Adverse Effects of Black Carbon (BC) Exposure during Pregnancy on Maternal and Fetal Health: A Contemporary Review
Abstract
:1. Introduction
2. Epidemiological Studies
2.1. Impact of BC on Fetal and Child Health
2.1.1. Gestational Age and Low Birth Weight
2.1.2. Preterm Birth
2.1.3. Adverse Neurological Health Effects
2.1.4. Adverse Respiratory Health Effects
2.1.5. Adverse Cardiometabolic Health Effects
2.2. Impact of BC on Maternal Health
2.2.1. Gestational Diabetes and Type 2 Diabetes
2.2.2. Pregnancy Complications
2.3. Impact of BC on the Placenta
3. Conclusions
4. Future Directions and Gaps in Knowledge
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Buseck, P.R.; Adachi, K.; Gelencsér, A.; Tompa, É.; Pósfai, M. Are black carbon and soot the same? Atmos. Chem. Phys. Discuss. 2012, 12, 24821–24846. [Google Scholar] [CrossRef] [Green Version]
- Long, C.M.; Nascarella, M.A.; Valberg, P.A. Carbon black vs. black carbon and other airborne materials containing elemental carbon: Physical and chemical distinctions. Environ. Pollut. 2013, 181, 271–286. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reyes, O.; Kaal, J.; Arán, D.; Gago, R.; Bernal, J.; Garcia-Duro, J.; Basanta, M. The Effects of Ash and Black Carbon (Biochar) on Germination of Different Tree Species. Fire Ecol. 2015, 11, 119–133. [Google Scholar] [CrossRef] [Green Version]
- Wang, R.; Tao, S.; Wang, W.; Liu, J.; Shen, H.; Shen, G.; Wang, B.; Liu, X.; Li, W.; Huang, Y.; et al. Black carbon emissions in China from 1949 to 2050. Environ. Sci. Technol. 2012, 46, 7595–7603. [Google Scholar] [CrossRef] [PubMed]
- Hvidtfeldt, U.A.; Sørensen, M.; Geels, C.; Ketzel, M.; Khan, J.; Tjønneland, A.; Overvad, K.; Brandt, J.; Raaschou-Nielsen, O. Long-term residential exposure to PM2.5, PM10, black carbon, NO2, and ozone and mortality in a Danish cohort. Environ. Int. 2019, 123, 265–272. [Google Scholar] [CrossRef] [PubMed]
- Dominici, F.; Wang, Y.; Correia, A.W.; Ezzati, M.; Pope, C.A., 3rd; Dockery, D.W. Chemical Composition of Fine Particulate Matter and Life Expectancy: In 95 US Counties Between 2002 and 2007. Epidemiology 2015, 26, 556–564. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arif, M.; Parveen, S. Carcinogenic effects of indoor black carbon and particulate matters (PM2.5 and PM10) in rural households of India. Environ. Sci. Pollut. Res. Int. 2021, 28, 2082–2096. [Google Scholar] [CrossRef]
- Bové, H.; Bongaerts, E.; Slenders, E.; Bijnens, E.M.; Saenen, N.D.; Gyselaers, W.; Van Eyken, P.; Plusquin, M.; Roeffaers, M.B.J.; Ameloot, M.; et al. Ambient black carbon particles reach the fetal side of human placenta. Nat. Commun. 2019, 10, 3866. [Google Scholar] [CrossRef] [Green Version]
- Redaelli, M.; Sanchez, M.; Fuertes, E.; Blanchard, M.; Mullot, J.; Baeza-Squiban, A.; Garçon, G.; Léger, C.; Jacquemin, B. Health effects of ambient black carbon and ultrafine particles: Review and integration of the epidemiological evidence. Environ. Epidemiol. 2019, 3, 347–348. [Google Scholar] [CrossRef]
- Nichols, J.L.; Owens, E.O.; Dutton, S.J.; Luben, T.J. Systematic review of the effects of black carbon on cardiovascular disease among individuals with pre-existing disease. Int. J. Public Health 2013, 58, 707–724. [Google Scholar] [CrossRef]
- Hua, J.; Yin, Y.; Peng, L.; Du, L.; Geng, F.; Zhu, L. Acute effects of black carbon and PM2.5 on children asthma admissions: A time-series study in a Chinese city. Sci. Total Environ. 2014, 481, 433–438. [Google Scholar] [CrossRef]
- Sram, R.J.; Veleminsky, M., Jr.; Veleminsky, M.S.; Stejskalová, J. The impact of air pollution to central nervous system in children and adults. Neuro Endocrinol. Lett. 2017, 38, 389–396. [Google Scholar] [PubMed]
