Effect of Microwave Pretreatment of Seeds on the Quality and Antioxidant Capacity of Pomegranate Seed Oil
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Material
2.2. Sample Moisturizing
2.3. Microwave Pretreatment
2.3.1. Equipment Calibration
2.3.2. Pretreatment
2.4. Oil Extraction
2.5. Pomegranate Seeds Microstructures Analysis
2.6. Determination of PSO Quality Indices
2.6.1. Refractive and Yellowness Index
2.6.2. Peroxide Value, Conjugated Dienes, ρ-Anisidine Value and Total Oxidation Value
2.7. Determination of Bioactive Compounds and Antioxidant Capacity
2.7.1. Total Carotenoids Content and Total Phenolic Content
2.7.2. Phytosterol Composition
2.7.3. Radical Scavenging Ability
2.7.4. Ferric Reducing Antioxidant Power
2.8. Fatty Acid Composition
2.9. Statistical Analysis
3. Results and Discussion
3.1. Oil Yield and Seeds Microstructures
3.2. Refractive and Yellowness Index
3.3. Peroxide Value, Conjugated Dienes and Trienes, ρ-Anisidine Value and Total Oxidation Value
3.4. Total Carotenoids Content, Total Phenolic Content, and Antioxidant Capacity
3.5. Phytosterol Composition
3.6. Fatty Acid Composition
3.7. Principal Component Analysis and Agglomerative Hierarchical Clustering Analysis
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Jimenez-Monreal, A.M.; Garcia-Diz, L.; Martinez-Tome, M.; Mariscal, M.; Murcia, M.A. Influence of cooking methods on antioxidant activity of vegetables. J. Food Sci. 2009, 74, 97–103. [Google Scholar] [CrossRef] [PubMed]
- Fawole, O.A.; Opara, U.L. Developmental changes in maturity indices of pomegranate fruit: A descriptive review. Sci. Hortic. 2013, 159, 152–161. [Google Scholar] [CrossRef]
- Khoddami, A.; Bin, Y.; Man, C.; Roberts, T.H. Physicochemical properties and fatty acid profile of seed oils from pomegranate (Punica granatum L.) extracted by cold pressing. Eur. J. Lipid Sci. Technol. 2014, 116, 553–562. [Google Scholar] [CrossRef]
- Ismail, T.; Sestili, P.; Akhtar, S. Pomegranate peel and fruit extracts: A review of potential anti-inflammatory and anti-infective effects. J. Ethnopharmacol. 2012, 143, 397–405. [Google Scholar] [CrossRef] [PubMed]
- Eikani, M.H.; Golmohammad, F.; Saied, S. Extraction of pomegranate (Punica granatum L.) seed oil using superheated hexane. Food Bioprod. Process. 2012, 90, 32–36. [Google Scholar] [CrossRef]
- Fernandes, L.; Pereira, J.A.; Lopez-Cortes, I.; Salazar, D.M.; Ramalhosa, E.; Casal, S. Fatty acid, vitamin E and sterols composition of seed oils from nine different pomegranate (Punica granatum L.) cultivars grown in Spain. J. Food Compos. Anal. 2015, 39, 13–22. [Google Scholar] [CrossRef]
- Aruna, P.; Venkataramanamma, D.; Singh, A.K.; Singh, R.P. Health benefits of punicic acid: A review. Compr. Rev. Food Sci. Food Saf. 2016, 15, 16–27. [Google Scholar] [CrossRef]
- Lansky, E.P.; Newman, R.A. Punica granatum (Pomegranate) and its potential for prevention and treatment of inflammation and cancer. J. Ethnopharmacol. 2007, 109, 177–206. [Google Scholar] [CrossRef]
- Kalamara, E.; Goula, A.M.; Adamopoulos, K.G. An integrated process for utilization of pomegranate wastes-seeds. Innov. Food Sci. Emerg. 2015, 27, 144–153. [Google Scholar] [CrossRef]
