Identification of Fatty Acid, Lipid and Polyphenol Compounds from Prunus armeniaca L. Kernel Extracts
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Plant Seed Materials
2.3. Oil Extraction
2.4. Fatty Acid Methyl Ester (FAME) Preparation
2.5. Sample Preparation for TAG Analysis
2.6. Sample Preparation for Polyphenol Analysis
2.7. GC–MS Analysis of FAMEs
2.8. GC–FID Analysis of FAMEs
2.9. HPLC–APCI/MS Analysis of Lipid
2.10. HPLC–PDA–ESI/MS Analysis of Polyphenols
2.11. Statistical Analyses
3. Results
3.1. Oil Extraction
3.2. Fatty Acid Profile
3.3. Acylglycerol Profile
3.4. Polyphenolic Profile
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Hacıseferoğulları, H.; Gezer, I.; Özcan, M.M.; MuratAsma, B. Post-harvest chemical and physical–mechanical properties of some apricot varieties cultivated in Turkey. J. Food Eng. 2007, 79, 364–373. [Google Scholar] [CrossRef]
- Khadari, B.; Krichen, L.; Lambert, P.; Marrakchi, M.; Audergon, J.M. Genetic Structure in Tunisian Apricot, Prunus armeniaca L., Populations Propagated by Grafting: A Signature of Bottleneck Effects and Ancient Propagation by Seedlings. Genet. Resour. Crop. Evol. 2005, 53, 811–819. [Google Scholar] [CrossRef]
- Korekar, G.; Stobdan, T.; Arora, R.; Yadav, A.; Singh, S.B. Antioxidant Capacity and Phenolics Content of Apricot (Prunus armeniaca L.) Kernel as a Function of Genotype. Plant Foods Hum. Nutr. 2011, 66, 376–383. [Google Scholar] [CrossRef] [PubMed]
- Yiğit, D.; Yiğit, N.; Mavi, A. Antioxidant and antimicrobial activities of bitter and sweet apricot (Prunus armeniaca L.) kernels. Braz. J. Med Boil. Res. 2009, 42, 346–352. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gomaa, E.Z. In vitro antioxidant, antimicrobial, and antitumor activities of bitter almond and sweet apricot (Prunus armeniaca L.) kernels. Food Sci. Biotechnol. 2013, 22, 455–463. [Google Scholar] [CrossRef]
- Hwang, H.-J.; Kim, P.; Kim, C.-J.; Lee, H.-J.; Shim, I.; Yin, C.S.; Yang, Y.; Hahm, D.-H. Antinociceptive effect of amygdalin isolated from Prunus armeniaca on formalin-induced pain in rats. Boil. Pharm. Bull. 2008, 31, 1559–1564. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cassiem, W.; De Kock, M. The anti-proliferative effect of apricot and peach kernel extracts on human colon cancer cells in vitro. BMC Complement. Altern. Med. 2019, 19, 32. [Google Scholar] [CrossRef] [Green Version]
- Minaiyan, M.; Ghannadi, A.; Asadi, M.; Etemad, M.; Mahzouni, P. Anti-inflammatory effect of Prunus armeniaca L. (Apricot) extracts ameliorates TNBS-induced ulcerative colitis in rats. Res. Pharm. Sci. 2015, 9, 225–231. [Google Scholar]
