Determination of 31 Polycyclic Aromatic Hydrocarbons in Plant Leaves Using Internal Standard Method with Ultrasonic Extraction–Gas Chromatography–Mass Spectrometry
Abstract
:1. Introduction
2. Experimental
2.1. Reagents and Chemicals
2.2. Sample Collections
2.3. Extraction Procedure
2.4. Instrumentations
2.5. Statistical Analysis
3. Results and Discussion
3.1. Optimization of Detection Conditions
3.1.1. Selection of Internal Standards and Substitutes
3.1.2. Selection of Quantitative Ion
3.1.3. Calibrations and Sensitivity of Instruments
3.2. Optimization of Solid-Phase Extraction Conditions
3.2.1. Selection of Extraction Method
3.2.2. Selection of Solid-Phase Extraction Column
3.2.3. Selection of Elution Volume
3.3. Method Validation
3.4. Detection of PAHs in Real Leaf Samples
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Patnana, D.P.; Chandra, B.P.; Chaudhary, P.; Sinha, B.; Sinha, V. Optimized LC-MS/MS method for simultaneous determination of endocrine disruptors and PAHs bound to PM2.5: Sources and health risk in Indo-Gangetic Plain. Atmos. Environ. 2022, 290, 119363. [Google Scholar] [CrossRef]
- Humel, S.; Schmidt, S.N.; Sumetzberger-Hasinger, M.; Mayer, P.; Loibner, A.P. Enhanced Accessibility of Polycyclic Aromatic Hydrocarbons (PAHs) and Heterocyclic PAHs in Industrially Contaminated Soil after Passive Dosing of a Competitive Sorbate. Environ. Sci. Technol. 2017, 51, 8017–8026. [Google Scholar] [CrossRef] [PubMed]
- Alam, M.S.; Keyte, I.J.; Yin, J.; Stark, C.; Jones, A.M.; Harrison, R.M. Diurnal variability of polycyclic aromatic compound (PAC) concentrations: Relationship with meteorological conditions and inferred sources. Atmos. Environ. 2015, 122, 427–438. [Google Scholar] [CrossRef]
- Liu, Y.; Yang, Z.; Liu, Q.; Qi, X.; Qu, J.; Zhang, S.; Wang, X.; Jia, K.; Zhu, M. Study on chemical components and sources of PM2.5 during heavy air pollution periods at a suburban site in Beijing of China. Atmos. Pollut. Res. 2021, 12, 188–199. [Google Scholar] [CrossRef]
- Liu, Q.; Baumgartner, J.; Zhang, Y.; Schauer, J.J. Source apportionment of Beijing air pollution during a severe winter haze event and associated pro-inflammatory responses in lung epithelial cells. Atmos. Environ. 2016, 126, 28–35. [Google Scholar] [CrossRef]
- Liu, W.; Xu, Y.; Zhao, Y.; Liu, Q.; Yu, S.; Liu, Y.; Wang, X.; Liu, Y.; Tao, S.; Liu, W. Occurrence, source, and risk assessment of atmospheric parent polycyclic aromatic hydrocarbons in the coastal cities of the Bohai and Yellow Seas, China. Environ. Pollut. 2019, 254 Pt B, 113046. [Google Scholar] [CrossRef]
- Iakovides, M.; Apostolaki, M.; Stephanou, E.G. PAHs, PCBs and organochlorine pesticides in the atmosphere of Eastern Mediterranean: Investigation of their occurrence, sources and gas-particle partitioning in relation to air mass transport pathways. Atmos. Environ. 2021, 244, 117931. [Google Scholar] [CrossRef]
- United States Environmental Protection Agency. Polynculear Aromatic Hydrogens, SW-846 Method 8310; United States Environmental Protection Agency: Washington, DC, USA, 1999.
