394–7401. [Google Scholar] [CrossRef]
- Le Maux, S.; Nongonierma, A.B.; Lardeux, C.; FitzGerald, R.J. Impact of enzyme inactivation conditions during the generation of whey protein hydrolysates on their physicochemical and bioactive properties. Int. J. Food Sci. Technol. 2018, 53, 219–227. [Google Scholar] [CrossRef] [Green Version]
- Lucey, J.A.; Tamehana, M.; Singh, H.; Munro, P.A. A comparison of the formation, rheological properties and microstructure of acid skim milk gels made with a bacterial culture or glucono-δ-lactone. Food Res. Int. 1998, 31, 147–155. [Google Scholar] [CrossRef]
- Lourens-Hattingh, A.; Viljoen, B.C. Yogurt as probiotic carrier food. Int. Dairy J. 2001, 11, 1–17. [Google Scholar] [CrossRef]
- Ng, E.W.; Yeung, M.; Tong, P.S. Effects of yogurt starter cultures on the survival of Lactobacillus acidophilus. Int. J. Food Microbiol. 2011, 145, 169–175. [Google Scholar] [CrossRef] [Green Version]
- Najgebauer-Lejko, D.; Sady, M.; Grega, T.; Walczycka, M. The impact of tea supplementation on microflora, pH and antioxidant capacity of yoghurt. Int. Dairy J. 2011, 21, 568–574. [Google Scholar] [CrossRef]
- Sharma, V.; Vijay Kumar, H.; Jagan Mohan Rao, L. Influence of milk and sugar on antioxidant potential of black tea. Food Res. Int. 2008, 41, 124–129. [Google Scholar] [CrossRef]
- Cornell, D.G.; De Vilbiss, E.D.; Pallansch, M.J. Binding of Antioxidants by Milk Proteins. J. Dairy Sci. 1971, 54, 634–637. [Google Scholar] [CrossRef]
- Arts, M.; Haenen, G.; Voss, H.-P.; Bast, A. Masking of antioxidant capacity by the interaction of flavonoids with protein. Food Chem. Toxicol. 2001, 39, 787–791. [Google Scholar] [CrossRef]
- Ryan, L.; Petit, S. Addition of whole, semiskimmed, and skimmed bovine milk reduces the total antioxidant capacity of black tea. Nutr. Res. 2010, 30, 14–20. [Google Scholar] [CrossRef]
- Haratifar, S.; Corredig, M. Interactions between tea catechins and casein micelles and their impact on renneting functionality. Food Chem. 2014, 143, 27–32. [Google Scholar] [CrossRef]
- Ye, J.; Fan, F.; Xu, X.; Liang, Y. Interactions of black and green tea polyphenols with whole milk. Food Res. Int. 2013, 53, 449–455. [Google Scholar] [CrossRef]
- Rashidinejad, A.; Birch, E.J.; Sun-Waterhouse, D.; Everett, D.W. Addition of milk to tea infusions: Helpful or harmful? Evidence from in vitro and in vivo studies on antioxidant properties. Crit. Rev. Food Sci. Nutr. 2017, 57, 3188–3196. [Google Scholar] [CrossRef]
- Jöbstl, E.; Howse, J.R.; Fairclough, J.P.A.; Williamson, M.P. Noncovalent cross-linking of casein by epigallocatechin gallate characterized by single molecule force microscopy. J. Agric. Food Chem. 2006, 54, 4077–4081. [Google Scholar] [CrossRef]