- Yurt, B.; Çelik, I. Hepatoprotective effect and antioxidant role of sun, sulphited-dried apricot (Prunus armeniaca L.) and its kernel against ethanol-induced oxidative stress in rats. Food Chem. Toxicol. 2011, 49, 508–513. [Google Scholar] [CrossRef]
- Orhan, I.E.; Kartal, M. Insights into research on phytochemistry and biological activities of Prunus armeniaca L. (apricot). Food Res. Int. 2011, 44, 1238–1243. [Google Scholar] [CrossRef]
- da Silva, V.T.; Sousa, L.A. Chapter 3-Catalytic Upgrading of Fats and Vegetable Oils for the Production of Fuels. In The Role of Catalysis for the Sustainable Production of Bio-fuels and Bio-chemicals; Triantafyllidis, K.S., Lappas, A.A., Stöcker, M., Eds.; Elsevier: Amsterdam, The Netherlands, 2013; pp. 67–92. [Google Scholar]
- Amiran, F.; Shafaghat, A.; Shafaghatlonbar, M. Omega-6 Content, Antioxidant and Antimicrobial Activities of Hexanic Extract from Prunus armeniaca L. Kernel from North-West Iran. Natl. Acad. Sci. Lett. 2015, 38, 107–111. [Google Scholar] [CrossRef]
- Dulf, F.V.; Vodnar, D.C.; Dulf, E.-H.; Pintea, A. Phenolic compounds, flavonoids, lipids and antioxidant potential of apricot (Prunus armeniaca L.) pomace fermented by two filamentous fungal strains in solid state system. Chem. Central J. 2017, 11, 92. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Turan, S.; Topcu, A.; Karabulut, I.; Vural, H.; Hayaloglu, A.A. Fatty Acid, Triacylglycerol, Phytosterol, and Tocopherol Variations in Kernel Oil of Malatya Apricots from Turkey. J. Agric. Food Chem. 2007, 55, 10787–10794. [Google Scholar] [CrossRef] [PubMed]
- Hassanein, M.M.M. Studies on non-traditional oils: L. Detailed studies on different lipid profiles of some Rosaceae kernel oils. Grasas y Aceites 1999, 50, 379–384. [Google Scholar] [CrossRef]
- IOrhan, E.; Koca, U.; Erdem, S.A.; Kartal, M.; Kusmenoglu, S. Fatty acid analysis of some Turkish apricot seed oils by GC and GC-MS techniques. Turk. J. Pharm. Sci. 2008, 5, 29–34. [Google Scholar]
- Beyer, R.; Melton, L.D. Composition of New Zealand apricot kernels. N. Z. J. Crop. Hortic. Sci. 1990, 18, 39–42. [Google Scholar] [CrossRef]
- Gupta, A.; Sharma, P.C.; Thilakaratne, B.M.K.; Verma, A.K. Studies on physico-chemical characteristics and fatty acid composition of wild apricot (Prunus armeniaca Linn.) kernel oil. Indian. J. Nat. Prod. Resour. 2012, 3, 366–370. [Google Scholar]
- Al-Juhaimi, F.Y.; Özcan, M.M.; Ghafoor, K.; Babiker, E.E. The effect of microwave roasting on bioactive compounds, antioxidant activity and fatty acid composition of apricot kernel and oils. Food Chem. 2018, 243, 414–419. [Google Scholar] [CrossRef]
- Ul’Chenko, N.T.; Bekker, N.P.; Yunusov, O.; Yuldasheva, N.K.; Chernenko, T.V.; Glushenkova, A.I. Lipids and lipophilic components from seeds of some fruit plants. Chem. Nat. Compd. 2009, 45, 314–317. [Google Scholar] [CrossRef]
