The Effect of Barley and Lysine Supplementation on the longissimus lumborum Meat Quality of Pasture-Raised Fallow Deer (Dama dama)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animals, Experimental Design
2.2. Slaughter and Muscle Sampling
2.3. Proximate Chemical Composition, Amino Acids and Fatty Acid Analyses
2.4. Descriptive Sensory Analysis (DSA)
2.5. Technological Parameters
2.6. Statistical Analysis
3. Results
3.1. Proximate Chemical Composition, Amino Acid Content, and Fatty Acid Proportions of the LL Muscle
3.2. Descriptive Sensory Analysis
4. Discussion
4.1. Proximate Chemical Composition, Amino Acid and Fatty Acid Content
4.2. Descriptive Sensory Analysis
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Serrano, M.P.; Maggiolino, A.; Pateiro, M.; Landete-Castillejos, T.; Domínguez, R.; García, A.; Franco, D.; Gallego, L.; De Palo, P.; Lorenzo, J.M. Carcass Characteristics and Meat Quality of Deer. In More than Beef, Pork and Chicken—The Production, Processing, and Quality Traits of Other Sources of Meat for Human Diet; Springer: Cham, Switzerland, 2019; ISBN 978-3-030-05483-0. [Google Scholar]
- Tesarova, S.; Jezek, F.; Hulankova, R.; Plhal, R.; Drimaj, J.; Steinhauserova, I.; Borilova, G. The individual effect of different production systems, age and sex on the chemical composition of wild boar meat. Acta Vet. Brno 2018, 87, 395–402. [Google Scholar] [CrossRef]
- Kudrnáčová, E.; Bartoň, L.; Bureš, D.; Hoffman, L.C. Carcass and meat characteristics from farm-raised and wild fallow deer (Dama dama) and red deer (Cervus elaphus): A review. Meat Sci. 2018, 141, 9–27. [Google Scholar] [CrossRef] [PubMed]
- Hoffman, L.C.; Wiklund, E. Game and venison—Meat for the modern consumer. Meat Sci. 2006, 74, 197–208. [Google Scholar] [CrossRef] [PubMed]
- Wiklund, E.; Manley, T.R.; Littlejohn, R.P.; Stevenson-Barry, J.M. Fatty acid composition and sensory quality of Musculus longissimus and carcass parameters in red deer (Cervus elaphus) grazed on natural pasture or fed a commercial feed mixture. J. Sci. Food Agric. 2003, 83, 419–424. [Google Scholar] [CrossRef]
- Volpelli, L.A.; Valusso, R.; Morgante, M.; Pittia, P.; Piasentier, E. Meat quality in male fallow deer (Dama dama): Effects of age and supplementary feeding. Meat Sci. 2003, 65, 555–562. [Google Scholar] [CrossRef]
- Phillip, L.E.; Oresanya, T.F.; Jacques, J.S. Fatty acid profile, carcass traits and growth rate of red deer fed diets varying in the ratio of concentrate:dried and pelleted roughage, and raised for venison production. Small Rumin. Res. 2007, 71, 215–221. [Google Scholar] [CrossRef]
- Hutchison, C.L.; Mulley, R.C.; Wiklund, E.; Flesch, J.S. Effect of concentrate feeding on instrumental meat quality and sensory characteristics of fallow deer venison. Meat Sci. 2012, 90, 801–806. [Google Scholar] [CrossRef]