- Yildirim-Elikoglu, S.; Erdem, Y.K. Interactions between milk proteins and polyphenols: Binding mechanisms, related changes, and the future trends in the dairy industry. Food Rev. Int. 2018, 34, 665–697. [Google Scholar] [CrossRef]
- Brown, P.J.; Wright, W.B. An Investigation of the interactions between milk proteins and tea polyphenols. J. Chromatogr. A 1963, 11, 504–514. [Google Scholar] [CrossRef]
- Van der Burg-Koorevaar, M.C.D.; Miret, S.; Duchateau, G.S.M.J.E. Effect of Milk and Brewing Method on Black Tea Catechin Bioaccessibility. J. Agric. Food Chem. 2011, 59, 7752–7758. [Google Scholar] [CrossRef]
- Najgebauer-Lejko, D.; Żmudziński, D.; Ptaszek, A.; Socha, R. Textural properties of yogurts with green tea and Pu-erh tea additive. Int. J. Food Sci. Technol. 2014, 49, 1149–1158. [Google Scholar] [CrossRef]
- Lamothe, S.; Langlois, A.; Bazinet, L.; Couillard, C.; Britten, M. Antioxidant activity and nutrient release from polyphenol-enriched cheese in a simulated gastrointestinal environment. Food Funct. 2016, 7, 1634–1644. [Google Scholar] [CrossRef]
- Amirdivani, S.; Baba, A.S.H. Green tea yogurt: Major phenolic compounds and microbial growth. J. Food Sci. Technol. 2015, 52, 4652–4660. [Google Scholar] [CrossRef] [Green Version]
- Giroux, H.J.; De Grandpré, G.; Fustier, P.; Champagne, C.P.; St-Gelais, D.; Lacroix, M.; Britten, M. Production and characterization of Cheddar-type cheese enriched with green tea extract. Dairy Sci. Technol. 2013, 93, 241–254. [Google Scholar] [CrossRef]
- Jaziri, I.; Ben Slama, M.; Mhadhbi, H.; Urdaci, M.C.; Hamdi, M. Effect of green and black teas (Camellia sinensis L.) on the characteristic microflora of yogurt during fermentation and refrigerated storage. Food Chem. 2009, 112, 614–620. [Google Scholar] [CrossRef]
- Ciron, C.I.E.; Gee, V.L.; Kelly, A.L.; Auty, M.A.E. Comparison of the effects of high-pressure microfluidization and conventional homogenization of milk on particle size, water retention and texture of non-fat and low-fat yoghurts. Int. Dairy J. 2010, 20, 314–320. [Google Scholar] [CrossRef]
- Zheng, H. Introduction: Measuring Rheological Properties of Foods. In Rheology of Semisolid Foods; Joyner, H.S., Ed.; Springer International Publishing: Cham, Switzerland, 2019; pp. 3–30. [Google Scholar]
- Yuksel, Z.; Avci, E.; Erdem, Y.K. Characterization of binding interactions between green tea flavanoids and milk proteins. Food Chem. 2010, 121, 450–456. [Google Scholar] [CrossRef]
- Vega, C.; Grover, M.K. Physicochemical Properties of Acidified Skim Milk Gels Containing Cocoa Flavanols. J. Agric. Food Chem. 2011, 59, 6740–6747. [Google Scholar] [CrossRef]