- Zaghdoudi, K.; Pontvianne, S.; Framboisier, X.; Achard, M.; Kudaibergenova, R.; Ayadi-Trabelsi, M.; Kalthoum-Cherif, J.; Vanderesse, R.; Frochot, C.; Guiavarc’H, Y. Accelerated solvent extraction of carotenoids from: Tunisian Kaki (Diospyros kaki L.), peach (Prunus persica L.) and apricot (Prunus armeniaca L.). Food Chem. 2015, 184, 131–139. [Google Scholar] [CrossRef]
- Dhen, N.; Ben Rejeb, I.; Boukhris, H.; Damergi, C.; Gargouri, M.; Boukhris, H. Physicochemical and sensory properties of wheat- Apricot kernels composite bread. LWT 2018, 95, 262–267. [Google Scholar] [CrossRef]
- Mustafa, A.; Turner, C. Pressurized liquid extraction as a green approach in food and herbal plants extraction: A review. Anal. Chim. Acta 2011, 703, 8–18. [Google Scholar] [CrossRef] [PubMed]
- Montedoro, G.; Servili, M.; Baldioli, M.; Miniati, E. Simple and hydrolyzable phenolic compounds in virgin olive oil. 1. Their extraction, separation, and quantitative and semiquantitative evaluation by HPLC. J. Agric. Food Chem. 1992, 40, 1571–1576. [Google Scholar] [CrossRef]
- Saini, R.K.; Keum, Y.-S. Carotenoid extraction methods: A review of recent developments. Food Chem. 2018, 240, 90–103. [Google Scholar] [CrossRef] [PubMed]
- Breil, C.; Vian, M.A.; Zemb, T.; Kunz, W.; Chemat, F. “Bligh and Dyer” and Folch Methods for Solid–Liquid–Liquid Extraction of Lipids from Microorganisms. Comprehension of Solvatation Mechanisms and towards Substitution with Alternative Solvents. Int. J. Mol. Sci. 2017, 18, 708. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miceli, N.; Cavò, E.; Ragusa, M.; Cacciola, F.; Mondello, L.; Dugo, L.; Acquaviva, R.; Malfa, G.A.; Marino, A.; D’Arrigo, M.; et al. Brassica incana Ten. (Brassicaceae): Phenolic Constituents, Antioxidant and Cytotoxic Properties of the Leaf and Flowering Top Extracts. Molecules 2020, 25, 1461. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haoujar, I.; Cacciola, F.; Abrini, J.; Mangraviti, D.; Giuffrida, D.; El Majdoub, Y.O.; Kounnoun, A.; Miceli, N.; Taviano, M.F.; Mondello, L.; et al. The Contribution of Carotenoids, Phenolic Compounds, and Flavonoids to the Antioxidative Properties of Marine Microalgae Isolated from Mediterranean Morocco. Molecules 2019, 24, 4037. [Google Scholar] [CrossRef] [Green Version]
- Hrichi, S.; Chaabane-Banaoues, R.; Giuffrida, D.; Mangraviti, D.; El Majdoub, Y.O.; Rigano, F.; Mondello, L.; Babba, H.; Mighri, Z.; Cacciola, F. Effect of seasonal variation on the chemical composition and antioxidant and antifungal activities of Convolvulus althaeoides L. leaf extracts. Arab. J. Chem. 2020, 13, 5651–5668. [Google Scholar] [CrossRef]