- Liu, Q.; Baumgartner, J.; Schauer, J.J. Source Apportionment of Fine-Particle, Water-Soluble Organic Nitrogen and Its Association with the Inflammatory Potential of Lung Epithelial Cells. Environ. Sci. Technol. 2019, 53, 9845–9854. [Google Scholar] [CrossRef]
- Adams, J.J. Asphaltene Adsorption, a Literature Review. Energy Fuels 2014, 28, 2831–2856. [Google Scholar] [CrossRef]
- Grova, N.; Salquèbre, G.; Schroeder, H.; Appenzeller, B.M.R. Determination of PAHs and OH-PAHs in Rat Brain by Gas Chromatography Tandem (Triple Quadrupole) Mass Spectrometry. Chem. Res. Toxicol. 2011, 24, 1653–1667. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Liu, Q.; Liu, Y.; Qi, X.; Wang, X. Cell cycle arrest of human bronchial epithelial cells modulated by differences in chemical components of particulate matter. RSC Adv. 2021, 11, 10582–10591. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Gao, X.; Zhu, T.; Luo, L.; Zheng, Y. Chemical profiles of PM emitted from the iron and steel industry in northern China. Atmos. Environ. 2017, 150, 187–197. [Google Scholar] [CrossRef] [Green Version]
- Ma, W.-L.; Liu, L.-Y.; Jia, H.-L.; Yang, M.; Li, Y.-F. PAHs in Chinese atmosphere Part I: Concentration, source and temperature dependence. Atmos. Environ. 2018, 173, 330–337. [Google Scholar] [CrossRef]
- Sun, J.; Shen, Z.; Niu, X.; Yu, J.; Zhang, Y.; Liu, S.; Niu, X.; Zhang, Y.; Xu, H.; Li, X.; et al. PM2.5 source profiles from typical Chinese commercial cooking activities in northern China and its influences on bioreactivity of vascular smooth muscle cells (VSMCs). Atmos. Environ. 2020, 239, 117750. [Google Scholar] [CrossRef]
- Abdullahi, K.L.; Delgado-Saborit, J.M.; Harrison, R.M. Emissions and indoor concentrations of particulate matter and its specific chemical components from cooking: A review. Atmos. Environ. 2013, 71, 260–294. [Google Scholar] [CrossRef]
- Shen, H.; Tao, S.; Liu, J.; Huang, Y.; Chen, H.; Li, W.; Zhang, Y.; Chen, Y.; Su, S.; Lin, N.; et al. Global lung cancer risk from PAH exposure highly depends on emission sources and individual susceptibility. Sci. Rep. 2014, 4, 6561. [Google Scholar] [CrossRef] [Green Version]
- Magalhães, K.M.; Carreira, R.S.; Rosa Filho, J.S.; Rocha, P.P.; Santana, F.M.; Yogui, G.T. Polycyclic aromatic hydrocarbons (PAHs) in fishery resources affected by the 2019 oil spill in Brazil: Short-term environmental health and seafood safety. Mar. Pollut. Bull. 2022, 175, 113334. [Google Scholar] [CrossRef]
- Badyda, A.J.; Rogula-Kozłowska, W.; Majewski, G.; Bralewska, K.; Widziewicz-Rzońca, K.; Piekarska, B.; Rogulski, M.; Bihałowicz, J.S. Inhalation risk to PAHs and BTEX during barbecuing: The role of fuel/food type and route of exposure. J. Hazard. Mater. 2022, 440, 129635. [Google Scholar] [CrossRef]