- Weidendorfer, K.; Bienias, A.; Hinrichs, J. Investigation of the effects of mechanical post-processing with a colloid mill on the texture properties of stirred yogurt. Int. J. Dairy Technol. 2008, 61, 379–384. [Google Scholar] [CrossRef]
- Morell, P.; Chen, J.; Fiszman, S. The role of starch and saliva in tribology studies and the sensory perception of protein-added yogurts. Food Funct. 2017, 8, 545–553. [Google Scholar] [CrossRef]
- Kosasih, L.; Bhandari, B.; Prakash, S.; Bansal, N.; Gaiani, C. Physical and functional properties of whole milk powders prepared from concentrate partially acidified with CO2 at two temperatures. Int. Dairy J. 2016, 56, 4–12. [Google Scholar] [CrossRef] [Green Version]
- Lim, Y.Y.; Murtijaya, J. Antioxidant properties of Phyllanthus amarus extracts as affected by different drying methods. Lwt-Food Sci. Technol. 2007, 40, 1664–1669. [Google Scholar] [CrossRef]
- Khanizadeh, S.; Tsao, R.; Rekika, D.; Yang, R.; DeEll, J. Phenolic composition and antioxidant activity of selected apple genotypes. J. Food Agric. Environ. 2007, 5, 61–66. [Google Scholar]
- Al-Dabbas, M.M.; Al-Ismail, K.; Kitahara, K.; Chishaki, N.; Hashinaga, F.; Suganuma, T.; Tadera, K. The effects of different inorganic salts, buffer systems, and desalting of Varthemia crude water extract on DPPH radical scavenging activity. Food Chem. 2007, 104, 734–739. [Google Scholar] [CrossRef]
- Le, H.M. Antioxidative Effects of Mango Wastes on Shelf Life of Pork Products; Lincoln University: Lincoln, New Zealand, 2012. [Google Scholar]
- Elfalleh, W.; Nasri, N.; Marzougui, N.; Thabti, I.; M’Rabet, A.; Yahya, Y.; Lachiheb, B.; Guasmi, F.; Ferchichi, A. Physico-chemical properties and DPPH-ABTS scavenging activity of some local pomegranate (Punica granatum) ecotypes. Int. J. Food Sci. Nutr. 2009, 60, 197–210. [Google Scholar] [CrossRef]
- Lin, S.Y.; Lo, L.C.; Chen, I.Z.; Chen, P.A. Effect of shaking process on correlations between catechins and volatiles in oolong tea. J. Food Drug Anal. 2016, 24, 500–507. [Google Scholar] [CrossRef] [Green Version]
- Kalab, M. Microstructure of Dairy Foods. 1. Milk Products Based on Protein1. J. Dairy Sci. 1979, 62, 1352–1364. [Google Scholar] [CrossRef]
- Domagala, J. Instrumental Texture, Syneresis and Microstructure of Yoghurts Prepared from Goat, Cow and Sheep Milk. Int. J. Food Prop. 2009, 12, 605–615. [Google Scholar] [CrossRef]
- Wells, H.C.; Sizeland, K.H.; Kirby, N.; Hawley, A.; Mudie, S.; Haverkamp, R.G. Collagen Fibril Structure and Strength in Acellular Dermal Matrix Materials of Bovine, Porcine, and Human Origin. ACS Biomater. Sci. Eng. 2015, 1, 1026–1038. [Google Scholar] [CrossRef]