- Sjövall, O.; Kuksis, A.; Marai, L.; Myher, J.J. Elution factors of synthetic oxotriacylglycerols as an aid in identification of peroxidized natural triacylglycerols by reverse-phase high-performance liquid chromatography with electrospray mass spectrometry. Lipids 1997, 32, 1211–1218. [Google Scholar] [CrossRef]
- Neff, W.E.; Byrdwell, W.C. Characterization of model triacylglycerol (triolein, trilinolein and trilinolenin) autoxidation products via high-performance liquid chromatography coupled with atmospheric pressure chemical ionization mass spectrometry. J. Chromatogr. A 1998, 818, 169–186. [Google Scholar] [CrossRef]
- Byrdwell, W.C.; Neff, W.E. Analysis of Hydroxy-Containing Seed Oils Using Atmospheric Pressure Chemical Ionization Mass Spectrometry. J. Liq. Chromatogr. Relat. Technol. 1998, 21, 1485–1501. [Google Scholar] [CrossRef]
- Byrdwell, W.C.; Neff, W. Non-volatile products of triolein produced at frying temperatures characterized using liquid chromatography with online mass spectrometric detection. J. Chromatogr. A 1999, 852, 417–432. [Google Scholar] [CrossRef]
- Byrdwell, W.C.; Neff, W. Autoxidation products of normal and genetically modified canola oil varieties determined using liquid chromatography with mass spectrometric detection. J. Chromatogr. A 2001, 905, 85–102. [Google Scholar] [CrossRef]
- Xia, W.; Budge, S.M. Techniques for the Analysis of Minor Lipid Oxidation Products Derived from Triacylglycerols: Epoxides, Alcohols, and Ketones. Compr. Rev. Food Sci. Food Saf. 2017, 16, 735–758. [Google Scholar] [CrossRef] [Green Version]
- Beccaria, M.; Inferrera, V.; Rigano, F.; Gorynski, K.; Purcaro, G.; Pawliszyn, J.; Dugo, P.; Mondello, L. Highly informative multiclass profiling of lipids by ultra-high performance liquid chromatography–Low resolution (quadrupole) mass spectrometry by using electrospray ionization and atmospheric pressure chemical ionization interfaces. J. Chromatogr. A 2017, 1509, 69–82. [Google Scholar] [CrossRef] [PubMed]
- Qin, F.; Yao, L.; Lu, C.; Li, C.; Zhou, Y.; Su, C.; Chen, B.; Shen, Y. Phenolic composition, antioxidant and antibacterial properties, and in vitro anti-HepG2 cell activities of wild apricot (Armeniaca Sibirica L. Lam) kernel skins. Food Chem. Toxicol. 2019, 129, 354–364. [Google Scholar] [CrossRef] [PubMed]
- Ieri, F.; Pinelli, P.; Romani, A. Simultaneous determination of anthocyanins, coumarins and phenolic acids in fruits, kernels and liqueur of Prunus mahaleb L. Food Chem. 2012, 135, 2157–2162. [Google Scholar] [CrossRef] [Green Version]
- Han, Z.-P.; Liu, R.-L.; Cui, H.-Y.; Zhang, Z.-Q. Microwave-Assisted Extraction and LC/MS Analysis of Phenolic Antioxidants in Sweet Apricot (Prunus armeniaca L.) Kernel Skins. J. Liq. Chromatogr. Relat. Technol. 2013, 36, 2182–2195. [Google Scholar] [CrossRef]