- Fleisch, A.F.; Rifas-Shiman, S.L.; Koutrakis, P.; Schwartz, J.D.; Kloog, I.; Melly, S.; Coull, B.A.; Zanobetti, A.; Gillman, M.W.; Gold, D.R.; et al. Prenatal exposure to traffic pollution: Associations with reduced fetal growth and rapid infant weight gain. Epidemiology 2015, 26, 43–50. [Google Scholar] [CrossRef] [PubMed]
- Brauer, M.; Lencar, C.; Tamburic, L.; Koehoorn, M.; Demers, P.; Karr, C. A cohort study of traffic-related air pollution impacts on birth outcomes. Environ. Health Perspect. 2008, 116, 680–686. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rokoff, L.B.; Rifas-Shiman, S.L.; Coull, B.A.; Cardenas, A.; Calafat, A.M.; Ye, X.; Gryparis, A.; Schwartz, J.; Sagiv, S.K.; Gold, D.R.; et al. Cumulative exposure to environmental pollutants during early pregnancy and reduced fetal growth: The Project Viva cohort. Environ. Health 2018, 17, 19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, X.; Liu, C.; Liang, H.; Miao, M.; Wang, Z.; Ji, H.; van Donkelaar, A.; Martin, R.V.; Kan, H.; Yuan, W. Prenatal exposure to residential PM2.5 and its chemical constituents and weight in preschool children: A longitudinal study from Shanghai, China. Environ. Int. 2021, 154, 106580. [Google Scholar] [CrossRef] [PubMed]
- Dong, S.; Abu-Awad, Y.; Kosheleva, A.; Fong, K.C.; Koutrakis, P.; Schwartz, J.D. Maternal exposure to black carbon and nitrogen dioxide during pregnancy and birth weight: Using machine-learning methods to achieve balance in inverse-probability weights. Environ. Res. 2022, 211, 112978. [Google Scholar] [CrossRef]
- Harnung Scholten, R.; Møller, P.; Jovanovic Andersen, Z.; Dehlendorff, C.; Khan, J.; Brandt, J.; Ketzel, M.; Knudsen, L.E.; Mathiesen, L. Telomere length in newborns is associated with exposure to low levels of air pollution during pregnancy. Environ. Int. 2021, 146, 106202. [Google Scholar] [CrossRef]
- Riddell, C.A.; Goin, D.E.; Morello-Frosch, R.; Apte, J.S.; Glymour, M.M.; Torres, J.M.; Casey, J.A. Hyper-localized measures of air pollution and risk of preterm birth in Oakland and San Jose, California. Int. J. Epidemiol. 2022, 50, 1875–1885. [Google Scholar] [CrossRef]
- Kingsley, S.L.; Eliot, M.N.; Glazer, K.; Awad, Y.A.; Schwartz, J.D.; Savitz, D.A.; Kelsey, K.T.; Marsit, C.J.; Wellenius, G.A. Maternal ambient air pollution, preterm birth and markers of fetal growth in Rhode Island: Results of a hospital-based linkage study. J. Epidemiol. Community Health 2017, 71, 1131–1136. [Google Scholar] [CrossRef]
- Qiao, P.; Fan, K.; Bao, Y.; Yuan, L.; Kan, H.; Zhao, Y.; Cai, J.; Ying, H. Prenatal exposure to fine particulate matter and the risk of spontaneous preterm birth: A population-based cohort study of twins. Front. Public Health 2022, 10, 1002824. [Google Scholar] [CrossRef] [PubMed]
- Han, Y.; Wang, W.; Wang, X.; Dong, T.; van Donkelaar, A.; Martin, R.V.; Chen, Y.; Kan, H.; Xia, Y. Prenatal exposure to fine particles, premature rupture of membranes and gestational age: A prospective cohort study. Environ. Int. 2020, 145, 106146. [Google Scholar] [CrossRef] [PubMed]
- Harris, M.H.; Gold, D.R.; Rifas-Shiman, S.L.; Melly, S.J.; Zanobetti, A.; Coull, B.A.; Schwartz, J.D.; Gryparis, A.; Kloog, I.; Koutrakis, P.; et al. Prenatal and Childhood Traffic-Related Pollution Exposure and Childhood Cognition in the Project Viva Cohort (Massachusetts, USA). Environ. Health Perspect. 2015, 123, 1072–1078. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harris, M.H.; Gold, D.R.; Rifas-Shiman, S.L.; Melly, S.J.; Zanobetti, A.; Coull, B.A.; Schwartz, J.D.; Gryparis, A.; Kloog, I.; Koutrakis, P.; et al. Prenatal and childhood traffic-related air pollution exposure and childhood executive function and behavior. Neurotoxicol. Teratol. 2016, 57, 60–70. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cowell, W.J.; Bellinger, D.C.; Coull, B.A.; Gennings, C.; Wright, R.O.; Wright, R.J. Associations between Prenatal Exposure to Black Carbon and Memory Domains in Urban Children: Modification by Sex and Prenatal Stress. PLoS ONE 2015, 10, e0142492. [Google Scholar] [CrossRef] [Green Version]
