Nutrition-Oriented Reformulation of Extruded Cereals and Associated Environmental Footprint: A Case Study
Abstract
:1. Background
2. Methods
2.1. Cases Selection
2.2. Life Cycle Assessment Methodology
2.3. Nutritional Data and Raw Material
2.4. Environmental Impact Assessment
- Climate change (kg CO2-eq, eq = equivalent here and below) (IPCC 2013, 100 a) [26]. Measures the greenhouse gases emitted as part of agricultural processes (application of fertilizers, livestock enteric fermentation), land use change, combustion of fuels and waste, anaerobic decay of bio-based materials, and industrial processes. Biogenic CO2 is assigned a characterization factor of 0. This is a midpoint indicator.
- Freshwater consumption scarcity (m3-eq) [27]. Measures the availability of water for use downstream, weighted by local water scarcity factors. This is a midpoint indicator.
- Abiotic resource depletion (kg Sb-eq) (CML 2001 method, v. 2.05; CML, Center of Environmental Science, Leiden University, The Netherlands) [28]. Measures the potential for depletion of non-renewable resources in relation to a reference substance (antimony, Sb). This is a midpoint indicator.
- Land use impacts on biodiversity (PDF × m2 × year; PDF = Potentially Disappeared Fraction). Measures the impact of different land uses (arable, permanent crops, pasture, forestry, fallow land, industrial, traffic area, urban) on the biodiversity present in that area over a given period (IMPACT World+/Land use method, v.0.05) [29]. This is an endpoint indicator.
- Impacts on ecosphere/ecosystems quality (PDF × m2 × year) (IMPACT 2002+ method v. Q2.27) [30,31]. This is a compound indicator comprising three indicators: eutrophication, ecotoxicity, and acidification. Eutrophication is caused by over-enrichment of aquatic environments with nutrients, typically N and P. Acidification is caused by the deposition of S and N in the soil, thus, affecting its buffer capacity, causing imbalances in the soil composition and affecting its pH. Ecotoxicity refers to the effect on the biota caused by toxic substances emitted into the environment (air, soil, water bodies), such as pesticides, fertilizers, heavy metals, volatile compounds. This is an endpoint indicator.
2.5. Inclusion of Packaging, Manufacture, Distribution and Retail, and of Life and Transportation in the Life Cycle Inventory
2.6. Statistical Analysis
3. Results
3.1. Raw Materials and Nutritional Composition
3.2. Environmental Footprint Assessment
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Willett, W.; Rockström, J.; Loken, B.; Springmann, M.; Lang, T.; Vermeulen, S.; Garnett, T.; Tilman, D.; Declerck, F.; Wood, A.; et al. Food in the Anthropocene: The EAT–Lancet Commission on healthy diets from sustainable food systems. Lancet 2019, 393, 447–492. [Google Scholar] [CrossRef]
- Intergovernmental Panel on Climate Change (IPCC). Climate Change and Land. An IPCC Special Report on Climate Change, Desertification, Land Degradation, Sustainable Land Management, Food Security, and Greenhouse Gas Fluxes in Terrestrial Ecosystems. 2019. Available online: https://www.ipcc.ch/srccl/ (accessed on 6 July 2020).
- Townsend, R.F.; Jaffee, S.; Hoberg, Y.T.; Htenas, A. Future of Food: Shaping the Global Food System to Deliver Improved Nutrition and Health; World Bank: Washington, DC, USA, 2016; Available online: https://openknowledge.worldbank.org/handle/10986/24104 (accessed on 6 July 2020).
- Hirvonen, K.; Bai, Y.; Headey, D.; Masters, W.A. Affordability of the EAT–Lancet reference diet: A global analysis. Lancet Glob. Health 2020, 8, e59–e66. [Google Scholar] [CrossRef] [Green Version]
- Implementation I of M (US) C on DG, Thomas PR. Improving America’s Diet and Health. National Academies Press. 1991. Available online: https://www.ncbi.nlm.nih.gov/books/NBK235261/ (accessed on 29 June 2020).