- Xue, F.; Zhou, Z.; Ren, L.; Meng, Q. Influence of rumen-protected lysine supplementation on growth performance and plasma amino acid concentrations in growing cattle offered the maize stalk silage/maize grain-based diet. Anim. Feed Sci. Tech. 2011, 169, 61–67. [Google Scholar] [CrossRef]
- Williams, J.E.; Newell, S.A.; Hess, B.W.; Scholljegerdes, E. Influence of rumen-protected methionine and lysine on growing cattle fed forage and corn based diets. J. Prod. Agric. 1999, 12, 696–701. [Google Scholar] [CrossRef]
- Wang, T.; Crenshaw, M.A.; Regmi, N.; Armstrong, T.; Blanton, J.R.; Liao, S.F. Effect of dietary lysine fed to pigs at late finishing stage on the market-value associated carcass characteristics. J. Anim. Vet. Adv. 2015, 14, 232–236. [Google Scholar] [CrossRef]
- Araújo, C.M.; de Lima Macedo Junior, G.; Oliveira, K.A.; Varanis, L.F.M.; de Assis, T.S.; Siqueira, M.T.S. Effect of the inclusion of lysine and methionine on the nutritional performance and ingestive behavior of lambs. Semin. Agrar. 2019, 40, 957–970. [Google Scholar] [CrossRef] [Green Version]
- Huang, J.; Zhang, T.T.; Kun, B.; Li, G.Y.; Wang, K.Y. Effect of supplementation of lysine and methionine on growth performance, nutrients digestibility and serum biochemical deer (Cervus nippon) indices for growing sika fed protein deficient diet. Ital. J. Anim. Sci. 2015, 14, 61–65. [Google Scholar] [CrossRef]
- Grisoni, M.L.; Uzu, G.; Larbier, M.; Geraert, P.A. Effect of dietary lysine level on lipogenesis in broilers. Reprod. Nutr. Dev. 1991, 31, 683–690. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Attia, Y.A. Performance, carcass characteristics, meat quality and plasma constituents of meat type drakes fed diets containing different levels of lysine with or without a microbial phytase. Arch. Anim. Nutr. 2003, 57, 39–48. [Google Scholar] [CrossRef]
- Coble, K.F.; Wu, F.; DeRouchey, J.M.; Tokach, M.D.; Dritz, S.S.; Goodband, R.D.; Woodworth, J.C.; Usry, J. Effect of standardized ileal digestible lysine and added copper on growth performance, carcass characteristics, and fat quality of finishing pigs. J. Anim. Sci. 2018, 96, 3249–3263. [Google Scholar] [CrossRef]
- Kudrnáčová, E.; Bureš, D.; Bartoň, L.; Kotrba, R.; Ceacero, F.; Hoffman, L.C.; Kouřimská, L. The effect of Barley and Lysine supplementation of pasture-based diet on growth, carcass composition and physical quality attributes of meat from farmed fallow deer (Dama dama). Animals 2019, 9, 33. [Google Scholar] [CrossRef] [Green Version]
- Bureš, D.; Bartoň, L. Performance, carcass traits and meat quality of Aberdeen Angus, Gascon, Holstein and Fleckvieh finishing bulls. Livest. Sci. 2018, 214, 231–237. [Google Scholar] [CrossRef]
- Folch, J.; Lees, M.; Sloane Stanley, G. A simple method for the isolation and purification of total lipides from animal tissues. J. Biol. Chem. 1957, 226, 497–509. [Google Scholar]
- Bureš, D.; Bartoň, L.; Kotrba, R.; Hakl, J. Quality attributes and composition of meat from red deer (Cervus elaphus), fallow deer (Dama dama) and Aberdeen Angus and Holstein cattle (Bos taurus). J. Sci. Food Agric. 2015, 95, 2299–2306. [Google Scholar] [CrossRef]