- Zapelini de Melo, A.P.; Hoff, R.B.; Molognoni, L.; de Oliveira, T.; Daguer, H.; Manique Barreto, P.L. Disasters with oil spills in the oceans: Impacts on food safety and analytical control methods. Food Res. Int. 2022, 157, 111366. [Google Scholar] [CrossRef]
- Anae, J.; Ahmad, N.; Kumar, V.; Thakur, V.K.; Gutierrez, T.; Yang, X.J.; Cai, C.; Yang, Z.; Coulon, F. Recent advances in biochar engineering for soil contaminated with complex chemical mixtures: Remediation strategies and future perspectives. Sci. Total Environ. 2021, 767, 144351. [Google Scholar] [CrossRef]
- Zhao, C.; Xu, J.; Shang, D.; Zhang, Y.; Zhang, J.; Xie, H.; Kong, Q.; Wang, Q. Application of constructed wetlands in the PAH remediation of surface water: A review. Sci. Total Environ. 2021, 780, 146605. [Google Scholar] [CrossRef] [PubMed]
- Song, P.; Xu, D.; Yue, J.; Ma, Y.; Dong, S.; Feng, J. Recent advances in soil remediation technology for heavy metal contaminated sites: A critical review. Sci. Total Environ. 2022, 838, 156417. [Google Scholar] [CrossRef] [PubMed]
- Terzaghi, E.; De Nicola, F.; Cerabolini, B.E.L.; Posada-Baquero, R.; Ortega-Calvo, J.J.; Di Guardo, A. Role of photo- and biodegradation of two PAHs on leaves: Modelling the impact on air quality ecosystem services provided by urban trees. Sci. Total Environ. 2020, 739, 139893. [Google Scholar] [CrossRef] [PubMed]
- Li, N.; Liu, R.; Chen, J.; Wang, J.; Hou, L.; Zhou, Y. Enhanced phytoremediation of PAHs and cadmium contaminated soils by a Mycobacterium. Sci. Total Environ. 2021, 754, 141198. [Google Scholar] [CrossRef] [PubMed]
- Huang, R.; Zhang, C.; Xu, X.; Jin, R.; Li, D.; Christakos, G.; Xiao, X.; He, J.; Agusti, S.; Duarte, C.M.; et al. Underestimated PAH accumulation potential of blue carbon vegetation: Evidence from sedimentary records of saltmarsh and mangrove in Yueqing Bay, China. Sci. Total Environ. 2022, 817, 152887. [Google Scholar] [CrossRef] [PubMed]
- Dai, Y.; Liu, R.; Chen, J.; Li, N. Bioremediation of HMW-PAHs-contaminated soils by rhizosphere microbial community of Fire Phoenix plants. Chem. Eng. J. 2022, 432, 134246. [Google Scholar] [CrossRef]
- Pathak, S.; Sakhiya, A.K.; Anand, A.; Pant, K.K.; Kaushal, P. A state-of-the-art review of various adsorption media employed for the removal of toxic polycyclic aromatic hydrocarbons (PAHs): An approach towards a cleaner environment. J. Water Process Eng. 2022, 47, 102674. [Google Scholar] [CrossRef]
- Jouraeva, V.A.; Johnson, D.L.; Hassett, J.P.; Nowak, D.J.; Shipunova, N.A.; Barbarossa, D. Role of sooty mold fungi in accumulation of fine-particle-associated PAHs and metals on deciduous leaves. Environ. Res. 2006, 102, 272–282. [Google Scholar] [CrossRef] [Green Version]
- Terzaghi, E.; Zacchello, G.; Scacchi, M.; Raspa, G.; Jones, K.C.; Cerabolini, B.; Di Guardo, A. Towards more ecologically realistic scenarios of plant uptake modelling for chemicals: PAHs in a small forest. Sci. Total Environ. 2015, 505, 329–337. [Google Scholar] [CrossRef]