- Clark, N.A.; Demers, P.A.; Karr, C.J.; Koehoorn, M.; Lencar, C.; Tamburic, L.; Brauer, M. Effect of early life exposure to air pollution on development of childhood asthma. Environ. Health Perspect. 2010, 118, 284–290. [Google Scholar] [CrossRef] [Green Version]
- Chen, T.; Norback, D.; Deng, Q.; Huang, C.; Qian, H.; Zhang, X.; Sun, Y.; Wang, T.; Zhang, Y.; Li, B.; et al. Maternal Exposure to PM2.5/BC during pregnancy predisposes children to allergic rhinitis which varies by regions and exclusive breastfeeding. Environ. Int. 2022, 165, 107315. [Google Scholar] [CrossRef]
- Chiu, Y.H.; Coull, B.A.; Sternthal, M.J.; Kloog, I.; Schwartz, J.; Cohen, S.; Wright, R.J. Effects of prenatal community violence and ambient air pollution on childhood wheeze in an urban population. J. Allergy Clin. Immunol. 2014, 133, 713–722.e4. [Google Scholar] [CrossRef] [Green Version]
- Witters, K.; Dockx, Y.; Roodt, J.; Lefebvre, W.; Vanpoucke, C.; Plusquin, M.; Vangronsveld, J.; Janssen, B.G.; Nawrot, T.S. Dynamics of skin microvascular blood flow in 4–6-year old children in association with pre- and postnatal black carbon and particulate air pollution exposure. Environ. Int. 2021, 157, 106799. [Google Scholar] [CrossRef]
- van Rossem, L.; Rifas-Shiman, S.L.; Melly, S.J.; Kloog, I.; Luttmann-Gibson, H.; Zanobetti, A.; Coull, B.A.; Schwartz, J.D.; Mittleman, M.A.; Oken, E.; et al. Prenatal air pollution exposure and newborn blood pressure. Environ. Health Perspect. 2015, 123, 353–359. [Google Scholar] [CrossRef]
- Madhloum, N.; Nawrot, T.S.; Gyselaers, W.; Roels, H.A.; Bijnens, E.; Vanpoucke, C.; Lefebvre, W.; Janssen, B.G.; Cox, B. Neonatal blood pressure in association with prenatal air pollution exposure, traffic, and land use indicators: An ENVIRONAGE birth cohort study. Environ. Int. 2019, 130, 104853. [Google Scholar] [CrossRef] [PubMed]
- Fleisch, A.F.; Luttmann-Gibson, H.; Perng, W.; Rifas-Shiman, S.L.; Coull, B.A.; Kloog, I.; Koutrakis, P.; Schwartz, J.D.; Zanobetti, A.; Mantzoros, C.S.; et al. Prenatal and early life exposure to traffic pollution and cardiometabolic health in childhood. Pediatr. Obes. 2017, 12, 48–57. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, G.; Ao, J.; Cai, J.; Luo, Z.; Martin, R.; van Donkelaar, A.; Kan, H.; Zhang, J. Fine particular matter and its constituents in air pollution and gestational diabetes mellitus. Environ. Int. 2020, 142, 105880. [Google Scholar] [CrossRef] [PubMed]
- Fleisch, A.F.; Gold, D.R.; Rifas-Shiman, S.L.; Koutrakis, P.; Schwartz, J.D.; Kloog, I.; Melly, S.; Coull, B.A.; Zanobetti, A.; Gillman, M.W. Air pollution exposure and abnormal glucose tolerance during pregnancy: The project Viva cohort. Environ. Health Perspect. 2014, 122, 378–383. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mandakh, Y.; Rittner, R.; Flanagan, E.; Oudin, A.; Isaxon, C.; Familari, M.; Hansson, S.R.; Malmqvist, E. Maternal Exposure to Ambient Air Pollution and Risk of Preeclampsia: A Population-Based Cohort Study in Scania, Sweden. Int. J. Environ. Res. Public Health 2020, 17, 1744. [Google Scholar] [CrossRef] [Green Version]