- Qu, W.; Pan, Z.; Ma, H. Extraction modeling and activities of antioxidants from pomegranate marc. J. Food Eng. 2010, 99, 16–23. [Google Scholar] [CrossRef]
- Talekar, S.; Patti, A.F.; Singh, R.; Vijayraghavan, R.; Arora, A. From waste to wealth: High recovery of nutraceuticals from pomegranate seed waste using a green extraction process. Ind. Crop. Prod. 2018, 112, 790–802. [Google Scholar] [CrossRef]
- Wang, L.; Weller, C.L. Recent advances in extraction of nutraceuticals from plants. Trends Food Sci. Technol. 2006, 17, 300–312. [Google Scholar] [CrossRef]
- Sbihi, H.M.; Nehdi, I.A.; Mokbli, S.; Romdhani-Yeounes, M.; Al-Resayes, S.I. Hexane and ethanol extracted seed oils and leaf essential compositions from two castor plant (Ricinus communis L.) varieties. Ind. Crop. Prod. 2018, 122, 174–181. [Google Scholar] [CrossRef]
- Citeau, M.; Slabi, S.A.; Joffre, F.; Carré, P. Improved rapeseed oil extraction yield and quality via cold separation of ethanol miscella. OCL 2018, 25, D207. [Google Scholar] [CrossRef]
- Perrier, A.; Delsart, C.; Boussetta, N.; Grimi, N.; Citeau, M.; Vorobiev, E. Effect of ultrasound and green solvents addition on the oil extraction efficiency from rapeseed flakes. Ultrason. Sonochem. 2017, 39, 58–65. [Google Scholar] [CrossRef] [PubMed]
- Tir, R.; Dutta, P.C.; Badjah-hadj-ahmed, A.Y. Effect of the extraction solvent polarity on the sesame seeds oil composition. Eur. J. Lipid Sci. Technol. 2012, 114, 1427–1438. [Google Scholar] [CrossRef]
- Efthymiopoulos, I.; Hellier, P.; Ladommatos, N.; Russo-pro, A.; Eveleigh, A.; Aliev, A.; Kay, A.; Mills-lamptey, B. Influence of solvent selection and extraction temperature on yield and composition of lipids extracted from spent coffee grounds. Ind. Crop. Prod. 2018, 119, 49–56. [Google Scholar] [CrossRef]
- Maskan, M. Microwave/air and microwave finish drying of banana. J. Food Eng. 2000, 44, 71–78. [Google Scholar] [CrossRef]
- Đurđević, S.; Šavikin, K.; Živković, J.; Böhm, V.; Stanojković, T.; Damjanović, A.; Petrović, S. Antioxidant and cytotoxic activity of fatty oil isolated by supercritical fluid extraction from microwave pretreated seeds of wild growing Punica granatum L. J. Supercrit. Fluid 2018, 133, 225–232. [Google Scholar] [CrossRef]
- Wroniak, M.; Rekas, A.; Siger, A.; Janowicz, M. Microwave pretreatment effects on the changes in seeds microstructure, chemical composition and oxidative stability of rapeseed oil. LWT Food Sci. Technol. 2016, 68, 634–641. [Google Scholar] [CrossRef]
- Azadmard-Damirchi, S.; Habibi-Nodeh, F.; Hesari, J.; Nemati, J.; Achachlouei, B.F. Effect of pretreeatment with microwaves on oxidative stability and nutraceuticals content of oil from rapeseed. Food Chem. 2010, 121, 1211–1215. [Google Scholar] [CrossRef]
- Zhang, W.; Jin, G. Microwave puffing-pretreated extraction of oil from Camellia oleifera seed and evaluation of its physicochemical characteristics. Int. J. Food Sci. Technol. 2011, 46, 2544–2549. [Google Scholar] [CrossRef]
- Li, J.; Zu, Y.; Luo, M.; Gu, C.; Zhao, C.; Efferth, T.; Fu, Y. Aqueous enzymatic process assisted by microwave extraction of oil from yellow horn (Xanthoceras sorbifolia Bunge.) seed kernels and its quality evaluation. Food Chem. 2013, 138, 2152–2158. [Google Scholar] [CrossRef] [PubMed]