- Perignon, M.; Vieux, F.; Soler, L.-G.; Masset, G.; Darmon, N. Improving diet sustainability through evolution of food choices: Review of epidemiological studies on the environmental impact of diets. Nutr. Rev. 2017, 75, 2–17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Poore, J.; Nemecek, T. Reducing food’s environmental impacts through producers and consumers. Science 2018, 360, 987–992. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Federici, C.; Detzel, P.; Petracca, F.; Dainelli, L.; Fattore, G. The impact of food reformulation on nutrient intakes and health, a systematic review of modelling studies. BMC Nutr. 2019, 5, 2. [Google Scholar] [CrossRef]
- Gressier, M.; Privet, L.; Mathias, K.C.; Vlassopoulos, A.; Vieux, F.; Masset, G. Modeled dietary impact of industry-wide food and beverage reformulations in the United States and France. Am. J. Clin. Nutr. 2017, 106, 225–232. [Google Scholar] [CrossRef] [PubMed]
- Springmann, M.; Clark, M.; Mason-D’Croz, D.; Wiebe, K.D.; Bodirsky, B.L.; Lassaletta, L.; De Vries, W.; Vermeulen, S.J.; Herrero, M.; Carlson, K.M.; et al. Options for keeping the food system within environmental limits. Nature 2018, 562, 519–525. [Google Scholar] [CrossRef] [PubMed]
- Jeswani, H.K.; Burkinshaw, R.; Azapagic, A. Environmental sustainability issues in the food–energy–water nexus: Breakfast cereals and snacks. Sustain. Prod. Consum. 2015, 2, 17–28. [Google Scholar] [CrossRef]
- Kulak, M.; Nemecek, T.; Frossard, E.; Gaillard, G. Eco-efficiency improvement by using integrative design and life cycle assessment. The case study of alternative bread supply chains in France. J. Clean. Prod. 2016, 112, 2452–2461. [Google Scholar] [CrossRef]
- Noya, L.I.; Vasilaki, V.; Stojceska, V.; González-García, S.; Kleynhans, C.; Tassou, S.; Moreira, M.T.; Katsou, E. An environmental evaluation of food supply chain using life cycle assessment: A case study on gluten free biscuit products. J. Clean. Prod. 2018, 170, 451–461. [Google Scholar] [CrossRef]
- Sieti, N.; Rivera, X.S.; Stamford, L.; Azapagic, A. Environmental impacts of baby food: Ready-made porridge products. J. Clean. Prod. 2019, 212, 1554–1567. [Google Scholar] [CrossRef] [Green Version]
- Masset, G.; Mathias, K.C.; Vlassopoulos, A.; Mölenberg, F.; Lehmann, U.; Gibney, M.; Drewnowski, A. Modeled Dietary Impact of Pizza Reformulations in US Children and Adolescents. PLoS ONE 2016, 11, e0164197. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Combris, P.; Goglia, R.; Henini, M.; Soler, L.-G.; Spiteri, M. Improvement of the nutritional quality of foods as a public health tool. Public Health 2011, 125, 717–724. [Google Scholar] [CrossRef] [PubMed]
- Spiteri, M.; Soler, L.-G. Food reformulation and nutritional quality of food consumption: An analysis based on households panel data in France. Eur. J. Clin. Nutr. 2017, 72, 228–235. [Google Scholar] [CrossRef] [Green Version]
- Chaudhary, A.; Marinangeli, C.P.; Tremorin, D.; Mathys, A. Nutritional Combined Greenhouse Gas Life Cycle Analysis for Incorporating Canadian Yellow Pea into Cereal-Based Food Products. Nutrients 2018, 10, 490. [Google Scholar] [CrossRef] [Green Version]
- Van Mierlo, K.; Rohmer, S.; Gerdessen, J.C. A model for composing meat replacers: Reducing the environmental impact of our food consumption pattern while retaining its nutritional value. J. Clean. Prod. 2017, 165, 930–950. [Google Scholar] [CrossRef]
- Saget, S.; Costa, M.; Barilli, E.; De Vasconcelos, M.W.; Santos, C.S.; Styles, D.; Williams, M. Substituting wheat with chickpea flour in pasta production delivers more nutrition at a lower environmental cost. Sustain. Prod. Consum. 2020, 24, 26–38. [Google Scholar] [CrossRef]
- Heller, M.; Keoleian, G.A.; Willett, W.C. Toward a Life Cycle-Based, Diet-level Framework for Food Environmental Impact and Nutritional Quality Assessment: A Critical Review. Environ. Sci. Technol. 2013, 47, 12632–12647. [Google Scholar] [CrossRef]
- Garnett, T. Food sustainability: Problems, perspectives and solutions. Proc. Nutr. Soc. 2013, 72, 29–39. [Google Scholar] [CrossRef] [Green Version]
- Williams, P. Broadening influence on the food supply and environmental sustainability. Nutr. Diet. 2019, 76, 247–249. [Google Scholar] [CrossRef]
- Lang, T.; Barling, D. Nutrition and sustainability: an emerging food policy discourse. Proc. Nutr. Soc. 2012, 72, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Santé Publique France. Usage Regulation for the “Nutri-Score” Logo. 2019. Available online: https://www.santepubliquefrance.fr/media/files/02-determinants-de-sante/nutrition-et-activite-physique/nutri-score/reglement-usage-en (accessed on 29 June 2020).