- Gaskins, A.J.; Mínguez-Alarcón, L.; Williams, P.L.; Chavarro, J.E.; Schwartz, J.D.; Kloog, I.; Souter, I.; Hauser, R.; Laden, F.; EARTH Study Team. Ambient air pollution and risk of pregnancy loss among women undergoing assisted reproduction. Environ. Res. 2020, 191, 110201. [Google Scholar] [CrossRef]
- Verheyen, V.J.; Remy, S.; Lambrechts, N.; Govarts, E.; Colles, A.; Poelmans, L.; Verachtert, E.; Lefebvre, W.; Monsieurs, P.; Vanpoucke, C.; et al. Residential exposure to air pollution and access to neighborhood greenspace in relation to hair cortisol concentrations during the second and third trimester of pregnancy. Environ. Health 2021, 20, 11. [Google Scholar] [CrossRef]
- Saenen, N.D.; Vrijens, K.; Janssen, B.G.; Madhloum, N.; Peusens, M.; Gyselaers, W.; Vanpoucke, C.; Lefebvre, W.; Roels, H.A.; Nawrot, T.S. Placental Nitrosative Stress and Exposure to Ambient Air Pollution During Gestation: A Population Study. Am. J. Epidemiol. 2016, 184, 442–449. [Google Scholar] [CrossRef] [Green Version]
- Hargiyanto, W.; Hendrawan, V.F.; Widjiati, W.; Luqman, E.M. Hofbauer Cells and Nuclear Factor of Kappa Beta on Rat’s Placenta that Black Carbon Exposure. Int. J. Pharm. Res. 2021, 13, 4838–4844. [Google Scholar] [CrossRef]
- Neven, K.Y.; Wang, C.; Janssen, B.G.; Roels, H.A.; Vanpoucke, C.; Ruttens, A.; Nawrot, T.S. Ambient air pollution exposure during the late gestational period is linked with lower placental iodine load in a Belgian birth cohort. Environ. Int. 2021, 147, 106334. [Google Scholar] [CrossRef]
- Howe, C.G.; Eckel, S.P.; Habre, R.; Girguis, M.S.; Gao, L.; Lurmann, F.W.; Gilliland, F.D.; Breton, C.V. Association of Prenatal Exposure to Ambient and Traffic-Related Air Pollution With Newborn Thyroid Function: Findings From the Children’s Health Study. JAMA Netw. Open. 2018, 1, e182172. [Google Scholar] [CrossRef]
- Neven, K.Y.; Saenen, N.D.; Tarantini, L.; Janssen, B.G.; Lefebvre, W.; Vanpoucke, C.; Bollati, V.; Nawrot, T.S. Placental promoter methylation of DNA repair genes and prenatal exposure to particulate air pollution: An ENVIRONAGE cohort study. Lancet Planet. Health 2018, 2, e174–e183. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kingsley, S.L.; Deyssenroth, M.A.; Kelsey, K.T.; Awad, Y.A.; Kloog, I.; Schwartz, J.D.; Lambertini, L.; Chen, J.; Marsit, C.J.; Wellenius, G.A. Maternal residential air pollution and placental imprinted gene expression. Environ. Int. 2017, 108, 204–211. [Google Scholar] [CrossRef] [PubMed]
- Luyten, L.J.; Dockx, Y.; Provost, E.B.; Madhloum, N.; Sleurs, H.; Neven, K.Y.; Janssen, B.G.; Bové, H.; Debacq-Chainiaux, F.; Gerrits, N.; et al. Children’s microvascular traits and ambient air pollution exposure during pregnancy and early childhood: Prospective evidence to elucidate the developmental origin of particle-induced disease. BMC Med. 2020, 18, 128. [Google Scholar] [CrossRef] [PubMed]
- Holder, B.; Aplin, J.D.; Gomez-Lopez, N.; Heazell, A.E.P.; James, J.L.; Jones, C.J.P.; Jones, H.; Lewis, R.M.; Mor, G.; Roberts, C.T.; et al. ‘Fetal side’ of the placenta: Anatomical mis-annotation of carbon particle ‘transfer’ across the human placenta. Nat. Commun. 2021, 12, 7049. [Google Scholar] [CrossRef]
- Zhou, H.; Lin, J.; Shen, Y.; Deng, F.; Gao, Y.; Liu, Y.; Dong, H.; Zhang, Y.; Sun, Q.; Fang, J.; et al. Personal black carbon exposure and its determinants among elderly adults in urban China. Environ. Int. 2020, 138, 105607. [Google Scholar] [CrossRef]
- Bourquin, J.; Milosevic, A.; Hauser, D.; Lehner, R.; Blank, F.; Petri-Fink, A.; Rothen-Rutishauser, B. Biodistribution, Clearance, and Long-Term Fate of Clinically Relevant Nanomaterials. Adv. Mater. 2018, 30, e1704307. [Google Scholar] [CrossRef]