- Da Porto, C.; Da Decorti, D.; Natolino, A. Microwave pretreatment of Moringa oleifera seed: Effect on oil obtained by pilot-scale supercritical carbon dioxide extraction and soxhlet apparatus. J. Supercrit. Fluid 2016, 107, 38–43. [Google Scholar] [CrossRef]
- Güneşer, A.B.; Yilmaz, E. Effects of microwave roasting on the yield and composition of cold pressed orange seed oils. Grasas Aceites 2017, 68, 1–10. [Google Scholar]
- Lin, D.; Xiao, M.; Zhao, J.; Li, Z.; Xing, B.; Li, X.; Kong, M.; Li, L.; Zhang, Q.; Liu, Y.; et al. An overview of plant phenolic compounds and their importance in human nutrition and management of type 2 diabetes. Molecules 2016, 21, 1–19. [Google Scholar] [CrossRef] [PubMed]
- Górnaś, P.; Rudzińska, M.; Segliņa, D. Lipophilic composition of eleven apple seed oils: A promising source of unconventional oil from industry by-products. Ind. Crop. Prod. 2014, 60, 86–91. [Google Scholar] [CrossRef]
- Wang, H.; Hu, Z.; Wang, Y.; Chen, H.; Huang, X. Phenolic compounds and the antioxidant activities in litchi pericarp: Difference among cultivars. Sci. Hortic. 2011, 129, 784–789. [Google Scholar] [CrossRef]
- Rekas, A.; Scibisz, I.; Siger, A.; Wroniak, M. The effect of microwave pretreatment of seeds on the stability and degradation kinetics of phenolics compounds in rapeseed oil during long time storage. Food Chem. 2017, 222, 43–54. [Google Scholar] [CrossRef]
- Gaber, M.A.F.M.; Tujillo, F.J.; Mansour, M.P.; Juliano, P. Improving oil extraction from canola seeds by conventional and advanced methods. Food Eng. Rev. 2018, 10, 198–210. [Google Scholar] [CrossRef]
- Fetzer, D.L.; Cruz, P.N.; Hamerski, F.; Corazza, M.L. Extraction of baru (Dipteryx alata vogel) seed oil using compressed solvents technology. J. Supercrit. Fluid 2018, 137, 23–33. [Google Scholar] [CrossRef]
- Cruz, R.M.S.; Khmelinski, I.; Vieira, M.C. Methods in Food Analysis, 1st ed.; Taylor and Francis Group: New York, NY, USA, 2016; pp. 140–190. [Google Scholar]
- ISO. Animal and Vegetable Fats and Oils. In ISO 3656: Determination of Ultraviolet Absorbance Expressed as Specific UV Extinction; International Organisation for Standardisation: Geneva, Switzerland, 2011; pp. 1–8. Available online: https://www.iso.org/standard/51008 (accessed on 27 May 2020).
- AOCS. In Official Methods and Recommended Practices of the American oil Chemists’ Society; Firestone, D., Ed.; AOCS Press: Champaign, IL, USA, 2003. [Google Scholar]
- Samaram, S.; Mirhosseini, H.; Tan, C.P.; Ghazali, H.M. Ultrasound-assisted extraction (UAE) and solvent extraction of papaya seed oil: Yield, fatty acid composition and triacylglycerol profile. Molecules 2013, 18, 12474–12487. [Google Scholar] [CrossRef] [Green Version]
- Ranjith, A.; Kumar, K.S.; Venugopalan, V.V.; Arumughan, C.; Sawhney, R.C.; Singh, V. Fatty acids, tocols, and carotenoids in pulp oil of three sea buckthorn species (Hippophae rhamnoides, H. salicifolia, and H. tibetana) grown in the Indian Himalayas. J. Am. Oil Chem. Soc. 2006, 83, 359–364. [Google Scholar] [CrossRef]
- Abbasi, H.; Rezaei, K.; Emamdjomeh, Z.; Ebrahimzadeh Mousavi, S.M. Effect of various extraction conditions on the phenolic contents of pomegranate seed oil. Eur. J. Lipid Sci. Technol. 2008, 110, 435–440. [Google Scholar] [CrossRef]