- Human Metabolome Database. Available online: https://hmdb.ca/ (accessed on 16 April 2020).
- Cherif, A.O.; De Person, M.; Ben Messaouda, M.; Abderrabba, M.; Moussa, F. Screening of Glycerophospholipids Molecular Species Contents in Three North African Apricot (Prunus armeniaca L.) Seed Varieties. J. Oleo Sci. 2019, 68, 637–647. [Google Scholar] [CrossRef]
- Sales-Campos, H.; De Souza, P.R.; Peghini, B.C.; Da Silva, J.S.; Cardoso, C.R. An overview of the modulatory effects of oleic acid in health and disease. Mini Rev. Med. Chem. 2013, 13, 201–210. [Google Scholar] [PubMed]
- Veerman, L. Dietary fats: A new look at old data challenges established wisdom. BMJ 2016, 353, i1512. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Simopoulos, A.P. The Importance of the Omega-6/Omega-3 Fatty Acid Ratio in Cardiovascular Disease and Other Chronic Diseases. Exp. Biol. Med. 2008, 233, 674–688. [Google Scholar] [CrossRef] [PubMed]
- Toorani, M.R.; Farhoosh, R.; Golmakani, M.; Sharif, A. Antioxidant activity and mechanism of action of sesamol in triacylglycerols and fatty acid methyl esters of sesame, olive, and canola oils. LWT 2019, 103, 271–278. [Google Scholar] [CrossRef]
- Ahmadian, M.; E Duncan, R.; Jaworski, K.; Sarkadi-Nagy, E.; Sul, H.S. Triacylglycerol metabolism in adipose tissue. Future Lipidol. 2007, 2, 229–237. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dragovicuzelac, V.; Levaj, B.; Mrkic, V.; Bursac, D.; Boras, M. The content of polyphenols and carotenoids in three apricot cultivars depending on stage of maturity and geographical region. Food Chem. 2007, 102, 966–975. [Google Scholar] [CrossRef]
N | Solvent | wt % ± SD |
---|---|---|
1 | Dichloromethane | 8.75 ± 0.47 |
2 | Chloroform | 6.13 ± 1.78 |
3 | Ethyl acetate | 3.20 ± 0.64 |
4 | Ethanol | 4.53 ± 0.85 |
Fatty Acid | Spectral Similarity * | Experimental LRI | Tabulated LRI * | Peak Area (wt % ± SD) (n = 3) | |||
---|---|---|---|---|---|---|---|
E13 | E14 | E15 | E16 | ||||
Me. C14:0 | 91% | 1400 | 1400 | 0.02 ± 0.00 | 0.02 ± 0.00 | 0.02 ± 0.00 | 0.03 ± 0.00 |
Me. C16:0 | 92% | 1603 | 1600 | 4.72 ± 0.05 | 5.08 ± 0.06 | 5.23 ± 0.04 | 5.37 ± 0.05 |
Me. C16:1n7 | 94% | 1618 | 1616 | 0.74 ± 0.01 | 0.67 ± 0.01 | 0.66 ± 0.01 | 0.59 ± 0.01 |
Me. C16:1n5 | 81% | 1631 | - | 0.01 ± 0.00 | 0.02 ± 0.00 | 0.02 ± 0.00 | 0.02 ± 0.00 |
Me. C17:0 | 91% | 1702 | 1702 | 0.03 ± 0.00 | 0.03 ± 0.00 | 0.04 ± 0.00 | 0.04 ± 0.00 |
Me. C17:1n7 | 91% | 1715 | 1718 | 0.11 ± 0.00 | 0.11 ± 0.01 | 0.11 ± 0.00 | 0.09 ± 0.00 |
Me. C18:0 | 95% | 1804 | 1800 | 0.95 ± 0.03 | 0.98 ± 0.04 | 1.00 ± 0.05 | 1.02 ± 0.05 |
Me. C18:1n9 | 90% | 1817 | 1810 | 62.38 ± 0.97 | 52.20 ± 1.01 | 49.92 ± 1.20 | 46.60 ± 2.07 |
Me. C18:1n7 | 93% | 1823 | 1820 | 1.87 ± 0.05 | 1.75 ± 0.04 | 1.70 ± 0.03 | 1.69 ± 0.05 |