- Zhong, Y.; Tuuli, M.; Odibo, A.O. First-trimester assessment of placenta function and the prediction of preeclampsia and intrauterine growth restriction. Prenat Diagn. 2010, 30, 293–308. [Google Scholar] [CrossRef]
- Karthikeyan, T.; Subramaniam, R.K.; Johnson, W.; Prabhu, K. Placental thickness & its correlation to gestational age & foetal growth parameters- a cross sectional ultrasonographic study. J. Clin. Diagn. Res. 2012, 6, 1732–1735. [Google Scholar] [CrossRef]
- Black, R.E.; Cousens, S.; Johnson, H.L.; Lawn, J.E.; Rudan, I.; Bassani, D.G.; Jha, P.; Campbell, H.; Walker, C.F.; Cibulskis, R.; et al. Global, regional, and national causes of child mortality in 2008: A systematic analysis. Lancet 2010, 375, 1969–1987. [Google Scholar] [CrossRef]
- Abdel Razeq, N.M.; Khader, Y.S.; Batieha, A.M. The incidence, risk factors, and mortality of preterm neonates: A prospective study from Jordan (2012–2013). Turk. J. Obstet. Gynecol. 2017, 14, 28–36. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.H.; Huang, H.L.; Chen, H.L.; Lin, L.C.; Tseng, H.I.; Kao, T.J. Inattention and development of toddlers born in preterm and with low birth weight. Kaohsiung J. Med. Sci. 2012, 28, 390–396. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bianchi, M.E.; Restrepo, J.M. Low Birthweight as a Risk Factor for Non-communicable Diseases in Adults. Front. Med. 2022, 8, 793990. [Google Scholar] [CrossRef] [PubMed]
- Mollica, L.; Fleury, I.; Belisle, C.; Provost, S.; Roy, D.C.; Busque, L. No association between telomere length and blood cell counts in elderly individuals. J. Gerontol. A Biol. Sci. Med. Sci. 2009, 64, 965–967. [Google Scholar] [CrossRef]
- Song, X.; Hu, Y.; Ma, Y.; Jiang, L.; Wang, X.; Shi, A.; Zhao, J.; Liu, Y.; Liu, Y.; Tang, J.; et al. Is short-term and long-term exposure to black carbon associated with cardiovascular and respiratory diseases? A systematic review and meta-analysis based on evidence reliability. BMJ Open 2022, 12, e049516. [Google Scholar] [CrossRef] [PubMed]
- Campbell-Lendrum, D.; Prüss-Ustün, A. Climate change, air pollution and noncommunicable diseases. Bull. World Health Organ. 2019, 97, 160–161. [Google Scholar] [CrossRef] [PubMed]
- Baumgartner, J.; Carter, E.; Schauer, J.J.; Ezzati, M.; Daskalopoulou, S.S.; Valois, M.F.; Shan, M.; Yang, X. Household air pollution and measures of blood pressure, arterial stiffness and central haemodynamics. Heart 2018, 104, 1515–1521. [Google Scholar] [CrossRef] [PubMed]
- Prada, D.; Zhong, J.; Colicino, E.; Zanobetti, A.; Schwartz, J.; Dagincourt, N.; Fang, S.C.; Kloog, I.; Zmuda, J.M.; Holick, M.; et al. Association of air particulate pollution with bone loss over time and bone fracture risk: Analysis of data from two independent studies. Lancet Planet Health 2017, 1, e337–e347. [Google Scholar] [CrossRef]
- Niranjan, R.; Thakur, A.K. The Toxicological Mechanisms of Environmental Soot (Black Carbon) and Carbon Black: Focus on Oxidative Stress and Inflammatory Pathways. Front. Immunol. 2017, 8, 763. [Google Scholar] [CrossRef]
- American Diabetes Association. Classification and Diagnosis of Diabetes: Standards of Medical Care in Diabetes—2021. Diabetes Care 2021, 44 (Suppl. S1), S15–S33. [Google Scholar] [CrossRef]
- Zhou, T.; Du, S.; Sun, D.; Li, X.; Heianza, Y.; Hu, G.; Sun, L.; Pei, X.; Shang, X.; Qi, L. Prevalence and Trends in Gestational Diabetes Mellitus Among Women in the United States, 2006-2017: A Population-Based Study. Front. Endocrinol. 2022, 13, 868094. [Google Scholar] [CrossRef]
- Quintanilla Rodriguez, B.S.; Mahdy, H. Gestational Diabetes. [Updated 2022 Feb 26]. In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2022. Available online: https://www.ncbi.nlm.nih.gov/books/NBK545196/ (accessed on 1 July 2022).