- Siano, F.; Straccia, M.C.; Paolucci, M.; Fasulo, G.; Boscaino, F.; Volpe, M.G. Physico-chemical properties and fatty acid composition of pomegranate, cherry and pumpkin seed oils. J. Sci. Food Agric. 2015, 96, 1730–1735. [Google Scholar] [CrossRef] [PubMed]
- Benzie, I.F.F.; Strain, J.J. The ferric reducing ability of plasma (FRAP) as a measure of antioxidant power: The FRAP Assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mphahlele, R.R.; Fawole, O.A.; Makunga, N.P.; Opara, U.L. Functional properties of pomegranate fruit parts: Influence of packaging systems and storage time. J. Food Meas. Charact. 2017, 11, 2233–2246. [Google Scholar] [CrossRef]
- Sarkhosh, A.; Zamani, Z.; Fatahi, R.; Ranjbar, H. Evaluation of genetic diversity among Iranian soft-seed pomegranate accessions by fruit characteristics and RAPD markers. Sci. Hortic. 2009, 121, 313–319. [Google Scholar] [CrossRef]
- Luo, X.; Cao, D.; Zhang, J.; Chen, L.; Xia, X.; Li, H.; Zhao, D. Integrated microRNA and mRNA expression profiling reveals a complex network regulating pomegranate (Punica granatum L.) seed hardness. Sci. Rep. 2018, 8, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Fathi-Achachlouei, B.; Azadmard-damirchi, S.; Zahedi, Y.; Shaddel, R. Microwave pretreatment as a promising strategy for increment of nutraceutical content and extraction yield of oil from milk thistle seed. Ind. Crop. Prod. 2019, 128, 527–533. [Google Scholar] [CrossRef]
- Uquiche, E.; Jeréz, M.; Ortíz, J. Effect of pretreatment with microwaves on mechanical extraction yield and quality of vegetable oil from Chilean hazelnuts (Gevuina avellana Mol). Innov. Food Sci. Emerg. Technol. 2008, 9, 495–500. [Google Scholar] [CrossRef]
- Nikiforidis, C.V. Structure and function of oleosomes (oil bodies). J. Colloid Interface Sci. 2019, 274, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Davis, J.P.; Sweigart, D.S.; Price, K.M.; Dean, L.L.; Sanders, T.H. Refractive index and density measurements of peanut oil for determining oleic and linoleic acid contents. J. Am. Oil Chem. Soc. 2013, 90, 199–206. [Google Scholar] [CrossRef]
- Costa, A.M.M.; Silva, L.O.; Torres, A.G. Chemical composition of commercial cold-pressed pomegranate (Punica granatum) seed oil from Turkey and Israel, and the use of bioactive compounds for samples’ origin preliminary discrimination. J. Food Compos. Anal. 2019, 75, 8–16. [Google Scholar] [CrossRef]
- Pathare, P.B.; Opara, U.L.; Al-Said, F.A. Colour measurement and analysis in fresh and processed foods: A review. Food Bioproc. Technol. 2013, 6, 36–60. [Google Scholar] [CrossRef]
- Rekas, A.; Siger, A.; Wroniak, M.; Scibisz, I.; Derewiaka, D.; Anders, A. Dehulling and microwave pretreatment effects on the physicochemical composition and antioxidant capacity of virgin rapeseed oil. J. Food Sci. Technol. 2017, 54, 627–638. [Google Scholar] [CrossRef] [Green Version]
- Codex Alimentarius. Standard for Named Vegetable Oils-Codex Stan 210-1999 Standard for Named Vegetable Oils-Codex Stan 210-1999. Codex Alimentarius. 1999. 1–15. Available online: http://www.fao.org/fao-who-codexalimentarius/codex-texts/list-standards (accessed on 7 September 2020).
- Basiri, S. Evaluation of antioxidant and antiradical properties of pomegranate (Punica granatum L.) seed and defatted seed extracts. J. Food Sci. Technol. 2015, 52, 1117–1123. [Google Scholar] [CrossRef] [Green Version]
- Choe, E.; Min, D.B. Mechanisms and factors for edible oil oxidation. Compr. Rev. Food Sci. Food Saf. 2006, 5, 169–186. [Google Scholar] [CrossRef]
- Amri, Z.; Lazreg-Aref, H.; Mekni, M.; El-gharbi, S.; Dabbaghi, O.; Mechri, B.; Hammami, M. Oil characterization and lipids class composition of pomegranate seeds. Biomed. Res. Int. 2017. [Google Scholar] [CrossRef] [Green Version]
- Moghimi, M.; Farzaneh, V. The effect of ultrasound pretreatment on some selected physicochemical properties of black cumin (Nigella Sativa). Nutrire 2018, 43, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Young, A.J.; Lowe, G.M. Antioxidant and prooxidant properties of carotenoids. Arch. Biochem. Biophys. 2001, 385, 20–27. [Google Scholar] [CrossRef] [PubMed]
- Mazaheri, Y.; Torbati, M.; Azadmard-Damirchi, S.; Savage, G.P. Effect of roasting and microwave pretreatments of Nigella sativa L. seeds on lipase activity and the quality of the oil. Food Chem. 2019, 274, 480–486. [Google Scholar] [CrossRef] [PubMed]
- Kha, T.C.; Nguyen, M.H.; Roach, P.D.; Stathopoulous, C.E. Effect of galic aril microwave processing conditions on oil extraction efficiency and β-carotene and lycopene content. J. Food Eng. 2013, 117, 486–491. [Google Scholar] [CrossRef]
- Kumar, N.; Goel, N. Phenolic acids: Natural versatile molecules with promising therapeutic applications. Biotechnol. Rep. 2019, 24, 1–10. [Google Scholar] [CrossRef]
- Pande, G.; Akoh, C.C. Antioxidant capacity and lipid characterization of six Georgia-grown pomegranate cultivars. J. Agric. Food Chem. 2009, 57, 9427–9436. [Google Scholar] [CrossRef]
- Xi, W.; Lu, J.; Qun, J.; Jiao, B. Characterization of phenolic profile and antioxidant capacity of different fruit part from lemon (Citrus limon Burm.) cultivars. J. Food Sci. Technol. 2017, 54, 1108–1118. [Google Scholar] [CrossRef] [Green Version]
- De Melo, I.L.P.; de Carvalho, E.B.T.; Silva, A.M.O.; Yoshime, L.T.; Sattler, J.A.G.; Pavan, R.T.; Mancini-Filho, J. Characterization of constituents, quality and stability of pomegranate seed oil (Punica granatum L.). Food Sci. Technol. 2014, 36, 132–139. [Google Scholar] [CrossRef] [Green Version]
- Caligiani, A.; Bonzanini, F.; Palla, G.; Cirlini, M.; Bruni, R. characterization of a potential nutraceutical ingredient: Pomegranate (Punica granatum L.) seed oil unsaponifiable fraction. Plant. Foods Hum. Nutr. 2010, 65, 277–283. [Google Scholar] [CrossRef]
- Pieszka, M.; Migda, W.; Gdsior, R.; Rudziska, M.; Bederska-Aojewska, D.; Pieszka, M.; Szczurek, P. Native oils from apple, blackcurrant, raspberry, and strawberry seeds as a source of polyenoic fatty acids, tocochromanols, and phytosterols: A health implication. J. Chem. 2015. [Google Scholar] [CrossRef] [Green Version]
- Górnaś, P.; Rudzińska, M.; Raczyk, M.; Mišina, I.; Soliven, A.; Segliņa, D. Composition of bioactive compounds in kernel oils recovered from sour cherry (Prunus cerasus L.) by-products: Impact of the cultivar on potential applications. Ind. Crop. Prod. 2016, 82, 44–50. [Google Scholar] [CrossRef]
- Uddin, M.S.; Ferdosh, S.; Haque Akanda, M.J.; Ghafoor, K.; Rukshana, A.H.; Ali, M.E.; Kamaruzzaman, B.Y.; Fauzi, M.B.; Hadijah, S.; Shaarani, S.; et al. Techniques for the extraction of phytosterols and their benefits in human health: A review. Sep. Sci. Technol. 2018, 53, 2206–2223. [Google Scholar]
- Tian, Y.; Xu, Z.; Zheng, B.; Lo, Y.M. Ultrasonics sonochemistry optimization of ultrasonic-assisted extraction of pomegranate (Punica granatum L.) seed oil. Ultrason. Sonochem. 2013, 20, 202–208. [Google Scholar] [CrossRef] [PubMed]
- Aruna, P.; Manohar, B.; Singh, R.P. Processing of pomegranate seed waste and mass transfer studies of extraction of pomegranate seed oil. J. Food Process. Preserv. 2018, 42, 1–11. [Google Scholar] [CrossRef]
- Deniz Senyilmaz-Tiebe, D.; Pfaff, D.H.; Virtue, S.; Schwarz, K.V.; Fleming, T.; Altamura, S.; Muckenthaler, M.U.; Okun, J.G.; Vidal-Puig, A.; Nawroth, P.; et al. Dietary stearic acid regulates mitochondria in vivo in humans. Nat. Commun. 2018, 9, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Đurđević, S.; Šavikin, K.; Živković, J.; Böhm, V.; Stanojković, T.; Damjanović, A.; Petrović, S. Improvement of supercritical CO2 and n-hexane extraction of wild growing pomegranate seed oil by microwave pretreatment. Ind. Crop. Prod. 2017, 104, 21–27. [Google Scholar] [CrossRef]
- Shin, E.; Craft, B.D.; Pegg, R.B.; Phillips, R.D.; Etenmiller, R.R. Chemometric approach of fatty acids and profiles in Runneer-type peanut cultivar by principal component analysi (PCA). Food Chem. 2010, 119, 1262–1270. [Google Scholar] [CrossRef]
Cultivar | Treatment | RI | K232 | K270 | PV | AV | TOTOX |
---|---|---|---|---|---|---|---|
Wonderful | Unmicrowaved | 1.5181 ± 0.00 a | 0.22 ± 0.01 b | 0.28 ± 0.005 b | 0.04 ± 0.001 d | 14.22 ± 0.58 a | 14.30 ± 0.58 a |
Microwaved | 1.5180 ± 0.00 a | 0.28 ± 0.01 a | 0.29 ± 0.009 ab | 0.05 ± 0.005 d | 12.50 ± 0.59 a | 12.59 ± 0.59 a | |
Herskawitz | Unmicrowaved | 1.5180 ± 0.00 a | 0.30 ± 0.01 a | 0.31 ± 0.008 a | 0.17 ± 0.008 e | 13.06 ± 0.34 a | 13.40 ± 0.35 a |
Microwaved | 1.5180 ± 0.00 a | 0.19 ± 0.02 b | 0.29 ± 0.016 ab | 0.22 ± 0.011 c | 12.90 ± 1.20 a | 13.33 ± 1.19 a | |
Acco | Unmicrowaved | 1.5180 ± 0.00 a | 0.20 ± 0.01 b | 0.31 ± 0.005 a | 0.27 ± 0.005 a | 2.00 ± 0.66 c | 2.53 ± 0.65 c |
Microwaved | 1.5180 ± 0.00 a | 0.29 ± 0.01 a | 0.31 ± 0.009 ab | 0.35 ± 0.007 b | 5.90 ± 1.15 b | 6.60 ± 1.16 b |
Cultivar | Treatment | TCC | TPC | DPPH | FRAP |
---|---|---|---|---|---|
Wonderful | Unmicrowaved | 22.65 ± 0.96 d | 1.67 ± 0.01 c | 1.70 ± 0.05 bc | 6.09 ± 1.44 b |
Microwaved | 21.19 ± 1.81 d | 2.09 ± 0.17 b | 1.72 ± 0.02 bc | 8.98 ± 0.41 a | |
Herskawitz | Unmicrowaved | 30.27 ± 0.36 b | 2.91 ± 0.11 a | 1.66 ± 0.01 c | 3.00 ± 0.17 c |
Microwaved | 33.47 ± 0.43 a | 3.12 ± 0.07 a | 1.78 ± 0.01 ab | 5.46 ± 0.90 b | |
Acco | Unmicrowaved | 27.00 ± 0.96 c | 2.05 ± 0.06 c | 1.69 ± 0.03 c | 1.95 ± 0.02 c |
Microwaved | 32.08 ± 0.73 ab | 2.39 ± 0.13 b | 1.76 ± 0.02 a | 1.80 ± 0.13 c |
Cultivar/Treatment | ||||||
---|---|---|---|---|---|---|
Fatty Acid | Wonderful | Herskawitz | Acco | |||
Unmicrowaved | Microwaved | Unmicrowaved | Microwaved | Unmicrowaved | Microwaved | |
Palmitic acid (C16:0) | 5.64 ± 0.14 c | 5.98 ± 0.17 bc | 5.66 ± 0.35 c | 6.82 ± 0.53 ab | 6.72 ± 0.16 b | 7.74 ± 0.27 a |
Stearic acid (C18:0) | 2.50 ± 0.08 c | 2.49 ± 0.09 bc | 2.34 ± 0.11 ab | 2.35 ± 0.08 ab | 2.87 ± 0.03 b | 3.08 ± 0.02 a |
Oleic acid (C18:1) | 8.04 ± 0.47 c | 8.59 ± 0.16 bc | 7.43 ± 0.30 c | 8.11 ± 0.40 ab | 8.75 ± 0.12 b | 9.62 ± 0.17 a |
Linoleic acid (C18:2) | 11.59 ± 0.23 c | 11.62 ± 0.53 bc | 12.09 ± 1.25 c | 16.54 ± 1.53 ab | 12.86 ± 0.42 b | 14.35 ± 0.95 a |
Punicic acid (C18:3) | 68.95 ± 0.63 c | 68.99 ± 0.71 bc | 70.51 ± 1.96 c | 63.55 ± 2.84 ab | 66.30 ± 0.58 b | 62.75 ± 1.84 a |
Arachidic acid (C20:0) | 0.45 ± 0.03 c | 0.54 ± 0.01 bc | 0.53 ± 0.02 c | 0.60 ± 0.04 ab | 0.88 ± 0.19 b | 0.76 ± 0.02 a |
SFA | 8.59 ± 0.24 cd | 9.01 ± 0.27 cd | 8.53 ± 0.30 d | 9.77 ± 0.63 bc | 10.47 ± 0.36 ab | 11.58 ± 0.30 a |
MUFA | 8.04 ± 0.47 bc | 8.59 ± 0.16 b | 7.43 ± 0.30 c | 8.11 ± 0.40 bc | 8.75 ± 0.12 ab | 9.62 ± 0.17 a |
PUFA | 80.53 ± 0.43 ab | 80.61 ± 0.19 ab | 82.60 ± 0.70 a | 80.09 ± 1.31 b | 79.16 ± 0.17 bc | 77.09 ± 0.90 c |
UFA/SFA ratio | 17.43 ± 0.25 a | 17.55 ± 0.14 a | 17.15 ± 0.15 a | 16.40 ± 0.27 b | 16.33 ± 0.14 b | 16.29 ± 0.08 b |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kaseke, T.; Opara, U.L.; Fawole, O.A. Effect of Microwave Pretreatment of Seeds on the Quality and Antioxidant Capacity of Pomegranate Seed Oil. Foods 2020, 9, 1287. https://doi.org/10.3390/foods9091287
Kaseke T, Opara UL, Fawole OA. Effect of Microwave Pretreatment of Seeds on the Quality and Antioxidant Capacity of Pomegranate Seed Oil. Foods. 2020; 9(9):1287. https://doi.org/10.3390/foods9091287
Chicago/Turabian StyleKaseke, Tafadzwa, Umezuruike Linus Opara, and Olaniyi Amos Fawole. 2020. "Effect of Microwave Pretreatment of Seeds on the Quality and Antioxidant Capacity of Pomegranate Seed Oil" Foods 9, no. 9: 1287. https://doi.org/10.3390/foods9091287
APA StyleKaseke, T., Opara, U. L., & Fawole, O. A. (2020). Effect of Microwave Pretreatment of Seeds on the Quality and Antioxidant Capacity of Pomegranate Seed Oil. Foods, 9(9), 1287. https://doi.org/10.3390/foods9091287