Me. C18:2n6 | 91% | 1853 | 1847 | 28.86 ± 0.50 | 38.69 ± 0.85 | 40.48 ± 0.90 | 39.03 ± 1.16 |
Me. C18:3n3 | 88% | 1901 | 1898 | 0.12 ± 0.00 | 0.17 ± 0.00 | 0.51 ± 0.03 | 5.19 ± 0.40 |
Me. C20:0 | 93% | 2000 | 2000 | 0.09 ± 0.00 | 0.14 ± 0.00 | 0.15 ± 0.01 | 0.16 ± 0.01 |
Me. C20:1n9 | 90% | 2015 | 2014 | 0.08 ± 0.00 | 0.09 ± 0.00 | 0.10 ± 0.00 | 0.10 ± 0.01 |
Me. C22:0 | 89% | 2200 | 2200 | 0.02 ± 0.00 | 0.03 ± 0.00 | 0.03 ± 0.00 | 0.04 ± 0.00 |
Me. C24:0 | 88% | 2400 | 2400 | 0.02 ± 0.00 | 0.03 ± 0.00 | 0.03 ± 0.00 | 0.04 ± 0.00 |
RT (min) | PN | Compound | Peak Area (wt % ± SD) (n = 3) | [M+H]+ | [M+H-H2O]+ | [M-FA+H]+ | |||
---|---|---|---|---|---|---|---|---|---|
E13 | E14 | E15 | E16 | ||||||
12.87 | 28 | LPo | 0.03 ± 0.00 | 0.06 ± 0.00 | 0.06 ± 0.00 | 0.14 ± 0.01 | 591.4 | 573.4 | 311.1, 337.2 |
13.75 | 28 | LL | 0.42 ± 0.02 | 1.13 ± 0.04 | 1.24 ± 0.05 | 1.51 ± 0.05 | 617.4 | 599.4 | 337.2 |
17.16 | 30 | OL | 0.95 ± 0.03 | 2.09 ± 0.05 | 1.94 ± 0.05 | 1.79 ± 0.03 | 619.4 | 601.4 | 337.2, 339.2 |
20.1 | 30 | LP | 0.11 ± 0.01 | 0.39 ± 0.03 | 0.23 ± 0.02 | 0.21 ± 0.02 | 575.4 | - | 313.1, 337.2 |
21.56 | 32 | OO | 1.03 ± 0.02 | 1.44 ± 0.04 | 1.10 ± 0.04 | 1.75 ± 0.05 | 603.5 | - | 339.2 |
25.93 | 32 | OP | 0.11 ± 0.00 | 0.46 ± 0.03 | 0.13 ± 0.00 | 0.31 ± 0.01 | 577.5 | - | 313.1, 339.2 |
32.82 | 40 | LLnL | 0.51 ± 0.01 | 1.53 ± 0.08 | 0.45 ± 0.05 | 0.18 ± 0.01 | 877.9 | - | 599.4 (very low), 597.5 |
37.58 | 42 | OLnL | 1.89 ± 0.09 | 4.36 ± 0.10 | 0.90 ± 0.07 | 0.92 ± 0.09 | 879.6 | - | 597.5, 599.5, 601.4 (very low) |
40.33 | 42 | LLL-OH | 1.37 ± 0.11 | 1.86 ± 0.10 | 1.56 ± 0.10 | 1.48 ± 0.09 | 895.9 | 877.9 | 599.4, 615.4 |
41.73 | 42 | LnOPo | 1.72 ± 0.13 | 2.88 ± 0.12 | 0.60 ± 0.03 | 0.69 ± 0.04 | 853.7 | - | 575.3, 599. 4 |
44 | OLnO | 881.6 | - | 599.4, 603.4 (very low) | |||||
44.69 | 44 | OLL-OH | 2.38 ± 0.15 | 3.96 ± 0.25 | 3.11 ± 0.25 | 2.27 ± 0.13 | 897.6 | 879.7 | 601.5, 615.4 |
47.71 | 46 | OLO-OH | 1.52 ± 0.05 | 1.31 ± 0.05 | 1.46 ± 0.05 | 1.14 ± 0.04 | 899.67 | 881.7 | 601.5, 617.4 |
48.98 | 42 | LLPo | 2.00 ± 0.10 | 2.52 ± 0.11 | 2.97 ± 0.13 | 1.92 ± 0.10 | 853.6 | 573.4, 599.5 | |
46 | OOL-OH | 899.7 | 881.6 | 603.3, 617.4 | |||||
50.05 | 42 | LLL | 8.02 ± 0.09 | 9.96 ± 0.18 | 10.34 ± 0.20 | 13.02 ± 0.30 | 879.7 | - | 599.4 |
51.66 | 48 | OOO-OH | 1.76 ± 0.01 | 1.32 ± 0.00 | 2.20 ± 0.05 | 0.60 ± 0.00 | 901.6 | 883.6 | 603.5, 601.5 (-H2O), 619.4 |
52.91 | 44 | LOPo | 0.57 ± 0.00 | 0.66 ± 0.01 | 0.89 ± 0.01 | 0.74 ± 0.05 | 855.6 | 573.4. (very low), 575.4, 601.4 | |
53.79 | 44 | OLL | 22.31 ± 0.92 | 21.68 ± 0.90 | 19.00 ± 0.85 | 32.78 ± 0.80 | 881.7 | - | 599.4, 601.4 |
57.27 | 46 | OOL | 23.66 ± 0.82 | 20.31 ± 0.79 | 21.15 ± 0.70 | 20.57 ± 0.81 | 883.7 | - | 603.5, 601.5 |