- Lu, Z.; Liu, Q.; Xiong, Y.; Huang, F.; Zhou, J.; Schauer, J.J. A hybrid source apportionment strategy using positive matrix factorization (PMF) and molecular marker chemical mass balance (MM-CMB) models. Environ. Pollut. 2018, 238, 39–51. [Google Scholar] [CrossRef]
- Hilber, I.; Blum, F.; Schmidt, H.-P.; Bucheli, T.D. Current analytical methods to quantify PAHs in activated carbon and vegetable carbon (E153) are not fit for purpose. Environ. Pollut. 2022, 309, 119599. [Google Scholar] [CrossRef] [PubMed]
- Gbeddy, G.; Egodawatta, P.; Akortia, E.; Goonetilleke, A. Inherent and external factors influencing the distribution of PAHs, hydroxy-PAHs, carbonyl-PAHs and nitro-PAHs in urban road dust. Environ. Pollut. 2022, 308, 119705. [Google Scholar] [CrossRef] [PubMed]
- Adhikari, P.L.; Overton, E.B.; Pangeni, D.; Regmi, B.P. Application of individual response factors for accurate quantitation of alkylated PAH homologs in complex environmental samples using gas chromatography/triple quadrupole mass spectrometry (GC–MS/MS). Microchem. J. 2022, 174, 107074. [Google Scholar] [CrossRef]
- Yin, H.; Tan, Q.; Chen, Y.; Lv, G.; Hou, X. Polycyclic aromatic hydrocarbons (PAHs) pollution recorded in annual rings of gingko (Gingko biloba L.): Determination of PAHs by GC/MS after accelerated solvent extraction. Microchem. J. 2011, 97, 138–143. [Google Scholar] [CrossRef]
- Mukhopadhyay, S.; Dutta, R.; Das, P. A critical review on plant biomonitors for determination of polycyclic aromatic hydrocarbons (PAHs) in air through solvent extraction techniques. Chemosphere 2020, 251, 126441. [Google Scholar] [CrossRef]
- Sajid, M.; Nazal, M.K.; Ihsanullah, I. Novel materials for dispersive (micro) solid-phase extraction of polycyclic aromatic hydrocarbons in environmental water samples: A review. Anal. Chim. Acta 2021, 1141, 246–262. [Google Scholar] [CrossRef]
- Yang, B.; Liu, S.; Liu, Y.; Li, X.; Lin, X.; Liu, M.; Liu, X. PAHs uptake and translocation in Cinnamomum camphora leaves from Shanghai, China. Sci. Total Environ. 2017, 574, 358–368. [Google Scholar] [CrossRef]
- Menone, M.L.; Díaz-Jaramillo, M.; Mitton, F.; Garanzini, D.S.; Costa, P.G.; Lupi, L.; Lukaszewicz, G.; Gonzalez, M.; Jara, S.; Miglioranza, K.S.B.; et al. Distribution of PAHs and trace elements in Spartina densiflora and associated sediments from low to highly contaminated South American estuarine saltmarshes. Sci. Total Environ. 2022, 842, 156783. [Google Scholar] [CrossRef]
- Yin, S.; Tian, L.; Ma, Y.; Tan, H.; Xu, L.; Sun, N.; Meng, H.; Liu, C. Sources and sinks evaluation of PAHs in leaves of Cinnamomum camphora in megacity: From the perspective of land-use types. J. Clean. Prod. 2021, 279, 123444. [Google Scholar] [CrossRef]
No. | Compound | Formula | Number of Benzene Ring | Retention Time (min) | Quantitative Ion (m/z) | Qualitative Ions (m/z) | |
---|---|---|---|---|---|---|---|
1 | Naphthalene-d8 | C10D8 | - | 7.195 | 136 | 108 | 154 |