- Daszkiewicz, T.; Hnatyk, N.; Dabrowski, D.; Janiszewski, P.; Gugołek, A.; Kubiak, D.; Śmiecińska, K.; Winarski, R.; Koba-Kowalczyk, M. A comparison of the quality of the Longissimus lumborum muscle from wild and farm-raised fallow deer (Dama dama L.). Small Rumin. Res. 2015, 129, 77–83. [Google Scholar] [CrossRef]
- Švrčula, V.; Košinová, K.; Okrouhlá, M.; Chodová, D.; Hart, V. The effect of sex on meat quality of fallow deer (Dama dama) from the farm located in the Middle Bohemia. Ital. J. Anim. Sci. 2019, 18, 498–504. [Google Scholar] [CrossRef] [Green Version]
- Cawthorn, D.M.; Fitzhenry, L.B.; Kotrba, R.; Bureš, D.; Hoffman, L.C. Chemical composition of wild fallow deer (Dama dama) meat from South Africa: A preliminary evaluation. Foods 2020, 9, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Needham, T.; Laubser, J.G.; Kotrba, R.; Bureš, D.; Hoffman, L.C. Sex influence on muscle yield and physiochemical characteristics of common eland (Taurotragus oryx) meat. Meat Sci. 2019, 152, 41–48. [Google Scholar] [CrossRef] [PubMed]
- Purslow, P.P. Contribution of collagen and connective tissue to cooked meat toughness; some paradigms reviewed. Meat Sci. 2018, 144, 127–134. [Google Scholar] [CrossRef] [PubMed]
- Dannenberger, D.; Nuernberg, G.; Nuernberg, K.; Hagemann, E. The effects of gender, Age and region on macro- and micronutrient contents and fatty acid profiles in the muscles of roe deer and wild boar in Mecklenburg-Western Pomerania (Germany). Meat Sci. 2013, 94, 39–46. [Google Scholar] [CrossRef]
- Cygan-Szczegielniak, D.; Janicki, B. Amino acids content and basic chemical composition of roe deer (Capreolus capreolus L.) meat. Pol. J. Vet. Sci. 2012, 15, 645–649. [Google Scholar] [CrossRef]
- Okuskhanova, E.; Assenova, B.; Rebezov, M.; Amirkhanov, K.; Yessimbekov, Z.; Smolnikova, F.; Nurgazezova, A.; Nurymkhan, G.; Stuart, M. Study of morphology, chemical, and amino acid composition of red deer meat. Vet. World 2017, 10, 623–629. [Google Scholar] [CrossRef]
- Lorenzo, J.M.; Maggiolino, A.; Gallego, L.; Pateiro, M.; Serrano, M.P.; Domínguez, R.; García, A.; Landete-Castillejos, T.; De Palo, P. Effect of age on nutritional properties of Iberian wild red deer meat. J. Sci. Food Agric. 2019, 99, 1561–1567. [Google Scholar] [CrossRef]
- Sales, J.; Hayes, J.P. Proximate, amino acid and mineral composition of ostrich meat. Food Chem. 1996, 56, 167–170. [Google Scholar] [CrossRef]
- Bartoň, L.; Bureš, D.; Kotrba, R.; Sales, J. Comparison of meat quality between eland (Taurotragus oryx) and cattle (Bos taurus) raised under similar conditions. Meat Sci. 2014, 96, 346–352. [Google Scholar] [CrossRef]
- Hoffman, L.C.; Kritzinger, B.; Ferreira, A.V. The effects of region and gender on the fatty acid, amino acid, mineral, myoglobin and collagen contents of impala (Aepyceros melampus) meat. Meat Sci. 2005, 69, 551–558. [Google Scholar] [CrossRef] [PubMed]