- IPCC. Climate change 2013: The Physical Science Basis: Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2013. [Google Scholar]
- Water Use in Life Cycle Assessment Group (WULCA). AWaRE (Available Water Remaining) Method. 2016. Available online: http://www.wulca-waterlca.org/aware.html (accessed on 29 June 2020).
- Guinée, J.B.; Gorrée, M.; Heijungs, R.; Huppes, G.; Kleijn, R.; de Koning, A.; Oers, L.v.; Wegener Sleeswijk, A.; Suh, S.; Udo de Haes, H.A.; et al. Part III: Scientific background. In Handbook on Life Cycle Assessment Operational Guide to the ISO Standards; Guinée, J.B., Ed.; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2002. [Google Scholar]
- IMPACT World+. Available online: http://www.impactworldplus.org (accessed on 29 June 2020).
- Jolliet, O.; Margni, M.; Charles, R.; Humbert, S.; Payet, J.; Rebitzer, G.; Rosenbaum, R.K. IMPACT 2002+: A new life cycle impact assessment methodology. Int. J. Life Cycle Assess. 2003, 8, 324–330. [Google Scholar] [CrossRef] [Green Version]
- Humbert, S.; De Schryver, A.; Bengoa, X.; Margni, M.; Jolliet, O. IMPACT 2002+: User Guide. Draft for Version Q2.21. 2012. Available online: http://www.quantis-intl.com/pdf/IMPACT2002_UserGuide_for_vQ2.21.pdf (accessed on 6 July 2020).
- Eurostat. Municipal Waste by Waste Management Operations. Updated on 24 February 2020. Available online: https://ec.europa.eu/eurostat/web/products-datasets/-/env_wasmun (accessed on 29 June 2020).
- Agence De l’Environnement Et De La Maîtrise De L’énergie (ADEME). Emballages Ménagers. Données 2013. Faits et Chiffres. 2014. Available online: https://www.ademe.fr/emballages-menagers-donnees-2013 (accessed on 29 June 2020).
- CITEO. La France de L’économie Circulaire. Rapport Annuel 2018. Paris; 2018. Available online: https://bo.citeo.com/sites/default/files/2019-07/CITEO_RA2018_web.pdf (accessed on 29 June 2020).
- Zhang, D.; Shen, J.; Zhang, F.; Li, Y.; Zhang, W. Carbon footprint of grain production in China. Sci. Rep. 2017, 7, 4126. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schmidt, J.H. United Plantation LCA Report. 2014. Available online: http://unitedplantations.com/About/UnitedPlantationLCAReport.pdf (accessed on 3 July 2020).
- Spinelli, D.; Jez, S.; Basosi, R. Integrated Environmental Assessment of sunflower oil production. Process. Biochem. 2012, 47, 1595–1602. [Google Scholar] [CrossRef]
- Bhatt, R.; Kukal, S.S.; Busari, A.M.; Arora, S.; Yadav, M. Sustainability issues on rice–wheat cropping system. Int. Soil Water Conserv. Res. 2016, 4, 64–74. [Google Scholar] [CrossRef] [Green Version]
- Gan, Y.; Liang, C.; Chai, Q.; Lemke, R.L.; Campbell, C.A.; Zentner, R.P. Improving farming practices reduces the carbon footprint of spring wheat production. Nat. Commun. 2014, 5, 5012. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Palhares, J.C.P.; Pezzopane, J.R.M. Water footprint accounting and scarcity indicators of conventional and organic dairy production systems. J. Clean. Prod. 2015, 93, 299–307. [Google Scholar] [CrossRef]
- Nouri, H.; Stokvis, B.; Galindo, A.; Blatchford, M.L.; Hoekstra, A.Y. Water scarcity alleviation through water footprint reduction in agriculture: The effect of soil mulching and drip irrigation. Sci. Total Environ. 2019, 653, 241–252. [Google Scholar] [CrossRef]