- Nowak, J.S. Identification and Understanding the Roles of Biofilm Formation-Related Genes in Listeria Monocytogenes Isolated from Seafood; Palmerston North, Messy University: Palmerston North, New Zealand, 2017. [Google Scholar]
- Wells, H.C.; Sizeland, K.H.; Kirby, N.; Hawley, A.; Mudie, S.; Haverkamp, R.G. Acellular dermal matrix collagen responds to strain by intermolecular spacing contraction with fibril extension and rearrangement. J. Mech. Behav. Biomed. Mater. 2018, 79, 1–8. [Google Scholar] [CrossRef]
- Charrier, M.J.S.; Savage, G.P.; Vanhanen, L. Oxalate content and calcium binding capacity of tea and herbal teas. Asia Pac. J. Clin. Nutr. 2002, 11, 298–301. [Google Scholar] [CrossRef]
- Yamada, K.; Abe, T.; Tanizawa, Y. Black tea stain formed on the surface of teacups and pots. Part 2—Study of the structure change caused by aging and calcium addition. Food Chem. 2007, 103, 8–14. [Google Scholar] [CrossRef]
- Carnovale, V.; Labaeye, C.; Britten, M.; Couillard, C.; Bazinet, L. Effect of various calcium concentrations on the interactions between β-lactoglobulin and epigallocatechin-3-gallate. Int. Dairy J. 2016, 59, 85–90. [Google Scholar] [CrossRef]
- Pimentel, T.C.; Garcia, S.; Prudencio, S.H. Effect of long-chain inulin on the texture profile and survival of Lactobacillus paracasei ssp paracasei in set yoghurts during refrigerated storage. Int. J. Dairy Technol. 2012, 65, 104–110. [Google Scholar] [CrossRef]
- Hasni, I.; Bourassa, P.; Hamdani, S.; Samson, G.; Carpentier, R.; Tajmir-Riahi, H.-A. Interaction of milk α-and β-caseins with tea polyphenols. Food Chem. 2011, 126, 630–639. [Google Scholar] [CrossRef]
- Rawson, H.L.; Marshall, V.M. Effect of ‘ropy’ strains of Lactobacillus delbrueckii ssp. bulgaricus and Streptococcus thermophilus on rheology of stirred yogurt. Int. J. Food Sci. Technol. 1997, 32, 213–220. [Google Scholar] [CrossRef]
- Lucey, J.A.; Singh, H. Formation and physical properties of acid milk gels: A review. Food Res. Int. 1997, 30, 529–542. [Google Scholar] [CrossRef]
- Damin, M.R.; Minowa, E.; Alcântara, M.R.; Oliveira, M.N. Effect of cold storage on culture viability and some rheological properties of fermented milk prepared with yogurt and probiotic bacteria. J. Texture Stud. 2008, 39, 40–55. [Google Scholar] [CrossRef]
- Avci, E.; Yuksel, Z.; Erdem, Y. Green yoghurt revolution. Identification of interactions between green tea polyhenols and milk proteins and resultant functional modifications in yoghurt gel. In Proceedings of the 5th Central European Congress on Food, Bratislava, Slovak Republik, 20 May 2020; pp. 19–22. [Google Scholar]