- Vounzoulaki, E.; Khunti, K.; Abner, S.C.; Tan, B.K.; Davies, M.J.; Gillies, C.L. Progression to type 2 diabetes in women with a known history of gestational diabetes: Systematic review and meta-analysis. BMJ 2020, 369, m1361. [Google Scholar] [CrossRef]
- Farahvar, S.; Walfisch, A.; Sheiner, E. Gestational diabetes risk factors and long-term consequences for both mother and offspring: A literature review. Expert. Rev. Endocrinol. Metab. 2019, 14, 63–74. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Wang, Q.; He, S.; Wu, K.; Ren, M.; Dong, H.; Di, J.; Yu, Z.; Huang, C. Ambient air pollution and gestational diabetes mellitus: A review of evidence from biological mechanisms to population epidemiology. Sci. Total Environ. 2020, 719, 137349. [Google Scholar] [CrossRef] [PubMed]
- Mordukhovich, I.; Wilker, E.; Suh, H.; Wright, R.; Sparrow, D.; Vokonas, P.S.; Schwartz, J. Black carbon exposure, oxidative stress genes, and blood pressure in a repeated-measures study. Environ. Health Perspect. 2009, 117, 1767–1772. [Google Scholar] [CrossRef] [Green Version]
- Webster, R.P.; Roberts, V.H.; Myatt, L. Protein nitration in placenta—Functional significance. Placenta 2008, 29, 985–994. [Google Scholar] [CrossRef] [Green Version]
- Janssen, B.G.; Madhloum, N.; Gyselaers, W.; Bijnens, E.; Clemente, D.B.; Cox, B.; Hogervorst, J.; Luyten, L.; Martens, D.S.; Peusens, M.; et al. Cohort Profile: The ENVIRonmental influence ON early AGEing (ENVIRONAGE): A birth cohort study. Int. J. Epidemiol. 2017, 46, 1386m–1387m. [Google Scholar] [CrossRef]
- Ramírez-Emiliano, J.; Fajardo-Araujo, M.E.; Zúñiga-Trujillo, I.; Pérez-Vázquez, V.; Sandoval-Salazar, C.; Órnelas-Vázquez, J.K. Mitochondrial content, oxidative, and nitrosative stress in human full-term placentas with gestational diabetes mellitus. Reprod. Biol. Endocrinol. 2017, 15, 26. [Google Scholar] [CrossRef] [Green Version]
- Bosco, C.; González, J.; Gutiérrez, R.; Parra-Cordero, M.; Barja, P.; Rodrigo, R. Oxidative damage to pre-eclamptic placenta: Immunohistochemical expression of VEGF, nitrotyrosine residues and von Willebrand factor. J. Matern. Fetal. Neonatal. Med. 2012, 25, 2339–2345. [Google Scholar] [CrossRef]
- Burns, R.; Azizi, F.; Hedayati, M.; Mirmiran, P.; O’Herlihy, C.; Smyth, P.P. Is placental iodine content related to dietary iodine intake? Clin. Endocrinol. 2011, 75, 261–264. [Google Scholar] [CrossRef]
- Neven, K.Y.; Cox, B.; Vrijens, K.; Plusquin, M.; Roels, H.A.; Ruttens, A.; Nawrot, T.S. Determinants of placental iodine concentrations in a mild-to-moderate iodine-deficient population: An ENVIRONAGE cohort study. J. Transl. Med. 2020, 18, 426. [Google Scholar] [CrossRef] [PubMed]
- Kappil, M.A.; Green, B.B.; Armstrong, D.A.; Sharp, A.J.; Lambertini, L.; Marsit, C.J.; Chen, J. Placental expression profile of imprinted genes impacts birth weight. Epigenetics 2015, 10, 842–849. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hansen, A.R.; Collins, M.H.; Genest, D.; Heller, D.; Schwarz, S.; Banagon, P.; Allred, E.N.; Leviton, A. Very low birthweight Infant’s placenta and its relation to pregnancy and fetal characteristics. Pediatr. Dev. Pathol. 2000, 3, 419–430. [Google Scholar] [CrossRef]
- Mestan, K.; Yu, Y.; Matoba, N.; Cerda, S.; Demmin, B.; Pearson, C.; Ortiz, K.; Wang, X. Placental inflammatory response is associated with poor neonatal growth: Preterm birth cohort study. Pediatrics 2010, 125, e891–e898. [Google Scholar] [CrossRef] [PubMed]
- Harmon, A.C.; Cornelius, D.C.; Amaral, L.M.; Faulkner, J.L.; Cunningham, M.W., Jr.; Wallace, K.; LaMarca, B. The role of inflammation in the pathology of preeclampsia. Clin. Sci. 2016, 130, 409–419. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tita, A.T.; Andrews, W.W. Diagnosis and management of clinical chorioamnionitis. Clin. Perinatol. 2010, 37, 339–354. [Google Scholar] [CrossRef] [Green Version]
- Pan, X.; Jin, X.; Wang, J.; Hu, Q.; Dai, B. Placenta inflammation is closely associated with gestational diabetes mellitus. Am. J. Transl. Res. 2021, 13, 4068–4079. [Google Scholar]
- Gao, X.; Shang, J.; Yang, J.L.; Li, Q.; Chen, T.; Pang, Y.; Zhang, W.; Luan, X.; Zhu, T.; Jia, G.; et al. Comparison of genetic damage in mice exposed to black carbon and ozone-oxidized black carbon. Beijing Da Xue Xue Bao Yi Xue Ban 2014, 46, 400–404. [Google Scholar]
- Chu, H.; Shang, J.; Jin, M.; Li, Q.; Chen, Y.; Huang, H.; Li, Y.; Pan, Y.; Tao, X.; Cheng, Z.; et al. Comparison of lung damage in mice exposed to black carbon particles and ozone-oxidized black carbon particles. Sci. Total Environ. 2016, 573, 303–312. [Google Scholar] [CrossRef]
- Division of Reproductive Health, National Center for Chronic Disease Prevention and Health Promotion. (11 November 2021). Preterm Birth|Maternal and Infant Health|Reproductive Health|CDC. Available online: https://www.cdc.gov/reproductivehealth/maternalinfanthealth/pretermbirth.html (accessed on 12 August 2022).
- Tabuchi, H.; Popovich, N. People of Color Breathe More Hazardous Air. The Sources Are Everywhere. The New York Times. (8 September 2021). Available online: https://www.nytimes.com/2021/04/28/climate/air-pollution-minorities.html (accessed on 12 August 2022).
- Wang, Y.; Shupler, M.; Birch, A.; Chu, Y.L.; Jeronimo, M.; Rangarajan, S.; Mustaha, M.; Heenan, L.; Seron, P.; Saavedra, N.; et al. Personal and household PM2.5 and black carbon exposure measures and respiratory symptoms in 8 low- and middle-income countries. Environ. Res. 2022, 212 Pt C, 113430. [Google Scholar] [CrossRef]
References | Study Design | Outcome | Contaminant Effect |
---|---|---|---|
Fleisch et al., 2015 [13] | Air pollution exposure in the 3rd trimester | Low birth weight | BC↑ |
Brauer et al., 2008 [14] | Air pollution exposure | Low birth weight; small for gestational age birth | BC↑, PM10↑, PM2.5↑, CO↑, NOx↑ |
Rokoff et al., 2018 [15] | Exposure to traffic pollution in combination with smoking and PFAS plasma concentration | Low birth weight for gestational age | BC↑, PFOS↑, smoking↑ |
Sun et al., 2021 [16] | Air pollution exposure during entire pregnancy period | Decreased Weight-for-Length (WLZ); BMI-for-Age (BMIz); and Weight-for-Age (WAZ) at birth, 1- 4- and 6 years of age | BC↑, PM2.5↑, OC↑, NH4+↑, NO3−↑, and SO42−↑ during the 2nd and 3rd trimesters at 1, 4, and 6 years in boys PM2.5↑, NH4+↑, and NO3−↑ during the 1st and 2nd trimesters at birth in girls |
Dong et al., 2022 [17] | Air pollution exposure | Low birth weight | BC↑, NO2↑ during the 2nd and 3rd trimesters at 1,-4, and 6- years-old in boys |
Harnung Scholten et al., 2021 [18] | Air pollution exposure in 2nd and 3rd trimester | Decrease in telomere length in umbilical cord leukocytes | BC↑ in the 3rd trimester, but ↓ in the 2nd trimester |
Riddell et al., 2022 [19] | Air pollution exposure during pregnancy in Latinx, Black, Asian, and White women | Risk of preterm birth | BC↑, PM2.5↑, ozone↑ for Latinx and Black women |
Kingsley et al., 2017 [20] | Air pollution exposure | Risk of preterm birth | BC↑ |
Qiao et al., 2022 [21] | Air pollution exposure | Risk of preterm birth | BC–N.E. |
Han et al., 2020 [22] | Air pollution exposure during the 1st trimester | Premature rupture of membranes (PROM) | BC↑ |
Harris et al., 2015 [23] | Traffic-related air pollution exposure during | Lower verbal and non-verbal IQ; reduced visual motor skills | Living < 50 m to a major roadway↑ BC–N.E. |
Harris et al., 2016 [24] | Traffic-related air pollution exposure | Higher executive function | BC↑ |
Cowell et al., 2015 [25] | Air pollution exposure | Decrease in Attention Concentration Index (ACI) | BC↑, boys > girls |
Clark et al., 2010 [26] | Air pollution exposure during pregnancy and the first year of life | Increased asthma incidence | BC↑ |
Chen et al., 2022 [27] | Air pollution exposure | Increased incidence of hay fever and allergic rhinitis | BC↑, PM2.5↑ |
Chiu et al., 2014 [28] | Air pollution exposure | Childhood wheeze | BC↑, PM2.5↑ |
Witters et al., 2021 [29] | Air pollution exposure in 3rd trimester | Lower skin hyperemia | BC↑, PM2.5↑, PM10↑ and NO2↑ |
van Rossem et al., 2015 [30] | Air pollution exposure 2 to 30 days before birth | Increase in newborn systolic blood pressure | BC↑, PM2.5↑, ozone↓ |
Madhloum et al., 2019 [31] | Air pollution exposure during the last 4 months of gestation | Increase in newborn systolic and diastolic blood pressure | BC↑ |
Fleisch et al., 2017 [32] | Air pollution exposure | Increased leptin concentration, total fat mass and insulin resistance upon exposure in the 3rd trimester; Decreased insulin resistance upon exposure in the 1st and 2nd trimester | BC↑ |
Yu et al., 2020 [33] | Air pollution exposure during 2nd trimester | Increased risk of gestational diabetes mellitus (GDM) | BC↑, PM2.5↑ |
Fleisch et al., 2014 [34] | Air pollution exposure during 2nd trimester | Increased risk of impaired glucose tolerance (IGT) | BC↑, PM2.5↑, traffic density↑ |
Mandakh et al., 2020 [35] | Air pollution exposure | Risk of preeclampsia and small for gestational age birth | BC↑, PM2.5↑, PM10↑ and NOx↑ |
Gaskins et al., 2020 [36] | Air pollution exposure for women who underwent assisted reproduction | Increased risk of pregnancy loss 30 days after a positive hCG test | NO2 ↑ BC–N.E., PM2.5–N.E. |
Verheyen et al., 2021 [37] | Air pollution exposure in the 2nd and 3rd trimester | Increased hair cortisol concentration | BC↑ |
Saenen et al., 2016 [38] | Air pollution exposure | Increased 3-nitrotyrosine placental levels | BC↑, PM2.5↑ |
Hargiyanto et al., 2021 [39] | BC exposure of rats via inhalation during pregnancy | Increased amount of Hofbauer cells and expression of NF-κB | BC↑ |
Neven et al., 2021 [40] | Air pollution exposure | Increased placental iodine uptake | PM2.5↑ in the 2nd trimester, but ↓ in the 3rd trimester BC–N.E., NO2–N.E. |
Howe et al., 2018 [41] | Air pollution during pregnancy | Increased newborn total thyroxine levels (T4) | PM2.5↑, PM10↑ |
Neven et al., 2018 [42] | Air pollution exposure | Increased DNA mutation rate and increased methylation of DNA repair genes | BC↑ |
Kingsley et al., 2017 [43] | Air pollution exposure | Decreased expression of genes associated with fetal growth or cholesterol placental exchange | BC↑ |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Goriainova, V.; Awada, C.; Opoku, F.; Zelikoff, J.T. Adverse Effects of Black Carbon (BC) Exposure during Pregnancy on Maternal and Fetal Health: A Contemporary Review. Toxics 2022, 10, 779. https://doi.org/10.3390/toxics10120779
Goriainova V, Awada C, Opoku F, Zelikoff JT. Adverse Effects of Black Carbon (BC) Exposure during Pregnancy on Maternal and Fetal Health: A Contemporary Review. Toxics. 2022; 10(12):779. https://doi.org/10.3390/toxics10120779
Chicago/Turabian StyleGoriainova, Viktoriia, Christina Awada, Florence Opoku, and Judith T. Zelikoff. 2022. "Adverse Effects of Black Carbon (BC) Exposure during Pregnancy on Maternal and Fetal Health: A Contemporary Review" Toxics 10, no. 12: 779. https://doi.org/10.3390/toxics10120779
APA StyleGoriainova, V., Awada, C., Opoku, F., & Zelikoff, J. T. (2022). Adverse Effects of Black Carbon (BC) Exposure during Pregnancy on Maternal and Fetal Health: A Contemporary Review. Toxics, 10(12), 779. https://doi.org/10.3390/toxics10120779