- Vijay, V.; Pimm, S.L.; Jenkins, C.N.; Smith, S.J. The Impacts of Oil Palm on Recent Deforestation and Biodiversity Loss. PLoS ONE 2016, 11, e0159668. [Google Scholar] [CrossRef]
- Gallo, A.; Accorsi, R.; Baruffaldi, G.; Manzini, R. Designing Sustainable Cold Chains for Long-Range Food Distribution: Energy-Effective Corridors on the Silk Road Belt. Sustaininability 2017, 9, 2044. [Google Scholar] [CrossRef] [Green Version]
- Svanes, E.; Østergaard, S.; Hanssen, O.J. Effects of Packaging and Food Waste Prevention by Consumers on the Environmental Impact of Production and Consumption of Bread in Norway. Sustaininability 2018, 11, 43. [Google Scholar] [CrossRef] [Green Version]
- O’Brien, D.; Capper, J.L.; Garnsworthy, P.; Grainger, C.; Shalloo, L. A case study of the carbon footprint of milk from high-performing confinement and grass-based dairy farms. J. Dairy Sci. 2014, 97, 1835–1851. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grant, C.A.; Hicks, A. Comparative Life Cycle Assessment of Milk and Plant-Based Alternatives. Environ. Eng. Sci. 2018, 35, 1235–1247. [Google Scholar] [CrossRef]
- Winans, K.S.; Macadam-Somer, I.; Kendall, A.; Geyer, R.; Marvinney, E. Life cycle assessment of California unsweetened almond milk. Int. J. Life Cycle Assess. 2019, 25, 577–587. [Google Scholar] [CrossRef] [Green Version]
- Islam, S.; Ponnambalam, S.; Lam, H.L.; Ponnambalam, S. Review on life cycle inventory: Methods, examples and applications. J. Clean. Prod. 2016, 136, 266–278. [Google Scholar] [CrossRef]
- Kramer, G.F.H.; Martinez, E.V.; Espinoza-Orias, N.D.; Cooper, K.A.; Tyszler, M.; Blonk, H. Comparing the Performance of Bread and Breakfast Cereals, Dairy, and Meat in Nutritionally Balanced and Sustainable Diets. Front. Nutr. 2018, 5. [Google Scholar] [CrossRef] [Green Version]
- Wallén, A.; Brandt, N.; Wennersten, R. Does the Swedish consumer’s choice of food influence greenhouse gas emissions? Environ. Sci. Policy 2004, 7, 525–535. [Google Scholar] [CrossRef]
- Mertens, E.; Kaptijn, G.; Kuijsten, A.; Van Zanten, H.; Geleijnse, J.M.; Veer, P.V. ’T SHARP-Indicators Database towards a public database for environmental sustainability. Data Brief. 2019, 27, 104617. [Google Scholar] [CrossRef]
- Masset, G.; Soler, L.-G.; Vieux, F.; Darmon, N. Identifying Sustainable Foods: The Relationship between Environmental Impact, Nutritional Quality, and Prices of Foods Representative of the French Diet. J. Acad. Nutr. Diet. 2014, 114, 862–869. [Google Scholar] [CrossRef] [Green Version]
- Clark, M.; Springmann, M.; Hill, J.D.; Tilman, D. Multiple health and environmental impacts of foods. Proc. Natl. Acad. Sci. USA 2019, 116, 23357–23362. [Google Scholar] [CrossRef] [Green Version]
- CIHEAM; FAO. Mediterranean Food Consumption Patterns: Diet, Environment, Society, Economy and Health. A White Paper Priority 5 of Feeding Knowledge Programme. Romme. 2015. Available online: http://www.fao.org/3/a-i4358e.pdf (accessed on 3 July 2020).
- Food Packaging Trends—UK—March 2018—Market Research Report. Available online: https://reports.mintel.com/display/858877/ (accessed on 6 July 2020).