2 | Naphthalene | C10H8 | 2 | 7.251 | 128 | 127 | 129 |
3 | 2-Fluorobiphenyl | C12H9F | - | 9.815 | 172 | 171 | 170 |
4 | Acenaphthylene | C12H8 | 3 | 11.405 | 152 | 151 | 153 |
5 | Acenaphthylene-d10 | C12D10 | - | 11.640 | 162 | 160 | 163 |
6 | Acenaphthene | C12H10 | 3 | 11.735 | 154 | 153 | 152 |
7 | Fluorene | C13H10 | 3 | 12.955 | 166 | 165 | 167 |
8 | Phenanthrene-d10 | C14D10 | - | 15.545 | 188 | 189 | 160 |
9 | Phenanthrene | C14H10 | 3 | 15.610 | 178 | 179 | 176 |
10 | Anthracene | C14H10 | 3 | 15.685 | 178 | 179 | 176 |
11 | Fluoranthene | C16H10 | 4 | 18.665 | 202 | 200 | 101 |
12 | Retene | C18H18 | 3 | 19.35 | 219 | 204 | 234 |
13 | Pyrene | C16H10 | 4 | 19.368 | 202 | 200 | 101 |
14 | Terphenyl-d14 | C18D14 | - | 19.550 | 244 | 245 | 243 |
15 | Benzo(g,h,i)perylene | C18H10 | 4 | 21.895 | 226 | 224 | 113 |
16 | Benzo(c)phenanthrene | C18H12 | 4 | 21.940 | 228 | 226 | 227 |
17 | Benz(a)anthracene | C18H12 | 4 | 22.370 | 228 | 226 | 229 |
18 | Chrysene-d12 | C18D12 | - | 22.505 | 240 | 236 | 238 |
19 | Cyclopenta(c,d)pyrene | C18H10 | 4 | 22.531 | 226 | 224 | 227 |
20 | Chrysene | C18H12 | 4 | 22.575 | 228 | 226 | 229 |
21 | Benzo(b)fluoranthene | C20H12 | 5 | 25.585 | 252 | 253 | 250 |
22 | Benzo(k)fluoranthene | C20H12 | 5 | 25.680 | 252 | 253 | 250 |
23 | 7,12-Dimethylbenz(a)anthracene | C20H16 | 4 | 25.750 | 256 | 241 | 239 |
24 | Benzo(j)fluoranthene | C20H12 | 5 | 25.800 | 252 | 253 | 250 |
25 | Benz(e)pyrene | C20H12 | 5 | 27.080 | 252 | 253 | 250 |
26 | Benz(a)pyrene | C20H12 | 5 | 27.315 | 252 | 253 | 250 |
27 | Perylene-d12 | C20D12 | - | 27.785 | 264 | 260 | 265 |
28 | Perylene | C20H12 | 5 | 27.925 | 252 | 253 | 250 |
29 | 3-Methylcholanthrene | C21H16 | 5 | 28.490 | 268 | 253 | 252 |
30 | Indeno(1,2,3-cd)pyrene | C22H12 | 6 | 32.355 | 276 | 275 | 274 |
31 | Dibenz(a,h)anthracene | C22H14 | 5 | 32.460 | 278 | 276 | 279 |
32 | Picene | C22H14 | 5 | 33.265 | 278 | 276 | 279 |
33 | Benzo(g,h,i)perylene | C22H12 | 6 | 33.720 | 276 | 275 | 274 |
34 | Dibenz(a,l)pyrene | C24H14 | 6 | 38.325 | 300 | 303 | 302 |
35 | Dibenz(a,e)pyrene | C24H14 | 6 | 39.840 | 302 | 150 | 300 |
36 | Coronene | C24H12 | 7 | 40.015 | 300 | 301 | 150 |
37 | Dibenz(a,i)pyrene | C24H14 | 6 | 40.800 | 300 | 303 | 302 |
38 | Dibenz(a,h)pyrene | C24H14 | 6 | 41.365 | 300 | 303 | 302 |
Compound | Linear Range (μg/mL) | Linear Equation | Correlation Coefficient (R2) | Limit of Detection (ng/g) | Limit of Quantification (ng/g) |
---|---|---|---|---|---|
Naphthalene | 0.005–1.0 | y = 8.46x − 0.04 | 0.99 | 0.3 | 1.2 |
Acenaphthylene | 0.005–1.0 | y = 5.78x − 0.03 | 0.99 | 0.4 | 1.6 |
Acenaphthene | 0.005–1.0 | y = 7.92x − 0.05 | 0.99 | 0.4 | 1.6 |
Fluorene | 0.005–1.0 | y = 9.52x − 0.06 | 0.99 | 0.7 | 2.8 |
Phenanthrene | 0.005–1.0 | y = 6.84x − 0.04 | 0.99 | 0.3 | 1.2 |
Anthracene | 0.005–1.0 | y = 7.10x − 0.05 | 0.99 | 0.6 | 2.4 |
Fluoranthene | 0.005–1.0 | y = 8.03x − 0.06 | 0.99 | 0.3 | 1.2 |
Retene | 0.005–1.0 | y = 2.16x − 0.02 | 0.99 | 0.5 | 2.0 |
Pyrene | 0.005–1.0 | y = 8.71x − 0.07 | 0.99 | 0.3 | 1.2 |
Benzo(g,h,i)perylene | 0.005–1.0 | y = 7.96x − 0.03 | 0.99 | 0.2 | 0.8 |
Benzo(c)phenanthrene | 0.005–1.0 | y = 6.99x + 0.04 | 0.99 | 0.3 | 1.2 |
Benz(a)anthracene | 0.005–1.0 | y = 9.48x − 0.07 | 0.99 | 0.4 | 1.6 |
Cyclopenta(c,d)pyrene | 0.005–1.0 | y = 6.27x − 0.06 | 0.99 | 0.3 | 1.2 |
Chrysene | 0.005–1.0 | y = 9.62x − 0.05 | 0.99 | 0.5 | 2.0 |
Benzo(b)fluoranthene | 0.005–1.0 | y = 8.54x − 0.07 | 0.99 | 0.4 | 1.6 |
Benzo(k)fluoranthene | 0.005–1.0 | y = 9.20x − 0.07 | 0.99 | 0.4 | 1.6 |
7,12-Dimethylbenz(a)anthracene | 0.005–1.0 | y = 3.65x − 0.03 | 0.99 | 0.2 | 0.8 |
Benzo(j)fluoranthene | 0.005–1.0 | y = 8.60x − 0.04 | 0.99 | 0.2 | 0.8 |
Benz(e)pyrene | 0.005–1.0 | y = 7.44x − 0.04 | 0.99 | 0.3 | 1.2 |
Benz(a)pyrene | 0.005–1.0 | y = 7.23x − 0.06 | 0.99 | 0.4 | 1.6 |
Perylene | 0.005–1.0 | y = 6.71x − 0.05 | 0.99 | 0.2 | 0.8 |
3-Methylcholanthrene | 0.005–1.0 | y = 4.48x − 0.05 | 0.99 | 0.3 | 1.2 |
Indeno(1,2,3-cd)pyrene | 0.005–1.0 | y = 8.78x − 0.10 | 0.99 | 0.3 | 1.2 |
Dibenz(a,h)anthracene | 0.005–1.0 | y = 9.76x − 0.10 | 0.99 | 0.5 | 2.0 |
Picene | 0.005–1.0 | y = 5.90x − 0.05 | 0.99 | 0.2 | 0.8 |
Benzo(g,h,i)perylene | 0.005–1.0 | y = 9.71x − 0.07 | 0.99 | 0.2 | 0.8 |
Dibenz(a,l)pyrene | 0.005–1.0 | y = 7.84x − 0.07 | 0.99 | 0.5 | 2.0 |
Dibenz(a,e)pyrene | 0.005–1.0 | y = 8.84x − 0.07 | 0.99 | 0.7 | 2.8 |
Coronene | 0.005–1.0 | y = 8.17x − 0.03 | 0.99 | 0.6 | 2.4 |
Dibenz(a,i)pyrene | 0.005–1.0 | y = 8.51x − 0.14 | 0.99 | 0.3 | 1.2 |
Dibenz(a,h)pyrene | 0.005–1.0 | y = 6.30x − 0.12 | 0.99 | 0.6 | 2.4 |
Compound | Spiked (ng/g) | Recovery/% | RSD/% | Compound | Spiked (ng/g) | Recovery/% | RSD/% |
---|---|---|---|---|---|---|---|
Naphthalene | 2 | 85.4 | 5.8 | 7,12-Dimethylbenz(a) anthracene | 2 | 71.8 | 4.5 |
20 | 87.8 | 9.8 | 20 | 76.8 | 8.6 | ||
120 | 97.6 | 4.2 | 120 | 76.8 | 3.0 | ||
Acenaphthylene | 2 | 74.2 | 8.2 | Benzo(j)fluoranthene | 2 | 72.3 | 4.6 |
20 | 79.2 | 11.1 | 20 | 75.3 | 8.1 | ||
120 | 72.4 | 4.6 | 120 | 76.2 | 3.9 | ||
Acenaphthene | 2 | 89.2 | 6.5 | Benz(e)pyrene | 2 | 74.2 | 8.2 |
20 | 90.4 | 10.5 | 20 | 73.2 | 10.6 | ||
120 | 83.0 | 7.8 | 120 | 81.6 | 2.3 | ||
Fluorene | 2 | 88.2 | 12.1 | Benz(a)pyrene | 2 | 74.9 | 8.7 |
20 | 78.4 | 4.5 | 20 | 75.8 | 10.4 | ||
120 | 88.0 | 7.8 | 120 | 83.9 | 2.1 | ||
Phenanthrene | 2 | 85.2 | 6.4 | Perylene | 2 | 72.7 | 4.4 |
20 | 84.9 | 10.2 | 20 | 73.8 | 10.8 | ||
120 | 86.7 | 0.5 | 120 | 82.7 | 2.5 | ||
Anthracene | 2 | 79.7 | 11.1 | 3-Methylcholanthrene | 2 | 85.5 | 5.7 |
20 | 77.1 | 10.7 | 20 | 86.8 | 7.8 | ||
120 | 86.1 | 1.1 | 120 | 95.5 | 1.9 | ||
Fluoranthen | 2 | 85.4 | 6.2 | Indeno(1,2,3-cd)pyrene | 2 | 92.9 | 5.9 |
20 | 88.0 | 10.5 | 20 | 96.0 | 6.8 | ||
120 | 86.9 | 2.6 | 120 | 78.4 | 1.9 | ||
Retene | 2 | 79.2 | 10.5 | Dibenz(a,h)anthracene | 2 | 92.3 | 9.3 |
20 | 81.7 | 11.2 | 20 | 96.5 | 7.0 | ||
120 | 77.4 | 11.9 | 120 | 73.5 | 3.6 | ||
Pyren | 2 | 85.4 | 6.3 | Picene | 2 | 74.4 | 4.6 |
20 | 85.0 | 11.3 | 20 | 78.5 | 9.7 | ||
120 | 83.6 | 3.9 | 120 | 86.0 | 7.0 | ||
Benzo(g,h,i)perylene | 2 | 72.3 | 6.1 | Benzo(g,h,i)perylene | 2 | 73.4 | 5.8 |
20 | 76.7 | 11.2 | 20 | 71.8 | 2.5 | ||
120 | 88.4 | 1.1 | 120 | 75.9 | 3.5 | ||
Benzo(c)phenanthrene | 2 | 72.1 | 8.5 | Dibenz(a,l)pyrene | 2 | 71.0 | 13.4 |
20 | 80.2 | 10.7 | 20 | 72.5 | 10.4 | ||
120 | 89.9 | 1.7 | 120 | 92.3 | 5.6 | ||
Benz(a)anthracene | 2 | 72.5 | 9.1 | Dibenz(a,e)pyrene | 2 | 80.6 | 13.5 |
20 | 76.4 | 10.9 | 20 | 87.3 | 5.1 | ||
120 | 84.1 | 2.3 | 120 | 93.0 | 5.1 | ||
Cyclopenta(c,d)pyren | 2 | 78.3 | 6.2 | Coronene | 2 | 81.9 | 11.0 |
20 | 89.8 | 10.1 | 20 | 83.2 | 6.2 | ||
120 | 89.1 | 10.0 | 120 | 91.0 | 6.3 | ||
Chrysene | 2 | 70.3 | 11.8 | Dibenz(a,i)pyrene | 2 | 83.5 | 5.2 |
20 | 75.7 | 11.3 | 20 | 85.3 | 3.7 | ||
120 | 81.0 | 4.2 | 120 | 89.3 | 6.5 | ||
Benzo(b)fluoranthene | 2 | 80.2 | 8.7 | Dibenz(a,h)pyrene | 2 | 76.9 | 12.5 |
20 | 80.5 | 8.3 | 20 | 89.0 | 4.2 | ||
120 | 76.0 | 3.9 | 120 | 94.4 | 5.0 | ||
Benzo(k)fluoranthene | 2 | 72.0 | 8.9 | ||||
20 | 80.2 | 8.4 | |||||
120 | 75.1 | 4.0 |
Compound | Berberis thunbergii | Sabina chinensis | Euonymus japonicus | Juniperus sabina | Buxus microphylla | Pinus tabuliformis | Pinus bungeana |
---|---|---|---|---|---|---|---|
Naphthalene | 7.3 ± 0.9 | 27.3 ± 3.9 | 4.1 ± 1.0 | 107 ± 18.8 | 5.8 ± 0.2 | 18.1 ± 1.2 | 30.4 ± 3.9 |
Acenaphthylene | 2.2 ± 0.2 | 2.7 ± 0.8 | N.D. | 6.0 ± 0.7 | 2.5 ± 0.1 | 2.3 ± 0.3 | 2.3 ± 0.1 |
Acenaphthene | N.D. | 2.5 ± 0.3 | N.D. | 3.3 ± 0.9 | N.D. | N.D. | N.D. |
Fluorene | 6.1 ± 0.9 | 10.5 ± 2.2 | 3.7 ± 0.7 | 13.4 ± 0.8 | 5.7 ± 0.5 | 8.7 ± 0.8 | 13.9 ± 2.3 |
Phenanthrene | 26.7 ± 3.1 | 27.1 ± 6.2 | 19.4 ± 2.5 | 41.3 ± 8.2 | 27.9 ± 2.7 | 31.4 ± 3.5 | 37.6 ± 5.3 |
Anthracene | 2.0 ± 0.0 | 14.0 ± 2.2 | 2.2 ± 0.3 | 2.4 ± 0.2 | 2.3 ± 0.4 | 2.2 ± 0.1 | 2.1 ± 0.0 |
Fluoranthene | 9.7 ± 0.8 | 20.4 ± 4.1 | 7.2 ± 2.1 | 18.3 ± 1.7 | 15.7 ± 1.2 | 10.4 ± 0.9 | 10.3 ± 2.3 |
Retene | 2.8 ± 0.2 | 4.0 ± 0.3 | 2.8 ± 0.1 | 3.4 ± 0.3 | 3.3 ± 0.1 | 2.8 ± 0.2 | 3.2 ± 0.2 |
Pyrene | 6.0 ± 0.5 | 10.8 ± 1.6 | 6.8 ± 1.0 | 9.5 ± 0.5 | 10.8 ± 1.7 | 6.8 ± 0.6 | 9.1 ± 1.4 |
Benzo(g,h,i)perylene | N.D. | 3.8 ± 0.4 | 2.3 ± 0.4 | N.D. | 2.5 ± 0.3 | N.D. | N.D. |
Benzo(c)phenanthrene | N.D. | N.D. | N.D. | N.D. | N.D. | N.D. | N.D. |
Benz(a)anthracene | 2.0 ± 0.0 | 3.3 ± 0.5 | 2.4 ± 0.2 | 2.2 ± 0.1 | 2.5 ± 0.3 | N.D. | N.D. |
Cyclopenta(c,d)pyrene | 4.1 ± 0.2 | 6.6 ± 1.7 | 4.4 ± 0.6 | 4.9 ± 0.4 | 3.8 ± 0.6 | 3.3 ± 0.1 | 2.6 ± 0.1 |
Chrysene | 4.7 ± 0.4 | 13.2 ± 3.1 | 5.2 ± 1.1 | 9.2 ± 1.6 | 5.2 ± 1.2 | 3.5 ± 0.1 | N.D. |
Benzo(b)fluoranthene | 2.9 ± 0.5 | 7.0 ± 1.1 | N.D. | N.D. | 3.1 ± 0.7 | N.D. | N.D. |
Benzo(k)fluoranthene | 2.2 ± 0.0 | 2.8 ± 0.5 | N.D. | N.D. | 2.2 ± 0.1 | N.D. | N.D. |
7,12-Dimethylbenz(a)anthracene | N.D. | N.D. | N.D. | N.D. | N.D. | N.D. | N.D. |
Benzo(j)fluoranthene | N.D. | 2.4 ± 0.2 | N.D. | N.D. | N.D. | N.D. | N.D. |
Benz(e)pyrene | 2.4 ± 0.2 | 11.2 ± 2.4 | 2.8 ± 0.7 | 2.3 ± 0.3 | 3.2 ± 0.8 | N.D. | N.D. |
Benz(a)pyrene | 2.3 ± 0.1 | 2.7 ± 0.3 | 2.5 ± 0.3 | 2.4 ± 0.3 | 2.4 ± 0.2 | N.D. | N.D. |
Perylene | N.D. | 7.9 ± 0.8 | N.D. | N.D. | N.D. | N.D. | N.D. |
3-Methylcholanthrene | N.D. | N.D. | N.D. | N.D. | N.D. | N.D. | N.D. |
Indeno(1,2,3-cd)pyrene | 2.9 ± 0.5 | 2.9 ± 0.7 | 2.5 ± 0.4 | 2.7 ± 0.5 | 2.8 ± 0.5 | N.D. | N.D. |
Dibenz(a,h)anthracene | 2.1 ± 0.0 | N.D. | N.D. | N.D. | N.D. | 3.5 ± 0.2 | 2.1 ± 0.0 |
Picene | N.D. | 7.4 ± 1.3 | N.D. | N.D. | N.D. | N.D. | N.D. |
Benzo(g,h,i)perylene | 2.4 ± 0.3 | 3.4 ± 0.8 | 3.3 ± 0.6 | 2.3 ± 0.3 | N.D. | N.D. | N.D. |
Dibenz(a,l)pyrene | N.D. | N.D. | N.D. | N.D. | N.D. | N.D. | N.D. |
Dibenz(a,e)pyrene | N.D. | N.D. | N.D. | N.D. | N.D. | N.D. | N.D. |
Coronene | N.D. | N.D. | N.D. | N.D. | N.D. | N.D. | N.D. |
Dibenz(a,i)pyrene | N.D. | N.D. | N.D. | N.D. | N.D. | N.D. | N.D. |
Dibenz(a,h)pyrene | N.D. | N.D. | N.D. | N.D. | N.D. | N.D. | N.D. |
LMW(2~3 Rings) | 47.1 ± 3.3 | 88.1 ± 10.3 | 32.1 ± 6.3 | 176.5 ± 20.4 | 47.5 ± 6.6 | 65.5 ± 5.4 | 89.5 ± 8.4 |
MMW(4 Rings) | 26.5 ± 0.8 | 58.3 ± 9.6 | 28.4 ± 4.5 | 43.8 ± 4.8 | 40.8 ± 5.2 | 24.0 ± 3.1 | 22.4 ± 2.6 |
HMW(5~6 Rings) | 17.3 ± 2.1 | 47.6 ± 8.9 | 11.1 ± 2.3 | 9.7 ± 2.1 | 13.7 ± 1.1 | 3.5 ± 1.2 | 2.1 ± 0.9 |
ΣPAHs | 90.8 ± 1.2 | 194 ± 17.8 | 71.6 ± 9.9 | 230 ± 21.4 | 102 ± 13.4 | 93.0 ± 5.9 | 114 ± 10.8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, M.; Tian, S.; Liu, Q.; Yang, Z.; Yang, Y.; Shao, P.; Liu, Y. Determination of 31 Polycyclic Aromatic Hydrocarbons in Plant Leaves Using Internal Standard Method with Ultrasonic Extraction–Gas Chromatography–Mass Spectrometry. Toxics 2022, 10, 634. https://doi.org/10.3390/toxics10110634
Yang M, Tian S, Liu Q, Yang Z, Yang Y, Shao P, Liu Y. Determination of 31 Polycyclic Aromatic Hydrocarbons in Plant Leaves Using Internal Standard Method with Ultrasonic Extraction–Gas Chromatography–Mass Spectrometry. Toxics. 2022; 10(11):634. https://doi.org/10.3390/toxics10110634
Chicago/Turabian StyleYang, Ming, Shili Tian, Qingyang Liu, Zheng Yang, Yifan Yang, Peng Shao, and Yanju Liu. 2022. "Determination of 31 Polycyclic Aromatic Hydrocarbons in Plant Leaves Using Internal Standard Method with Ultrasonic Extraction–Gas Chromatography–Mass Spectrometry" Toxics 10, no. 11: 634. https://doi.org/10.3390/toxics10110634
APA StyleYang, M., Tian, S., Liu, Q., Yang, Z., Yang, Y., Shao, P., & Liu, Y. (2022). Determination of 31 Polycyclic Aromatic Hydrocarbons in Plant Leaves Using Internal Standard Method with Ultrasonic Extraction–Gas Chromatography–Mass Spectrometry. Toxics, 10(11), 634. https://doi.org/10.3390/toxics10110634