Evaluating the Potential Health Risks of Selected Heavy Metals across Four Wastewater Treatment Water Works in Durban, South Africa
Abstract
:1. Introduction
2. Materials and Method
2.1. Description of the Study Location
2.2. Sample Collection and Preparation
2.3. Quality Control
2.4. Evaluation of Effluent Water Quality
2.4.1. Risk Assessment Index
2.4.2. Carcinogenic Risk Assessment
3. Results and Discussion
3.1. Heavy Metal Concentrations in Influent and Effluent Samples
3.2. Non-Carcinogenic Risk Assessment
3.3. Carcinogenic Risk Assessment
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Health Organization (WHO). Guidelines for Drinking Water Quality, 3rd ed.; World Health Organization: Geneva, Switzerland, 2006. [Google Scholar]
- Thomas, J. Untreated wastewater in developing countries: 14 Billion a day and we don’t know where it ends up. Environment 2021, 2. Available online: https://theconversation.com/14-billion-litres-of-untreated-wastewater-is-created-each-day-in-developing-countries-but-we-dont-know-where-it-all-goes-151217 (accessed on 15 June 2022).
- Ogunleye, I.O.; Izuagie, A.A. Determination of heavy metal contents in some industrial effluents from Ondo State, Nigeria. J. Environ. Chem. Ecotoxicol. 2013, 5, 216–219. [Google Scholar]
- World Health Organization (WHO). Water Pollutants: Biological Agency Dissolved Chemicals, Nondissolved Chemicals, Sediments, Heat; WHOCEHA: Amman, Jordan, 2002. [Google Scholar]
- Baby, J.; Raj, J.S.; Biby, E.T.; Sankarganesh, P.; Jeevitha, M.V.; Ajisha, S.U.; Rajan, S.S. Toxic effect of heavy metals on aquatic environment. Int. J. Biol. Chem. Sci. 2010, 4, 939–952. [Google Scholar] [CrossRef] [Green Version]
- Bouraie, E.L.; El Barbary, M.M.; Yehia, A.A.; Motawea, E.A. Heavy metal concentrations in surface river water and bed sediments at Nile Delta in Egypt. Suoseurae Finn. Peatl. Soc. 2010, 61, 1–12. [Google Scholar]
- Okoro, C.K.; Kingsley, R.A.; Connor, T.R.; Harris, S.R.; Parry, C.M.; Al−Mashhadani, M.N.; Wain, J. Intracontinental spread of human invasive Salmonella Typhimurium pathovariants in sub−Saharan Africa. Nat. Gene 2012, 44, 1215. [Google Scholar] [CrossRef] [Green Version]
- Miri, M.; Akbari, E.; Amrane, A.; Jafari, S.J.; Eslami, H.; Hoseinzadeh, E.; Zarrabi, M.; Salimi, J.; Sayyad-Arbabi, M.; Taghavi, M. Health risk assessment of heavy metal intake due to fish consumption in the Sistan region, Iran. Environ. Monit. Assess. 2017, 189, 583. [Google Scholar] [CrossRef]
- Moody, C.M.; Townsend, G.T. A comparison of landfill leachates based on waste composition. Waste Manag. 2017, 63, 267–274. [Google Scholar] [CrossRef] [PubMed]
- Yoon, J.; Cao, X.; Zhou, Q.; Ma, L.Q. Accumulation of Pb, Cu, and Zn in native plants growing on a contaminated Florida site. Sci. Total Environ. 2006, 368, 456–464. [Google Scholar] [CrossRef]
- Manoj, K.; Padhy, P.K.; Chaudhury, S. Study of heavy metal contamination of the river water through index analysis approach and environmetrics. Bull. Environ. Pharmacol. Life Sci. 2012, 1, 7–15. [Google Scholar]
- Titilawo, Y.; Adeniji, A.; Adeniyi, M.; Okoh, A. Determination of levels of some metal contaminants in the freshwater environments of Osun State, Southwest Nigeria: A risk assessment approach to predict health threat. Chemosphere 2018, 211, 834–843. [Google Scholar] [CrossRef]
- Tytła, M. Assessment of Heavy Metal Pollution and Potential Ecological Risk in Sewage Sludge from Municipal Wastewater Treatment Plant Located in the Most Industrialized Region in Poland—Case Study. Int. J. Environ. Res. Public Health 2019, 16, 2430. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yi, Y.; Tang, C.; Yi, T.; Yang, Z.; Zhang, S. Health risk assessment of heavy metals in fish and accumulation patterns in food web in the upper Yangtze River, China. Ecol. Environ. Saf. 2017, 145, 295–302. [Google Scholar] [CrossRef] [PubMed]
- Naushad, M.; ALOthman, Z.A.; Awual, M.R.; Alam, M.M.; Eldesoky, G.E. Adsorption kinetics, isotherms, and thermodynamic studies for the adsorption of Pb2+ and Hg2+ metal ions from aqueous medium using Ti(IV) iodovanadate cation exchanger. Ionics 2015, 21, 2237–2245. [Google Scholar] [CrossRef]
- Muthusaravanan, S.; Sivarajasekar, N.; Vivek, J.S.; Paramasivan, T.; Naushad, M.; Prakashmaran, J.; Al-Duaij, O.K. Phytoremediation of heavy metals: Mechanisms, methods and enhancements. Environ. Chem. Lett. 2018, 16, 1339–1359. [Google Scholar] [CrossRef]
- Naushad, M.; Mittal, A.; Rathore, M.; Gupta, V. Ion-exchange kinetic studies for Cd(II), Co(II), Cu(II), and Pb(II) metal ions over a composite cation exchanger. Desalin. Water Treat. 2014, 54, 2883–2890. [Google Scholar] [CrossRef]
- Bahiru, D.B. Determination of Heavy Metals in Wastewater and Their Toxicological Implications around Eastern Industrial Zone, Central Ethiopia. J. Environ. Chem. Ecotoxicol. 2020, 12, 72–79. [Google Scholar]
- Khan, S.Q.; Cao, Y.M.; Zheng, Y.Z.; Huang, Y.G.; Zhu, Y.G. Health risks of heavy metals in contaminated soils and food crops irrigated with wastewater in Beijing, China. Environ. Pollut. 2008, 152, 686–692. [Google Scholar] [CrossRef]
- Arora, M.; Kiran, B.; Rani, S.; Rani, A.; Kaur, B.; Mittal, N. Heavy metal accumulation in vegetables irrigated with water from different sources. Food Chem. 2008, 111, 811–815. [Google Scholar] [CrossRef]
- Bussan, D.D.; Snaychuk, L.; Bartzas, G.; Douvri, C. Quantification of trace elements in surgical and KN95 face masks widely used during the SARS-COVID-19 pandemic. Sci. