Titanium and Zinc Based Nanomaterials in Agriculture: A Promising Approach to Deal with (A)biotic Stresses?
Abstract
:1. Introduction
2. Metal-Based Nanomaterials and Their Impact on Plants
3. The Potential of nTiO2 and nZnO in Increasing Abiotic Stress Tolerance to Plants
3.1. Drought and Salinity
3.1.1. Ameliorative Effects of nTiO2 in Plants Grown under Drought or Salinity Stress
Stress Conditions | nTiO2 Crystalline Phase; Concentrations; Primary (PS) or Hydrodynamic Size (HS) | Plant Species | Application Method | Ameliorative Effects | Ref. |
---|---|---|---|---|---|
After seed-filling maintained at 50% FC | Anatase; 10, 100, and 500 mg L−1; PS 10–25 nm. | Linum usitatissimum L. | Three foliar applications at the initial seed-filling | Increased leaf carotenoids and seed protein | [88] |
PEG-6000 solutions at −0.4 and −0.8 MPa | Not stated; 500 and 2000 mg L−1 PS 10–25 nm. | Triticum aestivum L. | Seed priming for 7 days | Increased shoot and root length, as well as fresh weight | [83] |
75% and 50% FC for 6 weeks | Not stated; 500, 1000 and 2000 mg kg−1 soil; PS 10–25 nm. | Triticum aestivum L. | Soil amended | Increased leaf RWC, chlorophylls and carotenoids levels, and antioxidant enzymes (APX, CAT). Decreased lipid peroxidation and H2O2 production | [82] |
45% FC for 15 days | Not stated; 20 and 40 mg kg−1 soil; PS 347–447 nm. | Triticum aestivum L. | Soil amended | Increased root length, hormone level (IAA and GA), proline and sugars. Improvement of the antioxidant enzymes (SOD, POD and CAT) and nutrient uptake (K and P) | [81] |
105 and 140 mm evaporation from the class A evaporation pan (mm day−1) | Anatase; 50 and 100 mg L−1 PS 10–25 nm. | Zea mays L. | Foliar spray twice with an interval of 2 weeks (at the 4–6 leaf stage and 2 weeks after that) | Increased leaf relative water content, Fv/Fm, carotenoids, chlorophylls, proline, soluble protein and grain yield. Improvement of the activity of the antioxidant enzymes (SOD, APX and CAT) | [84] |
Stress Conditions | nTiO2 Crystalline Phase; Concentrations; Primary (PS) or Hydrodynamic Size (HS) | Plant Species | Application Method | Ameliorative Effects | Ref. |
---|---|---|---|---|---|
180 mM NaCl for 28 days | Not stated; 160, 320 and 480 mg L−1; PS 20–78 nm. | Vicia faba L. | Two foliar applications, 3 and 10 days after NaCl treatments | Increased root and shoot length and dry weight. Improvement of the levels of proline, sugars, chlorophylls and carotenoids. Increased antioxidant enzyme activities (SOD, POD, APX and CAT). Decreased lipid peroxidation and H2O2 production | [42] |
100 and 200 mM NaCl for 40 days | Anatase; 500, 1000 and 2000 mg kg−1; PS 10–25 nm. | Hordeum vulgare L. | Soil amended | Increased root length, leaf RWC, net CO2 assimilation rate, stomatal conductance, transpiration rate, chlorophyll and proline. Improvement of the antioxidant enzyme activities (APX and CAT). Decreased lipid peroxidation | [87] |
50 and 100 mM NaCl for 2 weeks | Anatase; 100 and 200 mg L−1; PS 25 nm. | Stevia rebaudiana Bertoni. | Foliar spray for 3 times (during the growth period) | Increased root and shoot height, fresh and dry weight, leaf RWC, chlorophylls, carotenoids contents. Improvement of the net CO2 assimilation rate and Fv/Fm. Increased antioxidant enzyme activities (SOD, POD, APX and CAT). Decreased lipid peroxidation and H2O2 production | [86] |
3.1.2. Ameliorative Effects of nZnO in Plants Grown under Drought or Salinity Stress
Stress Conditions | nZnO Concentrations; Primary (PS) or Hydrodynamic Size (HS) | Plant Species | Application Method | Ameliorative Effects | Ref. |
---|---|---|---|---|---|
30% of total moisture for 3 days. | Not stated | Triticum aestivum L. | Seed priming for 4 h | Increased leaf RWC, chlorophyll and carotenoids levels, and antioxidant enzyme activities (SOD and CAT). Decreased lipid peroxidation | [91] |
40% field capacity | 1, 3 and 5 mg L−1; PS 18 nm | Sorghum bicolor | Soil amended | Increased grain yield | [37] |
40% field capacity for 210 days | 2.17 mg kg−1; not stated | Triticum aestivum L. | Soil amended | Increased chlorophyll content and grain nutrient | [92] |
6 days at 45% (soil water content). | 100 mg L−1; PS 20 nm | Zea mays L. | Seed priming | Increased root and shoot height, fresh and dry weight, as well as sugars, protein, amino acids (tryptophane) and proline. Improvement of antioxidant enzyme activities and gene relative expression (SOD, POD, APX and CAT). Decreased H2O2 production | [93] |
12 days | 25 and 100 mg L−1; PS 50 nm | Cucumis sativus L. | Foliar application 3 time a week, for two weeks | Increased shoot fresh and dry weight, root dry weight and length, leaf RWC, chlorophylls, carotenoids, protein content, net CO2 assimilation rate, stomatal conductance, transpiration rate, intercellular CO2 concentration, Fv/Fm, qP and ΦPSII. Accumulation of proline, glycine betaine, free amino acids, and sugars. Improvement of antioxidant enzyme activities (SOD, POD, APX, CAT, GR, DHAR and MDHAR) and PAL activity. Increased total phenols, flavonoids, ascorbate (AsA) and glutathione. Decreased O2−• and H2O2 production, lipid peroxidation, electrolyte leakage and NPQ | [80] |
60% of crop evapotranspiration (ETc) for 5 months. | 50 and 100 mg L−1; not stated | Solanum melongena L. | Foliar application 2 times | Increased leaf RWC and Fv/Fm. Improved membrane stability | [90] |
Stress Conditions | nZnO Concentrations; Primary (PS) or Hydrodynamic Size (HS) | Plant Species | Application Method | Ameliorative Effects | Ref. |
---|---|---|---|---|---|
Irrigated in the beginning with 150 mM NaCl | 20, 40 and 60 mg L−1; PS 21.3 nm | Lupinus termis Forssk. | Seed priming for 12 h | Increased proline, protein and free amino acids, sugars, chlorophylls and carotenoids, total phenols and AsA. Improved the antioxidant enzyme activities (SOD, POD, APX and CAT). Decreased lipid peroxidation | [89] |
Irrigated in the beginning with 108 mM NaCl | 10 mg L−1; PS 30 nm | Brassica napus L. | Three foliar applications at 50, 65, and 80 days after sowing | Increased carotenoids, proline and sugars. Improved the activity of antioxidant enzymes (SOD, POD, and CAT), and the pool of ASA and total phenolic compounds. Decreased H2O2 production, lipid peroxidation and membrane leakage | [98] |
Salinized drainage water | 50, 100 and 150 mg L−1; PS < 100 nm | Mangifera indica L. | Two foliar applications (full bloom and 1 month after) | Enhanced leaf NPK content, total carbohydrates and proline. Increased the activities of the antioxidant enzymes SOD, POX, and CAT | [97] |
<30 ds/m NaCl | 12, 15 and 20 mg L−1; PS 4.50–5.80 nm | Solanum tuberosum L. | Soil amended, 15 days before planting, and 20, 35, 45 and 70 days after planting | Increased plant height, fresh and dry weight, and leaf RWC. Improved the net CO2 assimilation rate, stomatal conductance, intercellular CO2 concentration and WUE. Increased the levels of chlorophyll, proline, phytohormones (GA) and leaf nutrients (N, P, K, Ca, Na, Zn and B). Decreased the transpiration rate and the levels of ABA | [96] |
150 mM NaCl | 10, 50, 100 mg L−1; not stated | Lycopersicon esculentum Mill. | Soil amended at the time of transplanting (15 days after sowing) | Increase the shoot and root fresh and dry weight, and length, leaf area, protein content, proline, and chlorophyll. Improved the net CO2 assimilation rate, stomatal conductance, transpiration rate and intercellular CO2 concentration. Improved the activity of the antioxidant enzymes (SOD, POD and APX). | [94] |
150 mM NaCl applied 30 days after sowing | 50 mg/L; not stated | Linum usitatissimum L. | Foliar application 60 days after sowing | Increased shoot fresh and dry weight, root dry weight and length, leaf area, and leaf nutrients (C, K and Ca). Improved net CO2 assimilation rate, stomatal conductance, intercellular CO2 concentration, WUE, Fv/Fm, qP and ΦPSII. Increased the levels of chlorophylls, proline, carbohydrates, NR, carbonic anhydrase, and the activity of antioxidant enzymes (SOD, POD, and CAT). Decreased the O2− and H2O2 production, lipid peroxidation. | [95] |
150 mM NaCl for 7 days | 25, 50 and 100 mg L−1; not stated | Brassica napus L. | Seed priming for 8 h | Increased sugar, soluble protein and SOD activity | [99] |
3.2. Environmental Contaminants
3.2.1. Ameliorative Effects of nTiO2 in Plants Exposed to Environmental Contaminants
Salt; Concentration | nTiO2 Crystalline Phase; Concentrations Used; Primary (PS) or Hydrodynamic Size (HS) | Plant Species | Application Method | Ameliorative Effects | Ref. |
---|---|---|---|---|---|
CdCl2; 50 mg kg−1 | Not stated; 40, 80, 160 mg L−1; PS < 100 nm | Coriandrum sativum L. | Seed priming (24 h) | Decreased Cd uptake and improved germination rate, plant growth and biomass; increased pigment contents; improved gas exchange parameters; increased CAT, SOD and APX activity; increased proline level; decreased MDA content and electrolyte leakage; improved seed yield | [164] |
Cd(NO3)2; 13.95 mg kg−1 | Not stated; 100–1000 mg k−1; PS 15–40 nm | Trifolium repens | In soil (80 d) | Increased plant length and biomass | [153] |
CdCl2; 10 mg kg−1 | Not stated; 100, 200 mg L−1; PS 100 nm | Vigna unguiculata | Foliar spray in 21 days-old plants | Increased chlorophyll b; decreased in Cd uptake and translocation; MDA decrease; stimulated the antioxidant enzyme activity; increased Zn, Mn and Co in seeds | [162] |
1.03, 2.46, 5.06 mg kg−1 | Not stated; 50, 100, 500 mg kg−1; PS 20–40 nm | Oryza sativa L. | In soil (30, 60, 90 d) | Increased the plant height in tillering and booting growth stages; decreased MDA content and the activity of antioxidant enzymes, mostly when plants were treated with the higher doses of TiO2 | [152] |
50 µM | Anatase; 100; 250 mg L−1; PS 6.5 nm; HS 310–421 nm in foliar spay; HS 700–1880 nm in hydroponics | Zea mays L. | Foliar spray in 19 days-old plants (for 14 days evenly) and hydroponic system | Foliar spray: increased the membrane integrity (250 mg L−1); decreased Cd content in roots (100 mg L−1) and shoots (both); downregulated amino acid metabolic pathways Hydroponics: increased membrane integrity (250 mg L−1); decreased Cd content in roots (250 mg L−1); upregulated carbohydrates metabolic pathways | [157] |
8.5 mg L−1 | Sodium dodecyl benzene sulfonate-coated and uncoated nTiO2; 100, 200, 500, 1000 mg L−1; HS 260–350 nm | Triticum aestivum L. | Seedlings In petri dishes with moistened filter paper (5 days) | The highest doses increased root length | [165] |
CdCl2; 10, 20 mg L−1 | Not stated; 10, 100, 1000 mg L−1; PS 18–166 nm | Oryza sativa L. | Hydroponic system (10 days) | Stimulated plant growth; decreased Cd uptake; stimulated the net photosynthetic rate and chlorophyll content; decreased the MDA and modulated the antioxidant response | [158] |
CdCl2; 100 mg kg−1 | Not stated; 100, 200, 300 mg kg−1; PS < 100 nm | Glycine max L. | In soil (30–60 days after sowing) | Decreased proline content; increased protein content; increased chlorophyll b content | [154] |
Contaminated soil; 7.86 mg kg−1 | 5, 10, 20, 30 mg L−1; PS 20–30 nm; | Oryza sativa L. | Foliar spray at 26, 33 and 40 d after sowing | Stimulated plant growth; promoted gas exchange; increased chlorophyll contents; decreased MDA, electrolyte and H2O2 contents in both roots and leaves; stimulated antioxidant enzyme activities; decreased Cd accumulation and translocation | [163] |
Contaminant | Salt; Concentration | nTiO2 Crystalline Phase; Concentrations Used; Primary (PS) or Hydrodynamic Size (HS) | Plant Species | Application Method | Ameliorative Effects | Ref. |
---|---|---|---|---|---|---|
Cu | CuSO4·5H2O; 1, 2 mg L−1 | Anatase; 10 mg L−1; HS 374 nm (1 h in suspension); HS 1064 nm (48 h in suspension) | Glycine max L. | Hydroponic system (6 days) | Decreased the translocation factor of Cu | [159] |
Pb | Pb(NO3); 10 mg kg−1 | P25; 5 mg kg−1; HS ~130 nm | Lactuca sativa L. | In soil (12 days) | Decreased the relative membrane permeability; increased pigment contents; promoted gas exchange, including the net photosynthetic rate | [155] |
Al | AlCl3·6H2O; 50 mg kg−1 | P25; 5 mg kg−1; HS ~130 nm | Lactuca sativa L. | In soil (12 days) | Decreased the relative membrane permeability; promoted gas exchange; increased the effective efficiency of photosystem II | [155] |
Sb | K2H2Sb2O7⋅4H2O; not stated | Not stated; 100–250 mg kg−1; PS 15–40 nm | Sorghum bicolor | In soil (80 days) | Increased the germination rate | [156] |
As | Sodium arsenate; 10 µmol L−1 | Not stated; Chemical NPs: 2500 mg L−1; HS 64.3 nm. Green NPs: 1000 mg L−1; HS 53.2 nm | Vigna radiata L. | Seeds treated prior germination and during the germination period | Increased biomass and seedling length; decreased H2O2 and MDA contents; increased the protein content, and gene expression of SOD and CAT | [166] |
2,4-Dichloro phenoxyacetic acid | 1000 µM | Not stated; PS < 100 nm; HS 260 nm | Azolla pinnata R.Br | Pre-treatment with TiO2 (3 days) followed by exposure to 2,4-D in a hydroponic system | Modulated K, N, P accumulation; increased biomass; increased the activity of the enzyme invertase; promoted the nitrogen metabolism | [167] |
Tetracycline | 1, 5, 10 mg L−1 | Rutile; 40, 100, 200 mg L−1; PS 5–15 nm | Arabidopsis thaliana L. | Hydroponic system (12 days) | Increased fresh biomass (40 mg L−1); altered the activity of antioxidant enzymes; changed the expression of genes encoding GST, MDHAR, GR, SiR, APR, APT | [161] |
5–20 mg L−1 | Anatase; 500, 1000, 2000 mg L−1; PS 10–25 nm | Oryza sativa L. | Hydroponic system (10 d) | Increased shoot and root biomass; decreased tetracycline content in shoots and roots; modulated nutrient accumulation; decreased antioxidant enzymes activity; showed antagonist effect with tetracycline | [160] |
3.2.2. Ameliorative Effects of nZnO in Plants Exposed to Environmental Contaminants
Salt; Concentration | nZnO Concentration; Primary (PS) or Hydrodynamic Size (HS) | Plant Species | Application Method | Ameliorative Effects | Ref. |
---|---|---|---|---|---|
CdCl2; 0.8 mM | 50 mg L−1; not stated | Oryza sativa L. | Foliar spray at 30 to 35 days after sowing | Improved plant length and biomass; Higher chlorophyll index; improved the gas exchange, including the net CO2 assimilation rate; reduced ROS accumulation and MDA content; promoted CAT activity; increased proline levels; promoted essential nutrient uptake; decreased Cd accumulation | [168] |
Contaminated soil; 7.67 mg kg−1 | 25, 50, 100 mg L−1; PS 20–30 nm | Triticum aestivum L. | Foliar spray at two, three, four and five weeks after sowing | Enhanced plant growth; increased grain dry weight; increased pigment content; decreased MDA, electrolyte leakage and H2O2 content; upregulated SOD and CAT activity; decreased Cd accumulation and transfer to shoots, and Cd bioavailability | [171] |
7.86 mg kg−1 | 50, 75, 100 mg L−1; PS 20–30 nm | Zea mays L. | Foliar spray in 32 days-old plants | Increases shoot and root dry weight; enhanced photosynthetic pigment content and gas exchange related parameters; decreased MDA and membrane permeability; promoted CAT, APX and POD activity; decreased Cd accumulation | [170] |
Contaminated soil; 7.38 mg kg−1 | 25, 50, 75, 100 mg L−1; PS 20–30 nm; | Triticum aestivum L. | Seed priming | Stimulated plant growth; promoted gas exchange; increased pigment contents; decreased electrolyte leakage; increased SOD and G-POX activities; decreased Cd content and bioavailability | [172] |
Contaminated soil; 7.38 mg kg−1 | 50, 75, 100 mg L−1; PS 20–30 nm; | Orysa sativa L. | Foliar spray after 14, 21, 38 and 35 days after transplantation | Increased shoot length and dry weight, and root dry weight; increased chlorophyll a and b contents; stimulated gas exchange; decreased Cd uptake and translocation | [169] |
Contaminated soil; 7.38 mg kg−1 | 25, 50, 75, 100 mg L−1; PS 20–30 nm; | Triticum aestivum L. | In soil; Foliar spray after 2, 4, 6 and 8 weeks after sowing | Promoted plant growth; increased grain dry weight; increased chlorophyll a and b, and carotenoid contents; stimulated gas exchange; electrolyte leakage decrease; SOD and G-POX activities increase; decreased Cd uptake and translocation, and Cd accumulation in grains | [73] |
CdCl2; 50 mg L−1 | 25 mg L−1; PS 2–64 nm | Leucaena leucocephala (Lam.) de Wit | Hydroponic system (15 days) | Promoted plant growth; increased chlorophyll a and b, and carotenoid contents; increased total soluble protein levels; SOD, CAT and G-POX activities increase; decrease of DHA damage | [61] |
Contaminant | Salt | Salt Concentration | nTiO2 Crystalline Phase; Concentrations Used; Primary (PS) or Hydrodynamic Size (HS) | Plant Species | Application Method | Ameliorative Effects | Ref. |
---|---|---|---|---|---|---|---|
Pb | PbNO3 | 100 mg L−1 | 25 mg L−1; PS 2–64 nm | Leucaena leucocephala (Lam.) de Wit | Hydroponic system (15 d) | Promoted plant growth; increased chlorophyll a and b, and carotenoid contents; decreased MDA content; increased total soluble protein levels; SOD, CAT and G-POX activities increase; decrease of DHA damage | [61] |
Cd + Cr + Pb | Irrigation with contaminated wastewater | 3.1 mg kg−1 + 39.5 mg kg−1 + 14.4 mg kg−1 | 60 mg L−1; not stated | Helianthus annuus L. | Foliar spray: 25 and 45 days after sowing | Improved plant height, leaf area and seed yield; increased proline content; Increased oil yield; decreased Cd, Pb and Cr content in plants; decreased Cr and Pb soil bioavailability | [174] |
Cd + Pb | CdSO4 | 1 mg L−1 + Pb(NO3)2; 100 mg L−1 | Polyvinylpyrrolidone coated NPs; 100 mg L−1; HS > 600 nm | Spinaciae oleracea L.; Petroselinum sativum Hoffm.; Coriandrum sativum L. | Hydroponic system (15 days) | Decreased Cd content in shoots and of Pb in roots of cilantro; decreased Cd and Pb content in parley and spinach roots; increased Fe content in parsley and spinach; increased Zn content in all species | [173] |
As | NaAsO2 | 2 mg L−1 | 10, 20, 50, 100, 200 mg L−1; PS 20–30 nm | Oryza sativa L. | Germination and seedling growth in petri dishes | The lowest doses enhanced seedling length and the pigment content, and stimulated the antioxidant response by increasing the activity of SOD and CAT; decreased MDA content and As accumulation and translocation | [146] |
As(V); Na2HAsO4 | 25 µM | 25 µM (2.0345 mg L−1); PS 20 nm | Glycine max L. | Hydroponic system (10 days) | Increased root and shoot dry weight; decreased As content in roots and shoots; decreased ROS (H2O2 and O2−•) and MDA in roots and shoots; enhanced the activity of antioxidant enzymes (SOD, G-POX, CAT, APX, GR); upregulated the expression of defense- and detoxification-encoding genes; increased GSH/GSSH, and AsA, proline and glycine betaine contents | [175] | |
Co | CoCl2 | 300 µM | 500 mg L−1; PS 20 nm | Zea mays L. | Seed priming | Enhanced shoot/root length and biomass; decreased Co bioaccumulation; increased the chlorophyll contents; increased Fv/Fm and gas exchange related parameters, including net CO2 assimilation rate; decreased MDA; stimulated the activity of antioxidant enzymes; promoted essential nutrient uptake; restored the ultrastructure of cell organelles, cell guards and stomatal aperture | [176] |
Cu | CuSO4·5H2O | 100 mg kg−1 | 50 mg L−1; not stated | Solanum lycopersicum L. | Foliar spray at 35 days after sowing | Enhanced plant biomass, length, and leaf area; increased chlorophyll index; promoted the gas exchange, including the net CO2 assimilation rate; induced an antioxidant response, by increasing antioxidant enzyme activity, proline content; decreased ROS and Cu accumulation | [177] |
4. Protective Effects of ZnO and TiO2 against Biotic Stress
4.1. nZnO Potential for Crop Disease Control
NM | Size; Concentrations | Disease Management | Causal Organism | Targeted Plant | Application Method | Outcome | Ref. |
---|---|---|---|---|---|---|---|
nZnO doped with Fe, Mn, Cu or Ni | Not stated; 5, 10 mg L−1 | White spot | Pantoea ananatis | Zea mays L. | Leaf spray | Antibacterial activity (nZnO doped with Fe or Mn); reduced disease progression (all). | [189] |
nZnO | ≤40 nm; 0.01% | Bacterial blight diseases complex | Meloidogyne incógnita + Pseudomonas syringae pv. pisi | Pisum sativum L. | Seed priming; Foliar spray | Antibacterial activity; nematocidal activity Increased plant growth and pigment content; reduced the disease index; reduced galling and nematode populations. | [188] |
nZnO | 16–31 nm; 500 mg kg−1 | Bacterial wilt | Ralstonia solanacearum | Solanum lycopersicum L. | Soil amendment | Enhanced plant growth; decreased MDA content; increased plenylalanine ammonia lyase and POD activity; Increased the richness and diversity of soil microbial communities | [185] |
CuZn@DEG and ZnO@PEG | 35 nm and 18 nm; 50–1400 µg mL−1 | Lettuce drop | Botrytis cinerea; Sclerotinia sclerotiorum | Lactuca sativa L. | Foliar spray | Antifungal activity; reduced the disease index; improved photosynthesis | [193] |
nZnO | 9–32 nm; 18 µg mL−1 | Bacterial wilt | Ralstonia solanacearum | Solanum lycopersicum L. | Soil amendment | Antibacterial activity; stimulated plant growth; reduced bacterial soil population; decreased disease severity | [190] |
nZnO | 23.44 nm; 100, 1500, 3000 mg L−1 | Fungal wilt | Fusarium oxysporum | Solanum lycopersicum | Foliar spray | Antifungal activity; impaired disease development; promoted plant growth | [194] |
nZnO | 56.1–110.0 nm; 16.0 μg mL−1 | Bacterial leaf blight | Xanthomonas oryzae pv. oryzae | Oryza sativa L. | Foliar spray | Antibacterial activity; decreased the percentage disease leaf area; improved plant growth | [183] |
nZnO | 25–450 nm; 7.5 × 10−3 M | Gray mold | Botrytis cinerea | Fragaria × ananassa | Foliar and fruit spay | Antifungal activity; reduced disease incidence; improved crop production; increased fruit shelf-life | [198] |
nZnO | 74.68 nm; 100 μg mL−1 | Mosaic disease | Tobacco mosaic virus | Solanum lycopersicum L. | Foliar spray | Induced systemic acquired resistance (SAR) and reduction of viral accumulation levels and of disease severity; increased plant growth; up-regulated the transcriptional levels of PAL, PR-1, CHS, and POD genes. | [199] |
4.2. nTiO2 Potential for Crop Diseases Control
Size; Concentration | Disease Management | Causal Organism | Targeted Plant | Application Method | Outcome | Ref. |
---|---|---|---|---|---|---|
Not stated; 0.5 g L−1 | Cercospora leaf spot | Cercospora beticola | Beta vulgaris L. | Foliar spray | Antifungal agent; reduced leaf spots; increased growth and yield | [202] |
10–50 nm; 1.6% | Angular leaf spot of cucumber and downy mildew disease | P. syringae pv. lachrymans and Pseudomonas cubensis | Cucumis sativus L. | Foliar spray | Antibacterial activity; decreased leaf lesions; improved photosynthesis and chlorophyll levels | [205] |
20 nm; 0.02–0.0007% | Root-knot | Meloidogyne incognita | Solanum lycopersicum L. | Soil | Nematocidal activity Reduced plant weight, and root and stem length | [207] |
700 × 900 nm; 150 μM | Broad bean stain disease | Broad bean stain virus (BBSV) | Vicia faba L. | Foliar spray | Antiviral activity; reduced stain virus accumulation in leaves; growth improvement | [208] |
Not stated; 1000, 100, and 250 ppm | Tomato psyllid | Bactericera cockerelli | Solanum lycopersicum L. | Foliar spray | Insecticidal effect; increased insect mortality. | [209] |
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Elmer, W.; White, J.C. The future of nanotechnology in plant pathology. Annu. Rev. Phytopathol. 2018, 56, 111–133. [Google Scholar] [CrossRef] [PubMed]
- El Gamal, A.Y.; Tohamy, M.R.; Abou-Zaid, M.I.; Atia, M.M.; El Sayed, T.; Farroh, K.Y. Silver nanoparticles as a viricidal agent to inhibit plant-infecting viruses and disrupt their acquisition and transmission by their aphid vector. Arch. Virol. 2022, 167, 85–97. [Google Scholar] [CrossRef] [PubMed]
- Landa, P. Positive effects of metallic nanoparticles on plants: Overview of involved mechanisms. Plant Physiol. Biochem. 2021, 161, 12–24. [Google Scholar] [CrossRef] [PubMed]
- Sundaria, M.N.; Singh, P.M.; Upreti, R.P.; Chauhan, J.R.P.; Jaiswal, A.J.P.; Kumar, A. Seed priming with iron oxide nanoparticles triggers iron acquisition and biofortification in wheat (Triticum aestivum L.) grains. J. Plant Growth Regul. 2019, 38, 122–131. [Google Scholar] [CrossRef]
- An, J.; Hu, P.; Li, F.; Wu, H.; Shen, Y.; White, J.C.; Tian, X.; Li, Z.; Giraldo, J.P. Emerging investigator series: Molecular mechanisms of plant salinity stress tolerance improvement by seed priming with cerium oxide nanoparticles. Environ. Sci. Nano 2020, 7, 2214–2228. [Google Scholar] [CrossRef]
- Khan, I.; Raza, M.A.; Awan, S.A.; Shah, G.A.; Rizwan, M.; Ali, B.; Tariq, R.; Hassan, M.J.; Alyemeni, M.N.; Brestic, M.; et al. Amelioration of salt induced toxicity in pearl millet by seed priming with silver nanoparticles (AgNPs): The oxidative damage, antioxidant enzymes and ions uptake are major determinants of salt tolerant capacity. Plant Physiol. Biochem. 2020, 156, 221–232. [Google Scholar] [CrossRef]
- Kalwani, M.; Chakdar, H.; Srivastava, A.; Pabbi, S.; Shukla, P. Effects of nanofertilizers on soil and plant-associated microbial communities: Emerging trends and perspectives. Chemosphere 2021, 287, 132107. [Google Scholar] [CrossRef]
- Kumari, B.; Singh, D. A review on multifaceted application of nanoparticles in the field of bioremediation of petroleum hydrocarbons. Ecol. Eng. 2016, 97, 98–105. [Google Scholar] [CrossRef]
- Fajardo, C.; Costa, G.; Nande, M.; Martín, C.; Martín, M.; Sánchez-Fortún, S. Heavy metals immobilization capability of two iron-based nanoparticles (nZVI and Fe3O4): Soil and freshwater bioassays to assess ecotoxicological impact. Sci. Total Environ. 2019, 656, 421–432. [Google Scholar] [CrossRef]
- Peikam, E.N.; Jalali, M. Application of three nanoparticles (Al2O3, SiO2 and TiO2) for metal-contaminated soil remediation (measuring and modeling). Int. J. Environ. Sci. Technol. 2019, 16, 7207–7220. [Google Scholar] [CrossRef]
- Khan, M.N.; Mobin, M.; Abbas, Z.K.; Al-Mutairi, K.; Siddiqui, Z. Role of nanomaterials in plants under challenging environments. Plant Physiol. Biochem. 2017, 110, 194–209. [Google Scholar] [CrossRef]
- Etesami, H.; Fatemi, H.; Rizwan, M. Interactions of nanoparticles and salinity stress at physiological, biochemical and molecular levels in plants: A review. Ecotoxicol. Environ. Saf. 2021, 225, 112769. [Google Scholar] [CrossRef]
- Singh, H.; Sharma, A.; Bhardwaj, S.K.; Arya, S.K.; Bhardwaj, N.; Khatri, M. Recent advances in the applications of nano-agrochemicals for sustainable agricultural development. Environ. Sci. Process. Impacts 2020, 23, 213–239. [Google Scholar] [CrossRef]
- Ahmed, B.; Rizvi, A.; Syed, A.; Jailani, A.; Elgorban, A.M.; Khan, M.S.; Al-Shwaiman, H.A.; Lee, J. Differential bioaccumulations and ecotoxicological impacts of metal-oxide nanoparticles, bulk materials, and metal-ions in cucumbers grown in sandy clay loam soil. Environ. Pollut. 2021, 289, 117854. [Google Scholar] [CrossRef]
- Acharya, A.; Pal, P.K. Agriculture nanotechnology: Translating research outcome to field applications by influencing environmental sustainability. NanoImpact 2020, 19, 100232. [Google Scholar] [CrossRef]
- García-Sánchez, S.; Gala, M.; Žoldák, G. Nanoimpact in plants: Lessons from the transcriptome. Plants 2021, 10, 751. [Google Scholar] [CrossRef]
- Rizwan, M.; Ali, S.; Qayyum, M.F.; Ok, Y.S.; Adrees, M.; Ibrahim, M.; Rehman, M.Z.U.; Farid, M.; Abbas, F. Effect of metal and metal oxide nanoparticles on growth and physiology of globally important food crops: A critical review. J. Hazard. Mater. 2017, 322, 2–16. [Google Scholar] [CrossRef]
- Tripathi, D.K.; Shweta; Singh, S.; Singh, S.; Pandey, R.; Singh, V.P.; Sharma, N.C.; Prasad, S.M.; Dubey, N.K.; Chauhan, D.K. An overview on manufactured nanoparticles in plants: Uptake, translocation, accumulation and phytotoxicity. Plant Physiol. Biochem. 2017, 110, 2–12. [Google Scholar] [CrossRef]
- Zuverza-Mena, N.; Martínez-Fernández, D.; Du, W.; Hernandez-Viezcas, J.A.; Bonilla-Bird, N.; López-Moreno, M.L.; Komárek, M.; Peralta-Videa, J.R.; Gardea-Torresdey, J.L. Exposure of engineered nanomaterials to plants: Insights into the physiological and biochemical responses-A review. Plant Physiol. Biochem. 2017, 110, 236–264. [Google Scholar] [CrossRef] [Green Version]
- Feregrino-Perez, A.A.; Magaña-López, E.; Guzmán, C.; Esquivel, K. A general overview of the benefits and possible negative effects of the nanotechnology in horticulture. Sci. Hortic. 2018, 238, 126–137. [Google Scholar] [CrossRef]
- Shakiba, S.; Astete, C.E.; Paudel, S.; Sabliov, C.M.; Rodrigues, D.F.; Louie, S.M. Emerging investigator series: Polymeric nanocarriers for agricultural applications: Synthesis, characterization, and environmental and biological interactions. Environ. Sci. Nano 2020, 7, 37–67. [Google Scholar] [CrossRef]
- Vega-Vásquez, P.; Mosier, N.S.; Irudayaraj, J. Nanoscale drug delivery systems: From medicine to agriculture. Front. Bioeng. Biotechnol. 2020, 8, 79. [Google Scholar] [CrossRef] [Green Version]
- Camara, M.C.; Campos, E.V.R.; Monteiro, R.A.; Pereira, A.D.E.S.; Proença, P.L.D.F.; Fraceto, L.F. Development of stimuli-responsive nano-based pesticides: Emerging opportunities for agriculture. J. Nanobiotechnol. 2019, 17, 1–19. [Google Scholar] [CrossRef] [Green Version]
- Singh, A.; Tiwari, S.; Pandey, J.; Lata, C.; Singh, I.K. Role of nanoparticles in crop improvement and abiotic stress management. J. Biotechnol. 2021, 337, 57–70. [Google Scholar] [CrossRef]
- Khan, M.; Khan, A.U.; Hasan, M.A.; Yadav, K.K.; Pinto, M.; Malik, N.; Yadav, V.K.; Khan, A.H.; Islam, S.; Sharma, G.K. Agro-nanotechnology as an emerging field: A novel sustainable approach for improving plant growth by reducing biotic stress. Appl. Sci. 2021, 11, 2282. [Google Scholar] [CrossRef]
- Ali, S.; Mehmood, A.; Khan, N. Uptake, translocation, and consequences of nanomaterials on plant growth and stress adaptation. J. Nanomater. 2021, 2021, 1–17. [Google Scholar] [CrossRef]
- Zhao, L.; Lu, L.; Wang, A.; Zhang, H.; Huang, M.; Wu, H.; Xing, B.; Wang, Z.; Ji, R. Nano-biotechnology in agriculture: Use of nanomaterials to promote plant growth and stress tolerance. J. Agric. Food Chem. 2020, 68, 1935–1947. [Google Scholar] [CrossRef]
- Rajput, V.; Minkina, T.; Kumari, A.; Harish; Singh, V.K.; Verma, K.K.; Mandzhieva, S.; Sushkova, S.; Srivastava, S.; Keswani, C. Coping with the challenges of abiotic stress in plants: New dimensions in the field application of nanoparticles. Plants 2021, 10, 1221. [Google Scholar] [CrossRef]
- Raliya, R.; Saharan, V.; Dimkpa, C.; Biswas, P. Nanofertilizer for precision and sustainable agriculture: Current state and future perspectives. J. Agric. Food Chem. 2018, 66, 6487–6503. [Google Scholar] [CrossRef]
- Adisa, I.O.; Pullagurala, V.L.R.; Peralta-Videa, J.R.; Dimkpa, C.O.; Elmer, W.H.; Gardea-Torresdey, J.L.; White, J.C. Recent advances in nano-enabled fertilizers and pesticides: A critical review of mechanisms of action. Environ. Sci. Nano 2019, 6, 2002–2030. [Google Scholar] [CrossRef]
- Zhu, Y.; Xu, F.; Liu, Q.; Chen, M.; Liu, X.; Wang, Y.; Sun, Y.; Zhang, L. Nanomaterials and plants: Positive effects, toxicity and the remediation of metal and metalloid pollution in soil. Sci. Total Environ. 2019, 662, 414–421. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Choudhary, A.; Kaur, H.; Guha, S.; Mehta, S.; Husen, A. Potential Applications of Engineered Nanoparticles in Plant Disease Management: A Critical Update. Chemosphere 2022, 295, 133798. [Google Scholar] [CrossRef] [PubMed]
- Elmer, W.H.; White, J.C. The use of metallic oxide nanoparticles to enhance growth of tomatoes and eggplants in disease infested soil or soilless medium. Environ. Sci. Nano 2016, 3, 1072–1079. [Google Scholar] [CrossRef]
- Cai, L.; Chen, J.; Liu, Z.; Wang, H.; Yang, H.; Ding, W. Magnesium Oxide Nanoparticles: Effective Agricultural Antibacterial Agent Against Ralstonia solanacearum. Front. Microbiol. 2018, 9, 790. [Google Scholar] [CrossRef]
- Kumari, M.; Pandey, S.; Mishra, S.K.; Giri, V.P.; Agarwal, L.; Dwivedi, S.; Pandey, A.K.; Nautiyal, C.S.; Mishra, A. Omics-Based Mechanistic Insight into the Role of Bioengineered Nanoparticles for Biotic Stress Amelioration by Modulating Plant Metabolic Pathways. Front. Bioeng. Biotechnol. 2020, 8, 242. [Google Scholar] [CrossRef]
- Cao, Z.; Stowers, C.; Rossi, L.; Zhang, W.; Lombardini, L.; Ma, X. Physiological effects of cerium oxide nanoparticles on the photosynthesis and water use efficiency of soybean (Glycine max (L.) Merr.). Environ. Sci. Nano 2017, 4, 1086–1094. [Google Scholar] [CrossRef]
- Dimkpa, C.O.; Singh, U.; Bindraban, P.S.; Elmer, W.H.; Gardea-Torresdey, J.L.; White, J.C. Zinc oxide nanoparticles alleviate drought-induced alterations in sorghum performance, nutrient acquisition, and grain fortification. Sci. Total Environ. 2019, 688, 926–934. [Google Scholar] [CrossRef]
- Wang, M.; Chen, L.; Chen, S.; Ma, Y. Alleviation of cadmium-induced root growth inhibition in crop seedlings by nanoparticles. Ecotoxicol. Environ. Saf. 2012, 79, 48–54. [Google Scholar] [CrossRef]
- Alabdallah, N.M.; Hasan, M.; Hammami, I.; Alghamdi, A.I.; Alshehri, D.; Alatawi, H.A. Green synthesized metal oxide nanoparticles mediate growth regulation and physiology of crop plants under drought stress. Plants 2021, 10, 1730. [Google Scholar] [CrossRef]
- Ze, Y.; Liu, C.; Wang, L.; Hong, M.; Hong, F. The regulation of TiO2 nanoparticles on the expression of light-harvesting complex ii and photosynthesis of chloroplasts of Arabidopsis thaliana. Biol. Trace Elem. Res. 2010, 143, 1131–1141. [Google Scholar] [CrossRef]
- Yuan, S.-J.; Chen, J.-J.; Lin, Z.-Q.; Li, W.-W.; Sheng, G.-P.; Yu, H.-Q. Nitrate formation from atmospheric nitrogen and oxygen photocatalysed by nano-sized titanium dioxide. Nat. Commun. 2013, 4, 2249. [Google Scholar] [CrossRef] [Green Version]
- Abdel Latef, A.A.H.; Srivastava, A.K.; El-Sadek, M.S.A.; Kordrostami, M.; Tran, L.S.P. Titanium dioxide nanoparticles improve growth and enhance tolerance of broad bean plants under saline soil conditions. Land Degrad. Dev. 2018, 29, 1065–1073. [Google Scholar] [CrossRef]
- Szymańska, R.; Kołodziej, K.; Ślesak, I.; Zimak-Piekarczyk, P.; Orzechowska, A.; Gabruk, M.; Żądło, A.; Habina-Skrzyniarz, I.; Knap, W.; Burda, K.; et al. Titanium dioxide nanoparticles (100–1000 mg/l) can affect vitamin E response in Arabidopsis thaliana. Environ. Pollut. 2016, 213, 957–965. [Google Scholar] [CrossRef]
- Pejam, F.; Ardebili, Z.O.; Ladan-Moghadam, A.; Danaee, E. Zinc oxide nanoparticles mediated substantial physiological and molecular changes in tomato. PLoS ONE 2021, 16, e0248778. [Google Scholar] [CrossRef]
- Šebesta, M.; Kolenčík, M.; Sunil, B.R.; Illa, R.; Mosnáček, J.; Ingle, A.P.; Urík, M. Field application of ZnO and TiO2 nanoparticles on agricultural plants. Agronomy 2021, 11, 2281. [Google Scholar] [CrossRef]
- Andrejic, G.; Gajic, G.; Prica, M.; Dzeletovic, Z.; Rakic, T. Zinc accumulation, photosynthetic gas exchange, and chlorophyll a fluorescence in Zn-stressed Miscanthus × giganteus plants. Photosynthetica 2018, 56, 1249–1258. [Google Scholar] [CrossRef]
- Siddiqi, K.S.; Husen, A. Plant response to engineered metal oxide nanoparticles. Nanoscale Res. Lett. 2017, 12, 1–18. [Google Scholar] [CrossRef] [Green Version]
- Hezaveh, T.A.; Pourakbar, L.; Rahmani, F.; Alipour, H. Interactive effects of salinity and ZnO nanoparticles on physiological and molecular parameters of rapeseed (Brassica napus L.). Commun. Soil Sci. Plant Anal. 2019, 50, 698–715. [Google Scholar] [CrossRef]
- Zakharova, O.V.; Gusev, A.A. Photocatalytically active zinc oxide and titanium dioxide nanoparticles in clonal micropropagation of plants: Prospects. Nanotechnol. Russ. 2019, 14, 311–324. [Google Scholar] [CrossRef]
- Waani, S.P.T.; Irum, S.; Gul, I.; Yaqoob, K.; Khalid, M.U.; Ali, M.A.; Manzoor, U.; Noor, T.; Ali, S.; Rizwan, M.; et al. TiO2 nanoparticles dose, application method and phosphorous levels influence genotoxicity in Rice (Oryza sativa L.), soil enzymatic activities and plant growth. Ecotoxicol. Environ. Saf. 2021, 213, 111977. [Google Scholar] [CrossRef]
- Silva, S.; de Oliveira, J.M.F.; Dias, M.C.; Silva, A.; Santos, C. Antioxidant mechanisms to counteract TiO2-nanoparticles toxicity in wheat leaves and roots are organ dependent. J. Hazard. Mater. 2019, 380, 120889. [Google Scholar] [CrossRef]
- Tolaymat, T.; Genaidy, A.; Abdelraheem, W.; Dionysiou, D.; Andersen, C. The effects of metallic engineered nanoparticles upon plant systems: An analytic examination of scientific evidence. Sci. Total Environ. 2017, 579, 93–106. [Google Scholar] [CrossRef]
- Hou, J.; Wu, Y.; Li, X.; Wei, B.; Li, S.; Wang, X. Toxic effects of different types of zinc oxide nanoparticles on algae, plants, invertebrates, vertebrates and microorganisms. Chemosphere 2018, 193, 852–860. [Google Scholar] [CrossRef]
- Silva, S.; Craveiro, S.C.; Oliveira, H.; Calado, A.J.; Pinto, R.J.; Silva, A.M.; Santos, C. Wheat chronic exposure to TiO2-nanoparticles: Cyto- and genotoxic approach. Plant Physiol. Biochem. 2017, 121, 89–98. [Google Scholar] [CrossRef]
- Song, C.; Huang, M.; White, J.C.; Zhang, X.; Wang, W.; Sarpong, C.K.; Jamali, Z.H.; Zhang, H.; Zhao, L.; Wang, Y. Metabolic profile and physiological response of cucumber foliar exposed to engineered MoS2 and TiO2 nanoparticles. NanoImpact 2020, 20, 100271. [Google Scholar] [CrossRef]
- Wu, B.; Zhu, L.; Le, X.C. Metabolomics analysis of TiO2 nanoparticles induced toxicological effects on rice (Oryza sativa L.). Environ. Pollut. 2017, 230, 302–310. [Google Scholar] [CrossRef]
- Moghadam, A.V.; Iranbakhsh, A.; Saadatmand, S.; Ebadi, M.; Ardebili, Z.O. New insights into the transcriptional, epigenetic, and physiological responses to zinc oxide nanoparticles in Datura stramonium; potential species for phytoremediation. J. Plant Growth Regul. 2022, 41, 271–281. [Google Scholar] [CrossRef]
- Yusefi-Tanha, E.; Fallah, S.; Rostamnejadi, A.; Pokhrel, L.R. Zinc oxide nanoparticles (ZnONPs) as a novel nanofertilizer: Influence on seed yield and antioxidant defense system in soil grown soybean (Glycine max cv. Kowsar). Sci. Total Environ. 2020, 738, 140240. [Google Scholar] [CrossRef]
- Zoufan, P.; Baroonian, M.; Zargar, B. ZnO nanoparticles-induced oxidative stress in Chenopodium murale L., Zn uptake, and accumulation under hydroponic culture. Environ. Sci. Pollut. Res. 2020, 27, 11066–11078. [Google Scholar] [CrossRef]
- Wang, X.; Li, Q.Q.; Pei, Z.M.; Wang, S. Effects of zinc oxide nanoparticles on the growth, photosynthetic traits, and antioxidative enzymes in tomato plants. Biol. Plant. 2018, 62, 801–808. [Google Scholar] [CrossRef]
- Venkatachalam, P.; Jayaraj, M.; Manikandan, R.; Geetha, N.; Rene, E.R.; Sharma, N.; Sahi, S. Zinc oxide nanoparticles (ZnONPs) alleviate heavy metal-induced toxicity in Leucaena leucocephala seedlings: A physiochemical analysis. Plant Physiol. Biochem. 2017, 110, 59–69. [Google Scholar] [CrossRef] [PubMed]
- García-Gómez, C.; Obrador, A.; González, D.; Babín, M.; Fernández, M.D. Comparative study of the phytotoxicity of ZnO nanoparticles and Zn accumulation in nine crops grown in a calcareous soil and an acidic soil. Sci. Total Environ. 2018, 644, 770–780. [Google Scholar] [CrossRef] [PubMed]
- Silva, S.; Oliveira, H.; Silva, A.M.S.; Santos, C. The cytotoxic targets of anatase or rutile plus anatase nanoparticles depend on the plant species. Biol. Plant 2017, 61, 717–725. [Google Scholar] [CrossRef]
- Azarin, K.; Usatov, A.; Minkina, T.; Plotnikov, A.; Kasyanova, A.; Fedorenko, A.; Duplii, N.; Vechkanov, E.; Rajput, V.D.; Mandzhieva, S.; et al. Effects of ZnO nanoparticles and its bulk form on growth, antioxidant defense system and expression of oxidative stress related genes in Hordeum vulgare L. Chemosphere 2021, 287, 132167. [Google Scholar] [CrossRef] [PubMed]
- Chemingui, H.; Smiri, M.; Missaoui, T.; Hafiane, A. Zinc oxide nanoparticles induced oxidative stress and changes in the photosynthetic apparatus in fenugreek (Trigonella foenum graecum L.). Bull. Environ. Contam. Toxicol. 2019, 102, 477–485. [Google Scholar] [CrossRef]
- Chen, J.; Dou, R.; Yang, Z.; You, T.; Gao, X.; Wang, L. Phytotoxicity and bioaccumulation of zinc oxide nanoparticles in rice (Oryza sativa L.). Plant Physiol. Biochem. 2018, 130, 604–612. [Google Scholar] [CrossRef]
- García-Gómez, C.; Obrador, A.; González, D.; Babín, M.; Fernández, M.D. Comparative effect of ZnO NPs, ZnO bulk and ZnSO4 in the antioxidant defences of two plant species growing in two agricultural soils under greenhouse conditions. Sci. Total Environ. 2017, 589, 11–24. [Google Scholar] [CrossRef]
- Silva, S.; Oliveira, H.; Craveiro, S.C.; Calado, A.J.; Santos, C. Pure anatase and rutile + anatase nanoparticles differently affect wheat seedlings. Chemosphere 2016, 151, 68–75. [Google Scholar] [CrossRef]
- Intergovernmental Panel on Climate Change (IPCC). Climate Change 2014 Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects; Field, C.B., Ed.; Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2014. [Google Scholar]
- Holman, I.; Hess, T.; Rey, D.; Knox, J. A Multi-level framework for adaptation to drought within temperate agriculture. Front. Environ. Sci. 2021, 8, 9871. [Google Scholar] [CrossRef]
- Naumann, G.; Cammalleri, C.; Mentaschi, L.; Feyen, L. Increased economic drought impacts in Europe with anthropogenic warming. Nat. Clim. Chang. 2021, 11, 485–491. [Google Scholar] [CrossRef]
- Ma, Y.; Dias, M.C.; Freitas, H. Drought and salinity stress responses and microbe-induced tolerance in plants. Front. Plant Sci. 2020, 11, 591911. [Google Scholar] [CrossRef]
- Hussain, A.; Ali, S.; Rizwan, M.; Zia ur Rehman, M.Z.; Javed, M.R.; Imran, M.; Chatha, S.A.S.; Nazir, R. Zinc oxide nanoparticles alter the wheat physiological response and reduce the cadmium uptake by plants. Environ. Pollut. 2018, 242, 1518–1526. [Google Scholar] [CrossRef]
- Mohammadi, R.; Maali-Amiri, R.; Mantri, N. Effect of TiO2 nanoparticles on oxidative damage and antioxidant defense systems in chickpea seedlings during cold stress. Russ. J. Plant Physiol. 2014, 61, 768–775. [Google Scholar] [CrossRef]
- Mohammadi, R.; Maali-Amiri, R.; Abbasi, A. Effect of TiO2 Nanoparticles on chickpea response to cold stress. Biol. Trace Elem. Res. 2013, 152, 403–410. [Google Scholar] [CrossRef]
- Qi, M.; Liu, Y.; Li, T. Nano-TiO2 Improve the photosynthesis of tomato leaves under mild heat stress. Biol. Trace Elem. Res. 2013, 156, 323–328. [Google Scholar] [CrossRef]
- Hassan, N.S.; El Din, T.A.S.; Hendawey, M.H.; Borai, I.H.; Mahdi, A.A. Magnetite and zinc oxide nanoparticles alleviated heat stress in wheat plants. Curr. Nanomater. 2018, 3, 32–43. [Google Scholar] [CrossRef]
- Alkharabsheh, H.M.; Seleiman, M.F.; Hewedy, O.A.; Battaglia, M.L.; Jalal, R.S.; Alhammad, B.A.; Schillaci, C.; Ali, N.; Al-Doss, A. Field crop responses and management strategies to mitigate soil salinity in modern agriculture: A review. Agronomy 2021, 11, 2299. [Google Scholar] [CrossRef]
- Etesami, H.; Noori, F. Soil salinity as a challenge for sustainable agriculture and bacterial-mediated alleviation of salinity stress in crop plants. In Saline Soil-Based Agriculture by Halotolerant Microorganisms; Springer Science and Business Media LLC: Berlin/Heidelberg, Germany, 2019; pp. 1–22. [Google Scholar]
- Ghani, M.I.; Saleem, S.; Rather, S.A.; Rehmani, M.S.; Alamri, S.; Rajput, V.D.; Kalaji, H.M.; Saleem, N.; Sial, T.A.; Liu, M. Foliar application of zinc oxide nanoparticles: An effective strategy to mitigate drought stress in cucumber seedling by modulating antioxidant defense system and osmolytes accumulation. Chemosphere 2021, 289, 133202. [Google Scholar] [CrossRef]
- Mustafa, H.; Ilyas, N.; Akhtar, N.; Raja, N.I.; Zainab, T.; Shah, T.; Ahmad, A.; Ahmad, P. Biosynthesis and characterization of titanium dioxide nanoparticles and its effects along with calcium phosphate on physicochemical attributes of wheat under drought stress. Ecotoxicol. Environ. Saf. 2021, 223, 112519. [Google Scholar] [CrossRef]
- Faraji, J.; Sepehri, A. Exogenous nitric oxide improves the protective effects of TiO2 nanoparticles on growth, antioxidant system, and photosynthetic performance of wheat seedlings under drought stress. J. Soil Sci. Plant Nutr. 2020, 20, 703–714. [Google Scholar] [CrossRef]
- Faraji, J.; Sepehri, A. Ameliorative effects of TiO2 nanoparticles and sodium nitroprusside on seed germination and seedling growth of wheat under PEG-stimulated drought stress. J. Seed Sci. 2019, 41, 309–317. [Google Scholar] [CrossRef]
- Karvar, M.; Azari, A.; Rahimi, A.; Maddah-Hosseini, S.; Ahmadi-Lahijani, M.J. Titanium dioxide nanoparticles (TiO2-NPs) enhance drought tolerance and grain yield of sweet corn (Zea mays L.) under deficit irrigation regimes. Acta Physiol. Plant 2021, 44, 1–14. [Google Scholar] [CrossRef]
- Kiapour, H.; Moaveni, P.; Habibi, D.; Sani, B. Evaluation of the application of gibberellic acid and titanium dioxide nanoparticles. Inter. J. Agron. Agric. Res. 2015, 6, 138–150. [Google Scholar]
- Sheikhalipour, M.; Esmaielpour, B.; Gohari, G.; Haghighi, M.; Jafari, H.; Farhadi, H.; Kulak, M.; Kalisz, A. Salt stress mitigation via the foliar application of chitosan-functionalized selenium and anatase titanium dioxide nanoparticles in stevia (Stevia rebaudiana Bertoni). Molecules 2021, 26, 4090. [Google Scholar] [CrossRef]
- Karami, A.; Sepehri, A. Nano titanium dioxide and nitric oxide alleviate salt induced changes in seedling growth, physiological and photosynthesis attributes of barley. Zemdirb.-Agric. 2018, 105, 123–132. [Google Scholar] [CrossRef] [Green Version]
- Aghdam, M.T.B.; Mohammadi, H.; Ghorbanpour, M. Effects of nanoparticulate anatase titanium dioxide on physiological and biochemical performance of Linum usitatissimum (Linaceae) under well-watered and drought stress conditions. Braz. J. Bot. 2016, 39, 139–146. [Google Scholar] [CrossRef]
- Latef, A.A.H.A.; Abu Alhmad, M.F.; Abdelfattah, K.E. The possible roles of priming with ZnO Nanoparticles in mitigation of salinity stress in lupine (Lupinus termis) plants. J. Plant Growth Regul. 2016, 36, 60–70. [Google Scholar] [CrossRef]
- Semida, W.; Abdelkhalik, A.; Mohamed, G.; El-Mageed, T.A.; El-Mageed, S.A.; Rady, M.; Ali, E. Foliar application of zinc oxide nanoparticles promotes drought stress tolerance in eggplant (Solanum melongena L.). Plants 2021, 10, 421. [Google Scholar] [CrossRef]
- Taran, N.; Storozhenko, V.; Svietlova, N.; Batsmanova, L.; Shvartau, V.; Kovalenko, M. Effect of zinc and copper nanoparticles on drought resistance of wheat seedlings. Nanoscale Res. Lett. 2017, 12, 60. [Google Scholar] [CrossRef] [Green Version]
- Dimkpa, C.O.; Andrews, J.; Sanabria, J.; Bindraban, P.S.; Singh, U.; Elmer, W.H.; Gardea-Torresdey, J.L.; White, J.C. Interactive effects of drought, organic fertilizer, and zinc oxide nanoscale and bulk particles on wheat performance and grain nutrient accumulation. Sci. Total Environ. 2020, 722, 137808. [Google Scholar] [CrossRef] [PubMed]
- Sun, L.; Song, F.; Zhu, X.; Liu, S.; Liu, F.; Wang, Y.; Li, X. Nano-ZnO alleviates drought stress via modulating the plant water use and carbohydrate metabolism in maize. Arch. Agron. Soil Sci. 2021, 67, 245–259. [Google Scholar] [CrossRef]
- Faizan, M.; Bhat, J.A.; Chen, C.; Alyemeni, M.N.; Wijaya, L.; Ahmad, P.; Yu, F. Zinc oxide nanoparticles (ZnO-NPs) induce salt tolerance by improving the antioxidant system and photosynthetic machinery in tomato. Plant Physiol. Biochem. 2021, 161, 122–130. [Google Scholar] [CrossRef]
- Singh, P.; Arif, Y.; Siddiqui, H.; Sami, F.; Zaidi, R.; Azam, A.; Alam, P.; Hayat, S. Nanoparticles enhances the salinity toxicity tolerance in Linum usitatissimum L. by modulating the antioxidative enzymes, photosynthetic efficiency, redox status and cellular damage. Ecotoxicol. Environ. Saf. 2021, 213, 112020. [Google Scholar] [CrossRef]
- Mahmoud, A.W.M.; Abdeldaym, E.A.; Abdelaziz, S.M.; El-Sawy, M.B.I.; Mottaleb, S.A. Synergetic effects of zinc, boron, silicon, and zeolite nanoparticles on confer tolerance in potato plants subjected to salinity. Agronomy 2019, 10, 19. [Google Scholar] [CrossRef] [Green Version]
- Elsheery, N.I.; Helaly, M.N.; El-Hoseiny, H.M.; Alam-Eldein, S.M. Zinc oxide and silicone nanoparticles to improve the resistance mechanism and annual productivity of salt-stressed mango trees. Agronomy 2020, 10, 558. [Google Scholar] [CrossRef]
- Farouk, S.; Al-Amri, S.M. Exogenous zinc forms counteract nacl-induced damage by regulating the antioxidant system, osmotic adjustment substances, and ions in canola (Brassica napus L. cv. Pactol) plants. J. Soil Sci. Plant Nutr. 2019, 19, 887–899. [Google Scholar] [CrossRef]
- El-Badri, A.M.; Batool, M.; Mohamed, I.A.; Khatab, A.; Sherif, A.; Wang, Z.K.; Salah, A.; Nishawy, E.; Ayaad, M.; Kuai, J.; et al. Modulation of salinity impact on early seedling stage via nano-priming application of Zinc oxide on rapeseed (Brassica napus, L.). Plant Physiol. Biochem. 2021, 166, 376–392. [Google Scholar] [CrossRef]
- Banerjee, A.; Roychoudhury, A. Explicating the cross-talks between nanoparticles, signaling pathways and nutrient homeostasis during environmental stresses and xenobiotic toxicity for sustainable cultivation of cereals. Chemosphere 2021, 286, 131827. [Google Scholar] [CrossRef]
- Ennaji, W.; Barakat, A.; El Baghdadi, M.; Rais, J. Heavy metal contamination in agricultural soil and ecological risk assessment in the northeast area of Tadla plain, Morocco. J. Sediment. Environ. 2020, 5, 307–320. [Google Scholar] [CrossRef]
- Kim, H.; Lee, M.; Lee, J.-H.; Kim, K.-H.; Owens, G.; Kim, K.-R. Distribution and extent of heavy metal(loid) contamination in agricultural soils as affected by industrial activity. Appl. Biol. Chem. 2020, 63, 1–8. [Google Scholar] [CrossRef]
- Ali, H.; Khan, E. Trophic transfer, bioaccumulation, and biomagnification of non-essential hazardous heavy metals and metalloids in food chains/webs—Concepts and implications for wildlife and human health. Hum. Ecol. Risk Assess. Int. J. 2019, 25, 1353–1376. [Google Scholar] [CrossRef]
- Ma, Y.; He, X.; Qi, K.; Wang, T.; Qi, Y.; Cui, L.; Wang, F.; Song, M. Effects of environmental contaminants on fertility and reproductive health. J. Environ. Sci. 2019, 77, 210–217. [Google Scholar] [CrossRef]
- Jaishankar, M.; Tseten, T.; Anbalagan, N.; Mathew, B.B.; Beeregowda, K.N. Toxicity, mechanism and health effects of some heavy metals. Interdiscip. Toxicol. 2014, 7, 60–72. [Google Scholar] [CrossRef] [Green Version]
- Engwa, G.A.; Ferdinand, P.U.; Nwalo, F.N.; Unachukwu, M.N. Mechanism and health effects of heavy metal toxicity in humans. In Poisoning in the Modern World—New Tricks for an Old Dog? Karcioglu, O., Arslan, B., Eds.; IntechOpen: London, UK, 2019. [Google Scholar] [CrossRef] [Green Version]
- Shahid, M.; Shamshad, S.; Rafiq, M.; Khalid, S.; Bibi, I.; Niazi, N.K.; Dumat, C.; Rashid, M.I. Chromium speciation, bioavailability, uptake, toxicity and detoxification in soil-plant system: A review. Chemosphere 2017, 178, 513–533. [Google Scholar] [CrossRef]
- Srivastava, D.; Tiwari, M.; Dutta, P.; Singh, P.; Chawda, K.; Kumari, M.; Chakrabarty, D. Chromium stress in plants: Toxicity, tolerance and phytoremediation. Sustainability 2021, 13, 4629. [Google Scholar] [CrossRef]
- Hafiz, M.F.; Ma, L. Effect of chromium on seed germination, early seedling growth and chromium accumulation in tomato genotypes. Acta Physiol. Plant. 2021, 43, 1–11. [Google Scholar] [CrossRef]
- Singh, D.; Sharma, N.L.; Singh, C.K.; Yerramilli, V.; Narayan, R.; Sarkar, S.K.; Singh, I. Chromium (VI)-induced alterations in physio-chemical parameters, yield, and yield characteristics in two cultivars of mungbean (Vigna radiata L.). Front. Plant Sci. 2021, 12, 5129. [Google Scholar] [CrossRef]
- Singh, D.; Sharma, N.L.; Singh, C.K.; Sarkar, S.K.; Singh, I.; Dotaniya, M.L. Effect of chromium (VI) toxicity on morpho-physiological characteristics, yield, and yield components of two chickpea (Cicer arietinum L.) varieties. PLoS ONE 2020, 15, e0243032. [Google Scholar] [CrossRef]
- Mathur, S.; Kalaji, H.M.; Jajoo, A. Investigation of deleterious effects of chromium phytotoxicity and photosynthesis in wheat plant. Photosynthetica 2016, 54, 185–192. [Google Scholar] [CrossRef] [Green Version]
- Tripathi, A.; Tripathi, D.K.; Chauhan, D.K.; Kumar, N. Chromium (VI)-induced phytotoxicity in river catchment agriculture: Evidence from physiological, biochemical and anatomical alterations in Cucumis sativus (L.) used as model species. Chem. Ecol. 2016, 32, 12–33. [Google Scholar] [CrossRef]
- Sharma, A.; Kapoor, D.; Wang, J.; Shahzad, B.; Kumar, V.; Bali, A.S.; Jasrotia, S.; Zheng, B.; Yuan, H.; Yan, D. Chromium bioaccumulation and its impacts on plants: An overview. Plants 2020, 9, 100. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kabir, A.H. Biochemical and molecular changes in rice seedlings (Oryza sativa L.) to cope with chromium stress. Plant Biol. 2016, 18, 710–719. [Google Scholar] [CrossRef] [PubMed]
- Daud, M.K.; Ali, S.; Variath, M.T.; Khan, M.; Jamil, M.; Ahmad, M.; Zhu, S.J. Chromium (VI)-induced leaf-based differential physiological, metabolic and microstructural changes in two transgenic cotton cultivars (J208, Z905) and their hybrid line (ZD14). J. Plant Growth Regul. 2021, 41, 391–403. [Google Scholar] [CrossRef]
- Rodriguez, E.; Azevedo, R.; Fernandes, P.; Santos, C. Cr(VI) induces dna damage, cell cycle arrest and polyploidization: A flow cytometric and comet assay study in Pisum sativum. Chem. Res. Toxicol. 2011, 24, 1040–1047. [Google Scholar] [CrossRef] [PubMed]
- Küpper, H.; Parameswaran, A.; Leitenmaier, B.; Trtílek, M.; Šetlík, I. Cadmium-induced inhibition of photosynthesis and long-term acclimation to cadmium stress in the hyperaccumulator Thlaspi caerulescens. New Phytol. 2007, 175, 655–674. [Google Scholar] [CrossRef] [PubMed]
- Mobin, M.; Khan, N.A. Photosynthetic activity, pigment composition and antioxidative response of two mustard (Brassica juncea) cultivars differing in photosynthetic capacity subjected to cadmium stress. J. Plant Physiol. 2007, 164, 601–610. [Google Scholar] [CrossRef] [PubMed]
- Sabir, A.; Naveed, M.; Bashir, M.A.; Hussain, A.; Mustafa, A.; Zahir, Z.A.; Kamran, M.; Ditta, A.; Núñez-Delgado, A.; Saeed, Q.; et al. Cadmium mediated phytotoxic impacts in Brassica napus: Managing growth, physiological and oxidative disturbances through combined use of biochar and Enterobacter sp. MN17. J. Environ. Manag. 2020, 265, 110522. [Google Scholar] [CrossRef]
- Monteiro, C.; Santos, C.; Pinho, S.; Oliveira, H.; Pedrosa, T.; Dias, M.C. Cadmium-Induced Cyto- and Genotoxicity are Organ-Dependent in Lettuce. Chem. Res. Toxicol. 2012, 25, 1423–1434. [Google Scholar] [CrossRef]
- Ahmad, M.S.A.; Ashraf, M.; Tabassam, Q.; Hussain, M.; Firdous, H. Lead (Pb)-induced regulation of growth, photosynthesis, and mineral nutrition in maize (Zea mays L.) plants at early growth stages. Biol. Trace Elem. Res. 2011, 144, 1229–1239. [Google Scholar] [CrossRef]
- Pourrut, B.; Shahid, M.; Dumat, C.; Winterton, P.; Pinelli, E. Lead uptake, toxicity, and detoxification in plants. In Reviews of Environmental Contamination and Toxicology; Whitacre, D., Ed.; Continuation of Residue Reviews; Springer: New York, NY, USA, 2011; Volume 213. [Google Scholar] [CrossRef] [Green Version]
- Silva, S.; Pinto, G.; Santos, C. Low doses of Pb affected Lactuca sativa photosynthetic performance. Photosynthetica 2017, 55, 50–57. [Google Scholar] [CrossRef]
- Rodriguez, E.; Santos, M.D.C.; Azevedo, R.; Correia, C.; Moutinho-Pereira, J.; de Oliveira, J.M.F.; Dias, M.C. Photosynthesis light-independent reactions are sensitive biomarkers to monitor lead phytotoxicity in a Pb-tolerant Pisum sativum cultivar. Environ. Sci. Pollut. Res. 2014, 22, 574–585. [Google Scholar] [CrossRef]
- Pourrut, B.; Jean, S.; Silvestre, J.; Pinelli, E. Lead-induced DNA damage in Vicia faba root cells: Potential involvement of oxidative stress. Mutat. Res. Toxicol. Environ. Mutagen. 2011, 726, 123–128. [Google Scholar] [CrossRef] [Green Version]
- Silva, S.; Silva, P.; Oliveira, H.; Gaivão, I.; Matos, M.; Pinto-Carnide, O.; Santos, C. Pb low doses induced genotoxicity in Lactuca sativa plants. Plant Physiol. Biochem. 2017, 112, 109–116. [Google Scholar] [CrossRef]
- López-Orenes, A.; Santos, C.; Dias, M.C.; Oliveira, H.; Ferrer, M.Á.; Calderón, A.A.; Silva, S. Genotoxicity and cytotoxicity induced in Zygophyllum fabago by low Pb doses depends on the population’s redox plasticity. Horticulturae 2021, 7, 455. [Google Scholar] [CrossRef]
- Dias, M.C.; Mariz-Ponte, N.; Santos, C. Lead induces oxidative stress in Pisum sativum plants and changes the levels of phytohormones with antioxidant role. Plant Physiol. Biochem. 2019, 137, 121–129. [Google Scholar] [CrossRef]
- Silva, S. Aluminium Toxicity Targets in Plants. J. Bot. 2012, 2012, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Lei, Y.; Riaz, M.; Liu, J.; Min, Y.; Jiang, C.C. The aluminum tolerance and detoxification mechanisms in plants; recent advances and prospects. Crit. Rev. Environ. Sci. Technol. 2020, 52, 1491–1527. [Google Scholar]
- Silva, S.; Santos, C.; Matos, M.; Pinto-Carnide, O. Al toxicity mechanism in tolerant and sensitive rye genotypes. Environ. Exp. Bot. 2012, 75, 89–97. [Google Scholar] [CrossRef]
- Silva, S.; Rodriguez, E.; Pinto-Carnide, O.; Martins-Lopes, P.; Matos, M.; Guedes-Pinto, H.; Santos, C. Zonal responses of sensitive vs. tolerant wheat roots during Al exposure and recovery. J. Plant Physiol. 2012, 169, 760–769. [Google Scholar] [CrossRef]
- Lin, Y.-H.; Chen, J.-H. Effects of aluminum on the cell morphology in the root apices of two pineapples with different Al-resistance characteristics. Soil Sci. Plant Nutr. 2019, 65, 353–357. [Google Scholar] [CrossRef]
- Zeng, C.-Q.; Liu, W.-X.; Hao, J.-Y.; Fan, D.-N.; Chen, L.-M.; Xu, H.-N.; Li, K.-Z. Measuring the expression and activity of the CAT enzyme to determine Al resistance in soybean. Plant Physiol. Biochem. 2019, 144, 254–263. [Google Scholar] [CrossRef]
- Chauhan, D.K.; Yadav, V.; Vaculík, M.; Gassmann, W.; Pike, S.; Arif, N.; Singh, V.P.; Deshmukh, R.; Sahi, S.; Tripathi, D.K. Aluminum toxicity and aluminum stress-induced physiological tolerance responses in higher plants. Crit. Rev. Biotechnol. 2021, 41, 715–730. [Google Scholar] [CrossRef]
- Silva, S.; Pinto-Carnide, O.; Martins-Lopes, P.; Matos, M.; Guedes-Pinto, H.; Santos, C. Differential aluminium changes on nutrient accumulation and root differentiation in an Al sensitive vs. tolerant wheat. Environ. Exp. Bot. 2010, 68, 91–98. [Google Scholar] [CrossRef]
- Fan, Y.; Ouyang, Y.; Pan, Y.; Hong, T.; Wu, C.; Lin, H. Effect of aluminum stress on the absorption and transportation of aluminum and macronutrients in roots and leaves of Aleurites montana. For. Ecol. Manag. 2020, 458, 1–9. [Google Scholar] [CrossRef]
- Cárcamo, M.P.; Reyes-Díaz, M.; Rengel, Z.; Alberdi, M.; Omena-Garcia, R.P.; Nunes-Nesi, A.; Inostroza-Blancheteau, C. Aluminum stress differentially affects physiological performance and metabolic compounds in cultivars of highbush blueberry. Sci. Rep. 2019, 9, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Silva, S.; Pinto, G.; Dias, M.C.; Correia, C.M.; Moutinho-Pereira, J.; Pinto-Carnide, O.; Santos, C. Aluminium long-term stress differently affects photosynthesis in rye genotypes. Plant Physiol. Biochem. 2012, 54, 105–112. [Google Scholar] [CrossRef]
- Gavassi, M.A.; Dodd, I.C.; Puértolas, J.; Silva, G.S.; Carvalho, R.F.; Habermann, G. Aluminum-induced stomatal closure is related to low root hydraulic conductance and high ABA accumulation. Environ. Exp. Bot. 2020, 179, 104233. [Google Scholar] [CrossRef]
- Yamamoto, Y. Aluminum toxicity in plant cells: Mechanisms of cell death and inhibition of cell elongation. Soil Sci. Plant Nutr. 2019, 65, 41–55. [Google Scholar] [CrossRef] [Green Version]
- Silva, S.; Pinto, G.; Correia, B.; Pinto-Carnide, O.; Santos, C. Rye oxidative stress under long term Al exposure. J. Plant Physiol. 2013, 170, 879–889. [Google Scholar] [CrossRef] [PubMed]
- Sun, C.; Liu, L.; Zhou, W.; Lu, L.; Jin, C.; Lin, X. Aluminum induces distinct changes in the metabolism of reactive oxygen and nitrogen species in the roots of two wheat genotypes with different aluminum resistance. J. Agric. Food Chem. 2017, 65, 9419–9427. [Google Scholar] [CrossRef] [PubMed]
- Ranjan, A.; Sinha, R.; Sharma, T.R.; Pattanayak, A.; Singh, A.K. Alleviating aluminum toxicity in plants: Implications of reactive oxygen species signaling and crosstalk with other signaling pathways. Physiol. Plant. 2021, 173, 1765–1784. [Google Scholar] [CrossRef]
- Wu, F.; Fang, Q.; Yan, S.; Pan, L.; Tang, X.; Ye, W. Effects of zinc oxide nanoparticles on arsenic stress in rice (Oryza sativa L.): Germination, early growth, and arsenic uptake. Environ. Sci. Pollut. Res. 2020, 27, 26974–26981. [Google Scholar] [CrossRef]
- Bali, A.S.; Sidhu, G.P.S. Arsenic acquisition, toxicity and tolerance in plants—From physiology to remediation: A review. Chemosphere 2021, 283, 131050. [Google Scholar] [CrossRef]
- Mir, A.R.; Alam, P.; Hayat, S. Effect of different levels of soil applied copper on the morpho-physiological, photochemical, and antioxidant system of Brassica juncea. J. Soil Sci. Plant Nutr. 2021, 21, 3477–3492. [Google Scholar] [CrossRef]
- Ambrosini, V.G.; Rosa, D.J.; de Melo, G.W.B.; Zalamena, J.; Cella, C.; Simão, D.G.; da Silva, L.S.; dos Santos, H.P.; Toselli, M.; Tiecher, T.L.; et al. High copper content in vineyard soils promotes modifications in photosynthetic parameters and morphological changes in the root system of ‘Red Niagara’ plantlets. Plant Physiol. Biochem. 2018, 128, 89–98. [Google Scholar] [CrossRef] [Green Version]
- Girotto, E.; Ceretta, C.A.; Rossato, L.V.; Farias, J.G.; Brunetto, G.; Miotto, A.; Tiecher, T.L.; de Conti, L.; Lourenzi, C.R.; Schmatz, R.; et al. Biochemical changes in black oat (avena strigosa schreb) cultivated in vineyard soils contaminated with copper. Plant Physiol. Biochem. 2016, 103, 199–207. [Google Scholar] [CrossRef]
- Rastogi, A.; Zivcak, M.; Sytar, O.; Kalaji, H.M.; He, X.; Mbarki, S.; Brestic, M. Impact of metal and metal oxide nanoparticles on plant: A critical review. Front. Chem. 2017, 5, 78. [Google Scholar] [CrossRef] [Green Version]
- Zhang, W.; Long, J.; Geng, J.; Li, J.; Wei, Z. Impact of titanium dioxide nanoparticles on Cd phytotoxicity and bioaccumulation in rice (Oryza sativa L.). Int. J. Environ. Res. Public Health 2020, 17, 2979. [Google Scholar] [CrossRef]
- Zand, A.D.; Tabrizi, A.M.; Heir, A.V. Application of titanium dioxide nanoparticles to promote phytoremediation of Cd-polluted soil: Contribution of PGPR inoculation. Bioremediat. J. 2020, 24, 171–189. [Google Scholar] [CrossRef]
- Singh, J.; Lee, B.K. Influence of nano-TiO2 particles on the bioaccumulation of Cd in soybean plants (Glycine max): A possible mechanism for the removal of Cd from the contaminated soil. J. Environ. Manag. 2016, 170, 88–96. [Google Scholar] [CrossRef]
- Mariz-Ponte, N.; Dias, C.M.; Silva, A.M.; Santos, C.; Silva, S. Low levels of TiO2-nanoparticles interact antagonistically with Al and Pb alleviating their toxicity. Plant Physiol. Biochem. 2021, 167, 1–10. [Google Scholar] [CrossRef]
- Zand, A.D.; Tabrizi, A.M.; Heir, A.V. Co-application of biochar and titanium dioxide nanoparticles to promote remediation of antimony from soil by Sorghum bicolor: Metal uptake and plant response. Heliyon 2020, 6, e04669. [Google Scholar] [CrossRef]
- Lian, J.; Zhao, L.; Wu, J.; Xiong, H.; Bao, Y.; Zeb, A.; Tang, J.; Liu, W. Foliar spray of TiO2 nanoparticles prevails over root application in reducing Cd accumulation and mitigating Cd-induced phytotoxicity in maize (Zea mays L.). Chemosphere 2019, 239, 124794. [Google Scholar] [CrossRef] [PubMed]
- Ji, Y.; Zhou, Y.; Ma, C.; Feng, Y.; Hao, Y.; Rui, Y.; Wu, W.; Gui, X.; Le, V.N.; Han, Y.; et al. Jointed toxicity of TiO2 NPs and Cd to rice seedlings: NPs alleviated Cd toxicity and Cd promoted NPs uptake. Plant Physiol. Biochem. 2017, 110, 82–93. [Google Scholar] [CrossRef] [PubMed]
- Xiao, Y.; Du, Y.; Xiao, Y.; Zhang, X.; Wu, J.; Yang, G.; He, Y.; Zhou, Y.; Peijnenburg, W.J.; Luo, L. Elucidating the effects of TiO2 nanoparticles on the toxicity and accumulation of Cu in soybean plants (Glycine max L.). Ecotoxicol. Environ. Saf. 2021, 219, 112312. [Google Scholar] [CrossRef] [PubMed]
- Ma, C.; Liu, H.; Chen, G.; Zhao, Q.; Eitzer, B.; Wang, Z.; Cai, W.; Newman, L.A.; White, J.C.; Dhankher, O.P.; et al. Effects of titanium oxide nanoparticles on tetracycline accumulation and toxicity in Oryza sativa (L.). Environ. Sci. Nano 2017, 4, 1827–1839. [Google Scholar] [CrossRef]
- Liu, H.; Ma, C.; Chen, G.; White, J.C.; Wang, Z.; Xing, B.; Dhankher, O.P. Titanium dioxide nanoparticles alleviate tetracycline toxicity to Arabidopsis thaliana (L.). ACS Sustain. Chem. Eng. 2017, 5, 3204–3213. [Google Scholar] [CrossRef]
- Ogunkunle, C.O.; Odulaja, D.A.; Akande, F.O.; Varun, M.; Vishwakarma, V.; Fatoba, P.O. Cadmium toxicity in cowpea plant: Effect of foliar intervention of nano-TiO2 on tissue Cd bioaccumulation, stress enzymes and potential dietary health risk. J. Biotechnol. 2020, 310, 54–61. [Google Scholar] [CrossRef]
- Rizwan, M.; Ali, S.; Rehman, M.Z.U.; Malik, S.; Adrees, M.; Qayyum, M.F.; Alamri, S.A.; Alyemeni, M.N.; Ahmad, P. Effect of foliar applications of silicon and titanium dioxide nanoparticles on growth, oxidative stress, and cadmium accumulation by rice (Oryza sativa). Acta Physiol. Plant 2019, 41, 1–12. [Google Scholar]
- Sardar, R.; Ahmed, S.; Yasin, N.A. Titanium dioxide nanoparticles mitigate cadmium toxicity in Coriandrum sativum L. through modulating antioxidant system, stress markers and reducing cadmium uptake. Environ. Pollut. 2021, 292, 118373. [Google Scholar] [CrossRef]
- Dai, C.; Shen, H.; Duan, Y.; Liu, S.; Zhou, F.; Wu, D.; Zhong, G.; Javadi, A.; Tu, Y.-J. TiO2 and SiO2 nanoparticles combined with surfactants mitigate the toxicity of Cd2+ to wheat seedlings. Water Air Soil Pollut. 2019, 230, 232. [Google Scholar] [CrossRef]
- Katiyar, P.; Yadu, B.; Korram, J.; Satnami, M.L.; Kumar, M.; Keshavkant, S. Titanium nanoparticles attenuates arsenic toxicity by up-regulating expressions of defensive genes in Vigna radiata L. J. Environ. Sci. 2020, 92, 18–27. [Google Scholar] [CrossRef]
- De, A.K.; Ghosh, A.; Debnath, S.C.; Sarkar, B.; Saha, I.; Adak, M.K. Modulation of physiological responses with TiO2 nano-particle in Azolla pinnata R.Br. under 2,4-D toxicity. Mol. Biol. Rep. 2018, 45, 663–673. [Google Scholar] [CrossRef]
- Faizan, M.; Bhat, J.A.; Hessini, K.; Yu, F.; Ahmad, P. Zinc oxide nanoparticles alleviates the adverse effects of cadmium stress on Oryza sativa via modulation of the photosynthesis and antioxidant defense system. Ecotoxicol. Environ. Saf. 2021, 220, 112401. [Google Scholar] [CrossRef]
- Ali, S.; Rizwan, M.; Noureen, S.; Anwar, S.; Ali, B.; Naveed, M.; Abd Allah, E.F.; Alqarawi, A.A.; Ahmad, P. Combined use of biochar and zinc oxide nanoparticle foliar spray improved the plant growth and decreased the cadmium accumulation in rice (Oryza sativa L.) plant. Environ. Sci. Pollut. Res. 2019, 26, 11288–11299. [Google Scholar] [CrossRef]
- Rizwan, M.; Ali, S.; ur Rehman, M.Z.; Adrees, M.; Arshad, M.; Qayyum, M.F.; Ali, L.; Hussain, A.; Chatha, S.A.S.; Imran, M. Alleviation of cadmium accumulation in maize (Zea mays L.) by foliar spray of zinc oxide nanoparticles and biochar to contaminated soil. Environ. Pollut. 2019, 248, 358–367. [Google Scholar] [CrossRef]
- Adrees, M.; Khan, Z.S.; Hafeez, M.; Rizwan, M.; Hussain, K.; Asrar, M.; Alyemeni, M.N.; Wijaya, L.; Ali, S. Foliar exposure of zinc oxide nanoparticles improved the growth of wheat (Triticum aestivum L.) and decreased cadmium concentration in grains under simultaneous Cd and water deficient stress. Ecotoxicol. Environ. Saf. 2021, 208, 111627. [Google Scholar] [CrossRef]
- Rizwan, M.; Ali, S.; Ali, B.; Adrees, M.; Arshad, M.; Hussain, A.; ur Rehman, M.Z.; Waris, A.A. Zinc and iron oxide nanoparticles improved the plant growth and reduced the oxidative stress and cadmium concentration in wheat. Chemosphere 2019, 214, 269–277. [Google Scholar] [CrossRef]
- Sharifan, H.; Moore, J.; Ma, X. Zinc oxide (ZnO) nanoparticles elevated iron and copper contents and mitigated the bioavailability of lead and cadmium in different leafy greens. Ecotoxicol. Environ. Saf. 2020, 191, 110177. [Google Scholar] [CrossRef]
- Seleiman, M.F.; Alotaibi, M.A.; Alhammad, B.A.; Alharbi, B.M.; Refay, Y.; Badawy, S.A. Effects of ZnO nanoparticles and biochar of rice straw and cow manure on characteristics of contaminated soil and sunflower productivity, oil quality, and heavy metals uptake. Agronomy 2020, 10, 790. [Google Scholar] [CrossRef]
- Zeeshan, M.; Hu, Y.X.; Iqbal, A.; Salam, A.; Liu, Y.X.; Muhammad, I.; Ahmad, S.; Khan, A.H.; Hale, B.; Wu, H.Y.; et al. Amelioration of AsV toxicity by concurrent application of ZnO-NPs and Se-NPs is associated with differential regulation of photosynthetic indexes, antioxidant pool and osmolytes content in soybean seedling. Ecotoxicol. Environ. Saf. 2021, 225, 112738. [Google Scholar] [CrossRef]
- Salam, A.; Khan, A.R.; Liu, L.; Yang, S.; Azhar, W.; Ulhassan, Z.; Zeeshan, M.; Wu, J.; Fan, X.; Gan, Y. Seed priming with zinc oxide nanoparticles downplayed ultrastructural damage and improved photosynthetic apparatus in maize under cobalt stress. J. Hazard. Mater. 2021, 423, 127021. [Google Scholar] [CrossRef]
- Faizan, M.; Bhat, J.A.; Noureldeen, A.; Ahmad, P.; Yu, F. Zinc oxide nanoparticles and 24-epibrassinolide alleviates Cu toxicity in tomato by regulating ROS scavenging, stomatal movement and photosynthesis. Ecotoxicol. Environ. Saf. 2021, 218, 112293. [Google Scholar] [CrossRef]
- Nazarov, P.A.; Baleev, D.N.; Ivanova, M.I.; Sokolova, L.M.; Karakozova, M.V. Infectious plant diseases: Etiology, current status, problems and prospects in plant protection. Acta Nat. 2020, 12, 46–59. [Google Scholar] [CrossRef] [PubMed]
- Savary, S.; Willocquet, L.; Pethybridge, S.J.; Esker, P.; McRoberts, N.; Nelson, A. The global burden of pathogens and pests on major food crops. Nat. Ecol. Evol. 2019, 3, 430–439. [Google Scholar] [CrossRef] [PubMed]
- Food and Agriculture Organization (FAO). International Year of Plant Health—Protecting Plants, Protecting Life. Available online: https://www.fao.org/plant-health-2020/home/en/ (accessed on 1 December 2021).
- Xu, L.; Zhu, Z.; Sun, D.-W. Bioinspired Nanomodification Strategies: Moving from Chemical-Based Agrosystems to Sustainable Agriculture. ACS Nano 2021, 15, 12655–12686. [Google Scholar] [CrossRef] [PubMed]
- De Filpo, G.; Palermo, A.M.; Rachiele, F.; Nicoletta, F.P. Preventing fungal growth in wood by titanium dioxide nanoparticles. Int. Biodeterior. Biodegrad. 2013, 85, 217–222. [Google Scholar] [CrossRef]
- Ogunyemi, S.O.; Zhang, M.; Abdallah, Y.; Ahmed, T.; Qiu, W.; Ali, A.; Yan, C.; Yang, Y.; Chen, J.; Li, B. The bio-synthesis of three metal oxide nanoparticles (ZnO, MnO2, and MgO) and Their Antibacterial Activity Against the Bacterial Leaf Blight Pathogen. Front. Microbiol. 2020, 11, 1–14. [Google Scholar] [CrossRef]
- Zhu, W.; Hu, C.; Ren, Y.; Lu, Y.; Song, Y.; Ji, Y.; Han, C.; He, J. Green synthesis of zinc oxide nanoparticles using Cinnamomum camphora (L.) Presl leaf extracts and its antifungal activity. J. Environ. Chem. Eng. 2021, 9, 106659. [Google Scholar] [CrossRef]
- Jiang, H.; Lv, L.; Ahmed, T.; Jin, S.; Shahid, M.; Noman, M.; Osman, H.-E.H.; Wang, Y.; Sun, G.; Li, X.; et al. Effect of the nanoparticle exposures on the tomato bacterial wilt disease control by modulating the rhizosphere bacterial community. Int. J. Mol. Sci. 2021, 23, 414. [Google Scholar] [CrossRef]
- Thounaojam, T.C.; Meetei, T.T.; Devi, Y.B.; Panda, S.K.; Upadhyaya, H. Zinc oxide nanoparticles (ZnO-NPs): A promising nanoparticle in renovating plant science. Acta Physiol. Plant 2021, 43, 1–22. [Google Scholar] [CrossRef]
- Şahin, B.; Soylu, S.; Kara, M.; Türkmen, M.; Aydin, R.; Çetin, H. Superior antibacterial activity against seed-borne plant bacterial disease agents and enhanced physical properties of novel green synthesized nanostructured ZnO using Thymbra spicata plant extract. Ceram. Int. 2021, 47, 341–350. [Google Scholar] [CrossRef]
- Kashyap, D.; Siddiqui, Z.A. Effect of Zinc Oxide Nanoparticles and Rhizobium leguminosarum on growth, photosynthetic pigments and blight disease complex of pea. Gesunde Pflanz. 2021, 74, 29–40. [Google Scholar] [CrossRef]
- Mamede, M.C.; Mota, R.P.; Silva, A.C.A.; Tebaldi, N.D. Nanoparticles in inhibiting Pantoea ananatis and to control maize white spot. Ciênc. Rural 2022, 52, 1–7. [Google Scholar] [CrossRef]
- Khan, R.A.A.; Tang, Y.; Naz, I.; Alam, S.S.; Wang, W.; Ahmad, M.; Najeeb, S.; Rao, C.; Li, Y.; Xie, B.; et al. Management of Ralstonia solanacearum in tomato using ZnO nanoparticles synthesized through Matricaria chamomilla. Plant Dis. 2021, 105, 3224–3230. [Google Scholar] [CrossRef]
- Keerthana, P.; Vijayakumar, S.; Vidhya, E.; Punitha, V.N.; Nilavukkarasi, M.; Praseetha, P.K. Biogenesis of ZnO nanoparticles for revolutionizing agriculture: A step towards anti -infection and growth promotion in plants. Ind. Crop. Prod. 2021, 170, 113762. [Google Scholar] [CrossRef]
- Shobha, B.; Lakshmeesha, T.R.; Ansari, M.A.; Almatroudi, A.; Alzohairy, M.A.; Basavaraju, S.; Alurappa, R.; Niranjana, S.R.; Chowdappa, S. Mycosynthesis of ZnO nanoparticles using Trichoderma spp. isolated from rhizosphere soils and its synergistic antibacterial effect against Xanthomonas oryzae pv. oryzae. J. Fungi 2020, 6, 181. [Google Scholar] [CrossRef]
- Tryfon, P.; Kamou, N.N.; Mourdikoudis, S.; Karamanoli, K.; Menkissoglu-Spiroudi, U.; Dendrinou-Samara, C. CuZn and ZnO nanoflowers as nano-fungicides against Botrytis cinerea and Sclerotinia sclerotiorum: Phytoprotection, translocation, and impact after foliar application. Materials 2021, 14, 7600. [Google Scholar] [CrossRef]
- González-Merino, A.M.; Hernández-Juárez, A.; Betancourt-Galindo, R.; Ochoa-Fuentes, Y.M.; Valdez-Aguilar, L.A.; Limón-Corona, M.L. Antifungal activity of zinc oxide nanoparticles in Fusarium oxysporum-Solanum lycopersicum pathosystem under controlled conditions. J. Phytopathol. 2021, 169, 533–544. [Google Scholar] [CrossRef]
- Sardar, M.; Ahmed, W.; Al Ayoubi, S.; Nisa, S.; Bibi, Y.; Sabir, M.; Khan, M.M.; Ahmed, W.; Qayyum, A. Fungicidal synergistic effect of biogenically synthesized zinc oxide and copper oxide nanoparticles against Alternaria citri causing citrus black rot disease. Saudi J. Biol. Sci. 2021, 29, 88–95. [Google Scholar] [CrossRef]
- Mohamed, A.A.; Abu-Elghait, M.; Ahmed, N.E.; Salem, S.S. Eco-friendly mycogenic synthesis of ZnO and CuO nanoparticles for in vitro antibacterial, antibiofilm, and antifungal applications. Biol. Trace Elem. Res. 2021, 199, 2788–2799. [Google Scholar] [CrossRef]
- Zudyte, B.; Luksiene, Z. Visible light-activated ZnO nanoparticles for microbial control of wheat crop. J. Photochem. Photobiol. B Biol. 2021, 219, 112206. [Google Scholar] [CrossRef]
- Luksiene, Z.; Rasiukeviciute, N.; Zudyte, B.; Uselis, N. Innovative approach to sunlight activated biofungicides for strawberry crop protection: ZnO nanoparticles. J. Photochem. Photobiol. B Biol. 2020, 203, 111656. [Google Scholar] [CrossRef]
- Abdelkhalek, A.; Al-Askar, A.A. Green Synthesized ZnO Nanoparticles Mediated by Mentha Spicata Extract Induce Plant Systemic Resistance against Tobacco Mosaic Virus. Appl. Sci. 2020, 10, 5054. [Google Scholar] [CrossRef]
- Sar, T.A.I.; Unal, M. Inhibitory effect of antifungal activity of Titanium Dioxide (TiO2) nanoparticles on some pathogenic Fusarium isolates. In Proceedings of the International Workshop Plant Health: Challenges and Solutions, Antalya, Turkey, 23–28 April 2017; p. 78. [Google Scholar]
- Satti, S.H.; Raja, N.I.; Javed, B.; Akram, A.; Mashwani, Z.-U.-R.; Ahmad, M.S.; Ikram, M. Titanium dioxide nanoparticles elicited agro-morphological and physicochemical modifications in wheat plants to control Bipolaris sorokiniana. PLoS ONE 2021, 16, e0246880. [Google Scholar] [CrossRef]
- Hamza, A.; El-Mogazy, S.; Derbalah, A. Fenton reagent and titanium dioxide nanoparticles as antifungal agents to control leaf spot of sugar beet under field conditions. J. Plant Prot. Res. 2016, 56, 270–278. [Google Scholar] [CrossRef]
- Boxi, S.S.; Mukherjee, K.; Paria, S. Ag doped hollow TiO2 nanoparticles as an effective green fungicide against Fusarium solani and Venturia inaequalis phytopathogens. Nanotechnology 2016, 27, 1–13. [Google Scholar] [CrossRef]
- Norman, D.J.; Chen, J. Effect of foliar application of titanium dioxide on bacterial blight of geranium and xanthomonas leaf spot of poinsettia. HortScience 2011, 46, 426–428. [Google Scholar] [CrossRef] [Green Version]
- Cui, H.; Ping, Z.; Gu, W.; Jiang, J. Application of anatase TiO2 sol derived from peroxotitannic acid in crop diseases control. NSTI Nanotech. 2009, 2, 286–289. [Google Scholar]
- Hossain, A.; Abdallah, Y.; Ali, A.; Masum, M.I.; Li, B.; Sun, G.; Meng, Y.; Wang, Y.; An, Q. Lemon-fruit-based green synthesis of zinc oxide nanoparticles and titanium dioxide nanoparticles against soft rot bacterial pathogen Dickeya dadantii. Biomolecules 2019, 9, 863. [Google Scholar] [CrossRef] [Green Version]
- Ardakani, A.S. Toxicity of silver, titanium and silicon nanoparticles on the root-knot nematode, Meloidogyne incognita, and growth parameters of tomato. Nematology 2013, 15, 671–677. [Google Scholar] [CrossRef]
- Elsharkawy, M.M.; Derbalah, A. Antiviral activity of titanium dioxide nanostructures as a control strategy for broad bean strain virus in faba bean. Pest Manag. Sci. 2019, 75, 828–834. [Google Scholar] [CrossRef] [PubMed]
- Gutierrez-Ramirez, J.A.; Betancourt-Galindo, R.; Aguirre-Uribe, L.A.; Cerna-Chavez, E.; Sandoval-Rangel, A.; Castro-del Angel, E.; Chacon-Hernandez, J.C.; Garcia-Lopez, J.I.; Hernandez-Juarez, A. Insecticidal effect of zinc oxide and titanium dioxide nanoparticles against Bactericera cockerelli Sulc. (Hemiptera: Triozidae) on tomato Solanum lycopersicum. Agronomy 2021, 11, 1460. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Silva, S.; Dias, M.C.; Silva, A.M.S. Titanium and Zinc Based Nanomaterials in Agriculture: A Promising Approach to Deal with (A)biotic Stresses? Toxics 2022, 10, 172. https://doi.org/10.3390/toxics10040172
Silva S, Dias MC, Silva AMS. Titanium and Zinc Based Nanomaterials in Agriculture: A Promising Approach to Deal with (A)biotic Stresses? Toxics. 2022; 10(4):172. https://doi.org/10.3390/toxics10040172
Chicago/Turabian StyleSilva, Sónia, Maria Celeste Dias, and Artur M. S. Silva. 2022. "Titanium and Zinc Based Nanomaterials in Agriculture: A Promising Approach to Deal with (A)biotic Stresses?" Toxics 10, no. 4: 172. https://doi.org/10.3390/toxics10040172
APA StyleSilva, S., Dias, M. C., & Silva, A. M. S. (2022). Titanium and Zinc Based Nanomaterials in Agriculture: A Promising Approach to Deal with (A)biotic Stresses? Toxics, 10(4), 172. https://doi.org/10.3390/toxics10040172