- Petrescu, D.C.; Vermeir, I.; Petrescu-Mag, R.M. Consumer Understanding of Food Quality, Healthiness, and Environmental Impact: A Cross-National Perspective. Int. J. Environ. Res. Public Health 2019, 17, 169. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Asioli, D.; Aschemann-Witzel, J.; Caputo, V.; Vecchio, R.; Annunziata, A.; Næs, T.; Varela, P. Making sense of the “clean label” trends: A review of consumer food choice behavior and discussion of industry implications. Food Res. Int. 2017, 99, 58–71. [Google Scholar] [CrossRef] [PubMed]
- Edwards-Jones, G. Does eating local food reduce the environmental impact of food production and enhance consumer health? Proc. Nutr. Soc. 2010, 69, 582–591. [Google Scholar] [CrossRef] [Green Version]
- Aschemann-Witzel, J. Consumer perception and trends about health and sustainability: Trade-offs and synergies of two pivotal issues. Curr. Opin. Food Sci. 2015, 3, 6–10. [Google Scholar] [CrossRef]
- Julia, C.; Etilé, F.; Hercberg, S. Front-of-pack Nutri-Score labelling in France: An evidence-based policy. Lancet Public Health 2018, 3, e164. [Google Scholar] [CrossRef] [Green Version]
- Julia, C.; Hercberg, S. Nutri-Score: Evidence of the effective-ness of the French front-of-pack nutrition label. Ernahrungs Umschau 2017, 64, 181–187. [Google Scholar] [CrossRef]
- Finkelstein, E.A.; Ang, F.J.L.; Doble, B.; Wong, W.H.M.; Van Dam, R. A Randomized Controlled Trial Evaluating the Relative Effectiveness of the Multiple Traffic Light and Nutri-Score Front of Package Nutrition Labels. Nutrients 2019, 11, 2236. [Google Scholar] [CrossRef] [Green Version]
- McColl, K.; Lobstein, T.; Brinsden, H. Nutrient profiling could be used to transform food systems and support health-promoting food policies. Public Health Panor. 2017, 3, 586–597. [Google Scholar]
- Leach, A.M.; Emery, K.A.; Gephart, J.; Davis, K.F.; Erisman, J.W.; Leip, A.; Pace, M.L.; D’Odorico, P.; Carr, J.; Noll, L.C.; et al. Environmental impact food labels combining carbon, nitrogen, and water footprints. Food Policy 2016, 61, 213–223. [Google Scholar] [CrossRef] [Green Version]
- European Commission. Single Market for Green Products—The Product Environmental Footprint Pilots—Environment—European Commission. Available online: https://ec.europa.eu/environment/eussd/smgp/ef_pilots.htm. (accessed on 6 July 2020).
- European Commission. Single Market for Green Products—Communication—Environmental Impacts—Environment—European Commission. Available online: https://ec.europa.eu/environment/eussd/smgp/communication/impact.html (accessed on 6 July 2020).
Recipe Year | Ingredients Only | Complete LCA | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
ARD | CC | FWCS | IEEQ | LUIB | ARD | CC | FWCS | IEEQ | LUIB | |
2003 | 0% | 0% | 0% | 0% | 0% | 0% | 0% | 0% | 0% | 0% |
2010 | −7% | −7% | −8% | −4% | 18% | −13% | −10.3% | −8.7% | −6.3% | 14.3% |
2018 | 12% | −3% | 62% | 1% | 78% | −14% | −11.7% | 57% | −2.3% | 69.7% |
Product | Year | Conventional Practices | No Deforestation Practices | Potential Change |
---|---|---|---|---|
Cereal 1 | 2003 | 9.4×102 | 5.0×102 | −47% |
2010 | 9.6×102 | 5.4×102 | −44% | |
2018 | 8.9×102 | 5.2×102 | −41% | |
Cereal 2 | 2003 | 1.2×10 | 5.9×102 | −49% |
2010 | 1.1×10 | 4.8×102 | −55% | |
2018 | 1.0×10 | 5.1×102 | −49% | |
Cereal 3 | 2003 | 9.0×102 | 6.5×102 | −27% |
2010 | 6.7×102 | 4.6×102 | −32% | |
2018 | 7.6×102 | 6.0×102 | −21% |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Espinoza-Orias, N.; Vlassopoulos, A.; Masset, G. Nutrition-Oriented Reformulation of Extruded Cereals and Associated Environmental Footprint: A Case Study. Foods 2020, 9, 1260. https://doi.org/10.3390/foods9091260
Espinoza-Orias N, Vlassopoulos A, Masset G. Nutrition-Oriented Reformulation of Extruded Cereals and Associated Environmental Footprint: A Case Study. Foods. 2020; 9(9):1260. https://doi.org/10.3390/foods9091260
Chicago/Turabian StyleEspinoza-Orias, Namy, Antonis Vlassopoulos, and Gabriel Masset. 2020. "Nutrition-Oriented Reformulation of Extruded Cereals and Associated Environmental Footprint: A Case Study" Foods 9, no. 9: 1260. https://doi.org/10.3390/foods9091260
APA StyleEspinoza-Orias, N., Vlassopoulos, A., & Masset, G. (2020). Nutrition-Oriented Reformulation of Extruded Cereals and Associated Environmental Footprint: A Case Study. Foods, 9(9), 1260. https://doi.org/10.3390/foods9091260