- Tanizawa, Y.; Abe, T.; Yamada, K. Black tea stain formed on the surface of teacups and pots. Part 1— Study on the chemical composition and structure. Food Chem. 2007, 103, 1–7. [Google Scholar] [CrossRef]
- Spiro, M.; Chong, Y.Y. Kinetics and equilibria of tea infusion .14. Surface films formed in hard water by black tea brews containing milk. Food Chem. 1997, 59, 247–252. [Google Scholar] [CrossRef]
- Fiszman, S.M.; Lluch, M.A.; Salvador, A. Effect of addition of gelatin on microstructure of acidic milk gels and yoghurt and on their rheological properties. Int. Dairy J. 1999, 9, 895–901. [Google Scholar] [CrossRef]
- Dönmez, Ö.; Mogol, B.A.; Gökmen, V. Syneresis and rheological behaviors of set yogurt containing green tea and green coffee powders. J. Dairy Sci. 2017, 100, 901–907. [Google Scholar] [CrossRef]
- Liu, D. Effect of Fuzhuan brick-tea addition on the quality and antioxidant activity of skimmed set-type yoghurt. Int. J. Dairy Technol. 2018, 71, 22–33. [Google Scholar] [CrossRef]
- Wang, X.; Kristo, E.; LaPointe, G. Adding apple pomace as a functional ingredient in stirred-type yogurt and yogurt drinks. Food Hydrocoll. 2020, 100, 105453. [Google Scholar] [CrossRef]
- Pan, L.-H.; Liu, F.; Luo, S.-Z.; Luo, J.-p. Pomegranate juice powder as sugar replacer enhanced quality and function of set yogurts: Structure, rheological property, antioxidant activity and in vitro bioaccessibility. LWT 2019, 115, 108479. [Google Scholar] [CrossRef]
Physicochemical Properties | Storage Time (Days) | Gel Samples 1 | ||||
---|---|---|---|---|---|---|
ADG0% | ADG15% | ADG30% | ADG45% | ADG60% | ||
pH value | 1 | 4.55 ± 0.01 Aa | 4.53 ± 0.01 Ab | 4.54 ± 0.01 Aab | 4.54 ± 0.01 Aab | 4.53 ± 0.01 Ab |
7 | 4.35 ± 0.01 Bc | 4.37 ± 0.01 Bb | 4.36 ± 0.01 Bc | 4.34 ± 0.01 Cd | 4.40 ± 0.01 Ba | |
14 | 4.29 ± 0.01 Db | 4.28 ± 0.01 Dbc | 4.36 ± 0.01 Ba | 4.36 ± 0.01 Ba | 4.28 ± 0.01 Dc | |
21 | 4.30 ± 0.01 Db | 4.33 ± 0.01 Ca | 4.32 ± 0.01 Cb | 4.28 ± 0.02 Dc | 4.29 ± 0.01 Dc | |
28 | 4.32 ± 0.01 Ca | 4.28 ± 0.02 Dc | 4.25 ± 0.01 Dd | 4.29 ± 0.01 Dbc | 4.31 ± 0.01 Cab | |
Ca2+ concentration | 1 | 450.00 ± 0.00 Ba | 443.33 ± 5.77 Aa | 446.67 ± 15.28 Aa | 353.33 ± 5.77 Ab | 273.33 ± 15.28 Bc |
7 | 500.00 ± 10.00 Aa | 356.67 ± 11.55 Bb | 316.67 ± 5.77 Cc | 253.33 ± 5.77 Cd | 326.67 ± 15.28 Ab | |
14 | 356.67 ± 5.77 Ca | 323.33 ± 5.77 Cb | 326.67 ± 5.77 Bb | 253.33 ± 5.77 Cc | 263.33 ± 5.77 Cc | |
21 | 370.00 ± 10.00 Ca | 326.67 ± 15.28 Bb | 293.33 ± 5.77 Dc | 266.67 ± 5.78 Bd | 246.67 ± 11.55 Ce | |
28 | 330.00 ± 10.00 Dab | 336.67 ± 5.77 Ba | 316.67 ± 5.77 Cb | 246.67 ± 5.77 Cd | 290.00 ± 10.00 Bc | |
EOS2/% | 1 | 39.95 ± 0.89 Aa | 24.05 ± 0.78 Ad | 29.48 ± 0.73 Bc | 35.09 ± 1.15 Bb | 29.01 ± 1.10 Ac |