- Mostert, R.; Hoffman, L.C. Effect of gender on the meat quality characteristics and chemical composition of kudu (Tragelaphus strepsiceros), an African antelope species. Food Chem. 2007, 104, 565–570. [Google Scholar] [CrossRef]
- Teixeira, P.D.; Tekippe, J.A.; Rodrigues, L.M.; Ladeira, M.M.; Pukrop, J.R.; Kim, Y.H.B.; Schoonmaker, J.P. Effect of ruminally protected arginine and lysine supplementation on serum amino acids, performance, and carcass traits of feedlot steers1. J. Anim. Sci. 2019, 97, 3511–3522. [Google Scholar] [CrossRef] [PubMed]
- Batista, E.D.; Hussein, A.H.; Detmann, E.; Miesner, M.D.; Titgemeyer, E.C. Efficiency of lysine utilization by growing steers1,2. J. Anim. Sci. 2016, 94, 648–655. [Google Scholar] [CrossRef] [PubMed]
- Oke, B.O.; Loerch, S.C.; Deetz, L.E. Effects of Rumen-Protected Methionine and Lysine on Ruminant Performance and Nutrient Metabolism. J. Anim. Sci. 1986, 62, 1101–1112. [Google Scholar] [CrossRef]
- Klemesrud, M.J.; Klopfenstein, T.J.; Stock, R.A.; Lewis, A.J.; Herold, D.W. Effect of dietary concentration of metabolizable lysine on finishing cattle performance. J. Anim. Sci. 2000, 78, 1060. [Google Scholar] [CrossRef] [Green Version]
- Lancaster, N.A.; Tekippe, J.A.; Claeys, M.C.; Schoonmaker, J.P. Effect of ruminal bypass lysine on amino acid status, performance, and carcass characteristics of steers fed corn product-based diets. J. Anim. Sci. 2016, 94, 778. [Google Scholar] [CrossRef]
- Jin, C.; Ye, J.; Yang, J.; Gao, C.; Yan, H.; Li, H.; Wang, X. mTORC1 Mediates Lysine-Induced Satellite Cell Activation to Promote Skeletal Muscle Growth. Cells 2019, 8, 1549. [Google Scholar] [CrossRef] [Green Version]
- Mexia, I.A.; Quaresma, M.A.G.; Coimbra, M.C.P.; dos Santos, F.A.; Alves, S.P.A.; Bessa, R.J.B.; Antunes, I.C. The influence of habitat and sex on feral fallow deer meat lipid fraction. J. Sci. Food Agric. 2020, 100, 3220–3227. [Google Scholar] [CrossRef]
- Scollan, N.D.; Price, E.M.; Morgan, S.A.; Huws, S.A.; Shingfield, K.J. Can we improve the nutritional quality of meat? Proc. Nutr. Soc. 2017, 76, 603–618. [Google Scholar] [CrossRef] [Green Version]
- Nantapo, C.W.T.; Muchenje, V.; Nkukwana, T.T.; Hugo, A.; Descalzo, A.; Grigioni, G.; Hoffman, L.C. Socio-economic dynamics and innovative technologies affecting health-related lipid content in diets: Implications on global food and nutrition security. Food Res. Int. 2015, 76, 896–905. [Google Scholar] [CrossRef]
- Vahmani, P.; Ponnampalam, E.N.; Kraft, J.; Mapiye, C.; Bermingham, E.N.; Watkins, P.J.; Proctor, S.D.; Dugan, M.E.R. Bioactivity and health effects of ruminant meat lipids. Invited Review. Meat Sci. 2020, 165, 108114. [Google Scholar] [CrossRef] [PubMed]
- Calder, P.C. Very long chain omega-3 (n-3) fatty acids and human health. Eur. J. Lipid Sci. Technol. 2014, 116, 1280–1300. [Google Scholar] [CrossRef]