60.57 | 48 | OOO | 20.14 ± 0.50 | 13.50 ± 0.57 | 15.35 ± 0.48 | 12.10 ± 0.60 | 885.7 | - | 603.6 |
63.69 | 48 | OOP | 5.74 ± 0.30 | 4.53 ± 0.33 | 9.33 ± 0.32 | 2.72 ± 0.26 | 859.7 | - | 577.3, 603.5 |
66.66 | 48 | SOL | 1.57 ± 0.05 | 1.52 ± 0.05 | 3.46 ± 0.10 | 0.90 ± 0.08 | 885.8 | - | 601.5, 603.4 (very low), 605.5 |
69.59 | 50 | SOO | 1.01 ± 0.10 | 0.88 ± 0.05 | 1.47 ± 0.11 | 0.44 ± 0.03 | 887.7 | - | 603.5, 605.4 |
N. | Compound | T.R (min) | UV/VIS (nm) | Molecule-Related Ion | Fragments (m/z) | Reference |
---|---|---|---|---|---|---|
1 | Gallic acid * | 4.23 | 269 | 169 (−) | - | [37] |
2 | Protocatechuic acid * | 9.14 | 259, 292 | 153 (−) | - | [10] |
3 | Neochlorogenic acid | 11.24 | 321 | 353 (−), 355 (+), | 310 (+) | [39] |
4 | Coumarin * | 13.95 | 289, 312 | 147 (+) | - | [38] |
5 | Chlorogenic acid * | 15.44 | 321 | 353 (−), 355 (+) | - | [39] |
6 | Catechin * | 15.81 | 262 | 289 (−), 291 (+) | - | [10] |
7 | Epicatechin * | 16.10 | 263 | 289 (−), 291 (+) | - | [10] |
8 | Acetylgenistin | 16.74 | 262 | 475 (+) | 456 (−) | - |
9 | Unknown | 25.52 | 267 | - | 605 (−), 629 (+), 265 (+) | - |
10 | Ferulic acid * | 25.71 | 290, 321 | 193 (−), 195 (+) | - | [10,37] |
11 | Amygdalin | 26.22 | 206, 248 | 456 (−) | - | [10,39] |
12 | Dimethoxyflavone | 29.85 | 265, 358 | 281 | 265 (+) | - |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hrichi, S.; Rigano, F.; Chaabane-Banaoues, R.; Oulad El Majdoub, Y.; Mangraviti, D.; Di Marco, D.; Babba, H.; Dugo, P.; Mondello, L.; Mighri, Z.; et al. Identification of Fatty Acid, Lipid and Polyphenol Compounds from Prunus armeniaca L. Kernel Extracts. Foods 2020, 9, 896. https://doi.org/10.3390/foods9070896
Hrichi S, Rigano F, Chaabane-Banaoues R, Oulad El Majdoub Y, Mangraviti D, Di Marco D, Babba H, Dugo P, Mondello L, Mighri Z, et al. Identification of Fatty Acid, Lipid and Polyphenol Compounds from Prunus armeniaca L. Kernel Extracts. Foods. 2020; 9(7):896. https://doi.org/10.3390/foods9070896
Chicago/Turabian StyleHrichi, Soukaina, Francesca Rigano, Raja Chaabane-Banaoues, Yassine Oulad El Majdoub, Domenica Mangraviti, Davide Di Marco, Hamouda Babba, Paola Dugo, Luigi Mondello, Zine Mighri, and et al. 2020. "Identification of Fatty Acid, Lipid and Polyphenol Compounds from Prunus armeniaca L. Kernel Extracts" Foods 9, no. 7: 896. https://doi.org/10.3390/foods9070896
APA StyleHrichi, S., Rigano, F., Chaabane-Banaoues, R., Oulad El Majdoub, Y., Mangraviti, D., Di Marco, D., Babba, H., Dugo, P., Mondello, L., Mighri, Z., & Cacciola, F. (2020). Identification of Fatty Acid, Lipid and Polyphenol Compounds from Prunus armeniaca L. Kernel Extracts. Foods, 9(7), 896. https://doi.org/10.3390/foods9070896