7 | 37.74 ± 1.21 Ba | 22.99 ± 0.52 Ad | 31.16 ± 0.90 Ab | 39.02 ± 1.22 Aa | 27.50 ± 0.80 Bc | |
14 | 21.28 ± 0.80 Dc | 23.06 ± 1.23 Ab | 24.83 ± 0.20 Db | 20.34 ± 0.59 Ec | 28.42 ± 0.52 Aa | |
21 | 17.21 ± 0.39 Ee | 22.10 ± 0.92 Bd | 24.68 ± 0.68 Dc | 28.92 ± 0.60 Da | 26.36 ± 0.78 Bb | |
28 | 23.37 ± 0.33 Cd | 23.30 ± 0.96 Ad | 28.25 ± 0.33 Cb | 30.20 ± 0.27 Ca | 26.87 ± 0.14 Bc | |
WHC3/% | 1 | 17.13 ± 0.81 Eb | 19.56 ± 1.04 Ba | 21.10 ± 0.63 Ba | 15.63 ± 0.12 Dc | 15.30 ± 0.48 Cc |
7 | 24.33 ± 0.69 Ba | 22.69 ± 0.23 Ab | 23.50 ± 0.78 Aa | 20.49 ± 0.79 Ac | 21.01 ± 0.65 Ac | |
14 | 27.31 ± 0.72 Aa | 21.93 ± 0.65 Ab | 20.69 ± 0.34 Cc | 16.34 ± 0.15 Cd | 15.22 ± 0.63 Ce | |
21 | 18.82 ± 0.25 Db | 16.84 ± 1.16 Cc | 23.89 ± 0.58 Aa | 18.07 ± 0.51 Bc | 18.54 ± 0.94 Bc | |
28 | 20.15 ± 0.55 Cb | 22.20 ± 0.32 Aa | 19.42 ± 0.37 Cb | 19.82 ± 0.32 Ab | 19.37 ± 0.84 Bb |
Texture Properties | Storage Time (Days) | Gel Samples 1 | ||||
---|---|---|---|---|---|---|
ADG0% | ADG15% | ADG30% | ADG45% | ADG60% | ||
Firmness, g | 1 | 14.77 ± 0.46 Ba | 14.73 ± 0.35 Ba | 14.57 ± 0.31 Ba | 14.07 ± 0.42 Ba | 14.70 ± 1.04 Aa |
7 | 20.10 ± 0.90 Aa | 20.43 ± 1.25 Aa | 17.13 ± 0.72 Ab | 16.40 ± 0.72 Ab | 15.17 ± 1.08 Ab | |
14 | 21.13 ± 0.66 Aa | 20.07 ± 0.86 Aa | 18.60 ± 0.87 Ab | 16.37 ± 0.83 Bb | 15.33 ± 1.60 Ab | |
21 | 21.93 ± 0.55 Aa | 19.83 ± 1.15 Aa | 17.70 ± 0.27 Ab | 16.30 ± 0.87 Bb | 16.73 ± 0.15 Ab | |
28 | 20.53 ± 0.32 Aa | 18.80 ± 0.82 Aa | 18.20 ± 0.87Ab | 19.03 ± 1.61 Aa | 16.57 ± 0.85 Ab | |
Cohesiveness, g | 1 | −9.50 ± 0.27 Ca | −9.07 ± 0.06 Bb | −8.67 ± 0.40 Bb | −8.53 ± 0.23 Bb | −9.40 ± 0.61 Bb |
7 | −12.43 ± 0.50 Ba | −12.63 ± 1.01 Aa | −10.93 ± 0.35 Ab | −10.53 ± 0.67 Ac | −9.37 ± 0.31 Bc | |
14 | −13.27 ± 0.42 Ba | −12.83 ± 1.24 Aa | −12.47 ± 1.25 Aa | −10.27 ± 0.40 Ab | −8.83 ± 0.71 Bb | |
21 | −14.13 ± 0.51 Aa | −12.80 ± 0.27 Aa | −12.33 ± 1.10 Ab | −10.07 ± 0.59 Bb | −10.13 ± 0.06 Bb | |
28 | −13.73 ± 0.12 Aa | −12.57 ± 0.15 Ab | −11.80 ± 1.21 Ac | −10.43 ± 0.67 Ac | −10.43 ± 0.40 Bc |
Physicochemical Properties | Storage Time (Days) | Gel Samples | ||||
---|---|---|---|---|---|---|
ADG0% | ADG15% | ADG30% | ADG45% | ADG60% | ||
TPC (GAE µg/g) | 1 | 151.42 ± 1.94 Ae | 229.75 ± 6.71 Ad | 257.90 ± 11.66 Ac | 454.98 ± 17.23 Ab | 529.28 ± 8.92 Aa |
7 | 117.22 ± 1.71 Cd | 224.08 ± 9.85 Ac | 228.66 ± 10.26 Cc | 305.48 ± 8.09 Cb | 503.80 ± 7.38 Ba | |
14 | 119.30 ± 0.99 Ce | 159.08 ± 6.19 Dd | 211.79 ± 8.20 Dc | 348.37 ± 7.88 Bb | 441.32 ± 10.71 Ca | |
21 | 121.41 ± 6.44 Ce | 208.55 ± 9.31 Bd | 236.00±4.24 Bc | 303.85 ± 6.03 Cb | 422.99 ± 2.60 Da | |
28 | 129.25 ± 7.14 Be | 194.81 ± 3.34 Cd | 244.67 ± 5.91 Bc | 301.10 ± 6.03 Cb | 388.34 ± 5.99 Ea | |