- Grunert, K.G.; Bredahl, L.; Brunsø, K. Consumer perception of meat quality and implications for product development in the meat sector—A review. Meat Sci. 2004, 66, 259–272. [Google Scholar] [CrossRef]
- Priolo, A.; Micol, D.; Agabriel, J. Effects of grass feeding systems on ruminant meat colour and flavour. A review. Anim. Res. 2001, 50, 185–200. [Google Scholar] [CrossRef]
- Christensen, M.; Ertbjerg, P.; Failla, S.; Sañudo, C.; Richardson, R.I.; Nute, G.R.; Olleta, J.L.; Panea, B.; Albertí, P.; Juárez, M.; et al. Relationship between collagen characteristics, lipid content and raw and cooked texture of meat from young bulls of fifteen European breeds. Meat Sci. 2011, 87, 61–65. [Google Scholar] [CrossRef]
- Wiklund, E.; Johansson, L.; Malmfors, G. Sensory meat quality, ultimate pH values, blood parameters and carcass characteristics in reindeer (Rangifer tarandus tarandus L.) grazed on natural pastures or fed a commercial feed mixture. Food Qual. Prefer. 2003, 14, 573–581. [Google Scholar] [CrossRef]
- Neethling, J.; Hoffman, L.C.; Muller, M. Factors influencing the flavour of game meat: A review. Meat Sci. 2016, 113, 139–153. [Google Scholar] [CrossRef]
- Elmore, J.S.; Mottram, D.S.; Enser, M.; Wood, J.D. Effect of the polyunsaturated fatty acid composition of beef muscle on the profile of aroma volatiles. J. Agric. Food Chem. 1999, 47, 1619–1625. [Google Scholar] [CrossRef]
- Wood, J.D.; Richardson, R.I.; Nute, G.R.; Fisher, A.V.; Campo, M.M.; Kasapidou, E.; Sheard, P.R.; Enser, M. Effects of fatty acids on meat quality: A review. Meat Sci. 2003, 66, 21–32. [Google Scholar] [CrossRef]
- Kerth, C.R.; Miller, R.K. Beef flavor: A review from chemistry to consumer. J. Sci. Food Agric. 2015, 95, 2783–2798. [Google Scholar] [CrossRef] [PubMed]
- Flores, M.; Grimm, C.C.; Toldrá, F.; Spanier, A.M. Correlations of Sensory and Volatile Compounds of Spanish “Serrano” Dry-Cured Ham as a Function of Two Processing Times. J. Agric. Food Chem. 1997, 45, 2178–2186. [Google Scholar] [CrossRef]
Diet | |||
---|---|---|---|
Parameter | Pasture (P) | Barley (B) | Lysine (BL) |
Number of observation/animals | 15 | 15 | 15 |
Initial weight (kg) | 28.4 ± 1.9 | 28.5 ± 1.4 | 27.8 ± 2.0 |
Slaughter weight (kg) | 45.3 ± 1.8 | 50.5 ± 2.8 | 49.8 ± 3.4 |
Daily gain—over entire experiment (g/day) | 100.7 ± 13.1 | 131.0 ± 15.1 | 130.1 ± 13.0 |
Carcass weight (kg) | 23.0 ± 3.0 | 28.4 ± 3.0 | 27.8 ± 2.8 |
Attribute | Evaluation | Definition | Scale |
---|---|---|---|
Aroma intensity | Before eating | The overall intensity of aroma | 0 = cannot be identified 100 = extremely strong |
Game aroma intensity | Before eating | Aroma associated with meat from wild animal species | 0 = cannot be identified 100 = extremely strong |
Tenderness | After first two or three chews | The force required to bite through the sample with molars | 0 = very tough 100 = very tender |
Juiciness | After first three to five chews | The amount of moisture released by the sample | 0 = very low 100 = very high |
Flavour intensity | After first five to ten chews | The presence of a flavour typical for cooked meat | 0 = cannot be identified 100 = extremely strong |
Game flavour intensity | After first ten to fifteen chews | Flavour associated with meat from wild animal species | 0 = cannot be identified 100 = extremely strong |
Grassy flavour | After first ten to fifteen chews | Fresh, clean, green, grass-fed flavour | 0 = cannot be identified 100 = extremely strong |
Astringency flavour | After first ten to fifteen chews | Dry, mouth-puckering, sharp, metallic, bitter | 0 = cannot be identified 100 = extremely strong |
Liver flavour | After first ten to fifteen chews | Flavour associated with pan-fried liver | 0 = cannot be identified 100 = extremely strong |
Diet | |||||
---|---|---|---|---|---|
Pasture (P) LSM | Barley (B) LSM | Lysine (BL) LSM | SEM | p-Value | |
Moisture | 74.7 a | 74.2 b | 73.9 b | 0.17 | <0.001 |
Crude protein | 23.4 | 23.5 | 23.6 | 0.21 | 0.384 |
Intramuscular fat | 0.40 b | 0.79 a | 0.74 a | 0.046 | <0.001 |
Total collagen | 0.32 | 0.36 | 0.33 | 0.016 | 0.061 |
Soluble collagen (%) | 44.7 | 42.3 | 42.4 | 1.81 | 0.077 |
Diet | |||||
---|---|---|---|---|---|
Pasture (P) LSM | Barley (B) LSM | Lysine (BL) LSM | SEM | p-Value | |
Essential | |||||
Arginine | 1.33 | 1.34 | 1.35 | 0.035 | 0.316 |
Histidine | 0.92 ab | 0.92 b | 0.95 a | 0.022 | 0.039 |
Isoleucine | 1.02 | 1.02 | 1.05 | 0.015 | 0.072 |
Leucine | 1.74 b | 1.76 ab | 1.80 a | 0.033 | 0.023 |
Lysine | 1.78 | 1.75 | 1.79 | 0.050 | 0.358 |
Methionine | 0.59 | 0.59 | 0.61 | 0.005 | 0.044 |
Phenylalanine | 0.89 | 0.88 | 0.91 | 0.023 | 0.059 |
Threonine | 0.96 | 0.96 | 0.98 | 0.023 | 0.188 |
Valine | 1.08 | 1.10 | 1.11 | 0.027 | 0.295 |
Nonessential | |||||
Alanine | 1.19 b | 1.22 ab | 1.24 a | 0.023 | 0.015 |
Aspartic acid | 1.98 | 1.99 | 2.05 | 0.042 | 0.035 |
Cysteine | 0.19 | 0.19 | 0.20 | 0.003 | 0.055 |
Glutamic acid | 3.08 b | 3.10 b | 3.20 a | 0.090 | 0.010 |
Glycine | 0.87 b | 0.87 b | 0.90 a | 0.027 | 0.011 |
Proline | 0.77 | 0.78 | 0.79 | 0.019 | 0.328 |
Serine | 0.78 | 0.79 | 0.80 | 0.015 | 0.053 |
Tyrosine | 0.96 | 0.96 | 0.95 | 0.029 | 0.763 |
Diet | |||||
---|---|---|---|---|---|
Pasture (P) LSM | Barley (B) LSM | Lysine (BL) LSM | SEM | p-Value | |
C14:0 | 1.34 | 1.37 | 1.37 | 0.172 | 0.958 |
C14:1 n−5 | 0.10 | 0.10 | 0.11 | 0.012 | 0.749 |
C15:0 | 0.36 | 0.43 | 0.40 | 0.047 | 0.210 |
C16:0 | 22.46 | 22.59 | 23.25 | 0.382 | 0.298 |
C16:1 n−7 | 1.70 | 1.75 | 1.96 | 0.158 | 0.487 |
C17:0 | 0.53 | 0.57 | 0.57 | 0.059 | 0.671 |
C18:0 | 13.55 | 13.26 | 13.60 | 0.679 | 0.677 |
C18:1 trans−9 | 0.26 | 0.24 | 0.26 | 0.019 | 0.492 |
C18:1 trans−11 | 0.48 | 0.48 | 0.43 | 0.035 | 0.431 |
C18:1 n−9 | 30.87 | 30.96 | 31.33 | 1.373 | 0.832 |
C18:1 n−7 | 2.13 | 2.06 | 2.11 | 0.068 | 0.771 |
C18:2 trans−6 | 0.07 | 0.07 | 0.07 | 0.009 | 0.899 |