DPPH (TE µmol/g) | 1 | 0.94 ± 0.06 Ad | 1.35 ± 0.07 Ac | 4.58 ± 0.29 Ab | 4.77 ± 0.07 Ab | 5.17 ± 0.06 Ba |
7 | 0.86 ± 0.02 Ae | 1.27 ± 0.03 Bd | 4.53 ± 0.04 Ac | 5.02 ± 0.13 Ab | 5.17 ± 0.01 Ba | |
14 | 0.98 ± 0.04 Ae | 1.26 ± 0.07 Bd | 4.33 ± 0.14 Ac | 4.89 ± 0.08 Ab | 5.14 ± 0.06 Ba | |
21 | 0.93 ± 0.08 Ad | 1.18 ± 0.01 Bd | 4.48 ± 0.15 Ac | 4.85 ± 0.26 Ab | 5.24 ± 0.11 Aa | |
28 | 0.97 ± 0.13 Ae | 1.29 ± 0.09 Bd | 4.56 ± 0.15 Ac | 5.01 ± 0.07 Ab | 5.36 ± 0.08 Aa | |
FRAP (Fe2+ equivalent µmol/g) | 1 | 0.63 ± 0.03 Ce | 2.74 ± 0.12 Cd | 7.17 ± 0.13 Dc | 11.56 ± 0.28 Cb | 13.62 ± 0.23 Ba |
7 | 0.72 ± 0.03 Be | 4.42 ± 0.18 Bd | 8.73 ± 0.28 Ac | 11.73 ± 0.13 Cb | 12.65 ± 0.05 Ca | |
14 | 0.67 ± 0.02 Be | 4.53 ± 0.06 Bd | 7.82 ± 0.2 Cc | 13.01 ± 0.23 Ab | 13.54 ± 0.11 Ba | |
21 | 0.81 ± 0.03 Ae | 5.17 ± 0.09 Ad | 8.29 ± 0.12 Bc | 12.48 ± 0.07 Bb | 14.43 ± 0.19 Aa | |
28 | 0.80 ± 0.03 Ae | 5.24 ± 0.13 Ad | 8.66 ± 0.18 Ac | 12.62 ± 0.08 Bb | 12.94 ± 0.19 Ca | |
ABTS (TE µmol/g) | 1 | 0.30 ± 0.05 Ae | 1.78 ± 0.03 Bd | 3.03 ± 0.10 Ac | 3.68 ± 0.03 Bb | 4.34 ± 0.05 Aa |
7 | 0.24 ± 0.03 Ae | 1.86 ± 0.04 Ad | 3.09 ± 0.04 Ac | 3.70 ± 0.16 Bb | 4.09 ± 0.11 Ba | |
14 | 0.31 ± 0.05 Ae | 1.88 ± 0.02 Ad | 3.07 ± 0.07 Ac | 3.84 ± 0.06 Bb | 4.15 ± 0.07 Ba | |
21 | 0.31 ± 0.06 Ae | 1.90 ± 0.02 Ad | 3.08 ± 0.05 Ac | 4.15 ± 0.12 Aa | 3.99 ± 0.13 Bb | |
28 | 0.29 ± 0.03 Ae | 1.86 ± 0.04 Ad | 3.11 ± 0.04 Ac | 4.21 ± 0.05 Aa | 4.07 ± 0.12 Bb |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, H.; Zheng, H.; Anne Brennan, M.; Chen, W.; Guo, X.; Brennan, C.S. Effect of Black Tea Infusion on Physicochemical Properties, Antioxidant Capacity and Microstructure of Acidified Dairy Gel during Cold Storage. Foods 2020, 9, 831. https://doi.org/10.3390/foods9060831
Chen H, Zheng H, Anne Brennan M, Chen W, Guo X, Brennan CS. Effect of Black Tea Infusion on Physicochemical Properties, Antioxidant Capacity and Microstructure of Acidified Dairy Gel during Cold Storage. Foods. 2020; 9(6):831. https://doi.org/10.3390/foods9060831
Chicago/Turabian StyleChen, Han, Haotian Zheng, Margaret Anne Brennan, Wenpin Chen, Xinbo Guo, and Charles Stephen Brennan. 2020. "Effect of Black Tea Infusion on Physicochemical Properties, Antioxidant Capacity and Microstructure of Acidified Dairy Gel during Cold Storage" Foods 9, no. 6: 831. https://doi.org/10.3390/foods9060831
APA StyleChen, H., Zheng, H., Anne Brennan, M., Chen, W., Guo, X., & Brennan, C. S. (2020). Effect of Black Tea Infusion on Physicochemical Properties, Antioxidant Capacity and Microstructure of Acidified Dairy Gel during Cold Storage. Foods, 9(6), 831. https://doi.org/10.3390/foods9060831