C18:2 n−6 | 13.08 | 13.60 | 12.80 | 0.386 | 0.341 |
C18:3 n−6 | 0.19 | 0.19 | 0.17 | 0.015 | 0.233 |
C18:3 n−3 | 3.07 | 2.86 | 2.59 | 0.272 | 0.116 |
cis-9 trans-11 CLA a | 0.13 | 0.11 | 0.12 | 0.010 | 0.387 |
C20:0 | 0.13 | 0.13 | 0.12 | 0.018 | 0.580 |
C20:1 n−9 | 0.24 | 0.23 | 0.22 | 0.021 | 0.678 |
C20:2 n−6 | 0.33 | 0.33 | 0.30 | 0.016 | 0.090 |
C21:0 | 0.13 | 0.12 | 0.11 | 0.007 | 0.384 |
C20:3 n−6 | 0.24 | 0.23 | 0.23 | 0.011 | 0.869 |
C20:4 n−6 | 3.89 | 3.92 | 3.73 | 0.207 | 0.762 |
C20:5 n−3 | 1.40 a | 1.24 ab | 1.19 b | 0.139 | 0.006 |
C22:5 n−3 | 2.18 | 2.12 | 1.89 | 0.145 | 0.119 |
C22:6 n−3 | 0.82 a | 0.72 b | 0.77 ab | 0.132 | 0.049 |
∑SFA b | 38.54 | 38.51 | 39.47 | 0.936 | 0.517 |
∑MUFA c | 35.04 | 35.11 | 35.73 | 1.483 | 0.635 |
∑PUFA d | 25.36 | 25.37 | 23.82 | 0.795 | 0.123 |
∑n−6 PUFA e | 17.79 | 18.33 | 17.30 | 0.520 | 0.295 |
∑n−3 PUFA f | 7.57 a | 7.03 ab | 6.52 b | 0.387 | 0.002 |
∑PUFA/∑SFA | 0.67 | 0.66 | 0.61 | 0.023 | 0.154 |
∑MUFA/∑SFA | 0.92 | 0.91 | 0.91 | 0.056 | 0.940 |
∑n−6 PUFA/∑n−3 PUFA | 2.38 b | 2.63 a | 2.67 a | 0.078 | 0.007 |
Diet | |||||
---|---|---|---|---|---|
Pasture (P) LSM | Barley (B) LSM | Lysine (BL) LSM | SEM | p-value | |
Aroma intensity | 62.2 | 61.7 | 62.2 | 2.76 | 0.957 |
Game aroma intensity | 60.5 | 62.4 | 59.1 | 2.49 | 0.268 |
Tenderness | 64.9 | 62.5 | 62.6 | 3.47 | 0.472 |
Juiciness | 57.2 | 58.5 | 61.5 | 3.36 | 0.114 |
Flavour intensity | 62.8 | 62.0 | 63.4 | 3.23 | 0.712 |
Game flavour intensity | 60.8 | 60.8 | 60.6 | 2.89 | 0.988 |
Grassy flavour | 50.6 a | 45.4 b | 43.9 b | 2.43 | 0.008 |
Astringency flavour | 41.6 | 42.3 | 43.1 | 3.01 | 0.769 |
Liver flavour | 45.0 b | 52.3 a | 52.1 a | 2.90 | 0.003 |
Thawing loss (%) | 4.9 b | 7.7 a | 7.4 a | 0.38 | <0.001 |
Cooking loss (%) | 18.7 | 18.5 | 20.0 | 0.86 | 0.406 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bureš, D.; Bartoň, L.; Kudrnáčová, E.; Kotrba, R.; Hoffman, L.C. The Effect of Barley and Lysine Supplementation on the longissimus lumborum Meat Quality of Pasture-Raised Fallow Deer (Dama dama). Foods 2020, 9, 1255. https://doi.org/10.3390/foods9091255
Bureš D, Bartoň L, Kudrnáčová E, Kotrba R, Hoffman LC. The Effect of Barley and Lysine Supplementation on the longissimus lumborum Meat Quality of Pasture-Raised Fallow Deer (Dama dama). Foods. 2020; 9(9):1255. https://doi.org/10.3390/foods9091255
Chicago/Turabian StyleBureš, Daniel, Luděk Bartoň, Eva Kudrnáčová, Radim Kotrba, and Louwrens C. Hoffman. 2020. "The Effect of Barley and Lysine Supplementation on the longissimus lumborum Meat Quality of Pasture-Raised Fallow Deer (Dama dama)" Foods 9, no. 9: 1255. https://doi.org/10.3390/foods9091255
APA StyleBureš, D., Bartoň, L., Kudrnáčová, E., Kotrba, R., & Hoffman, L. C. (2020). The Effect of Barley and Lysine Supplementation on the longissimus lumborum Meat Quality of Pasture-Raised Fallow Deer (Dama dama). Foods, 9(9), 1255. https://doi.org/10.3390/foods9091255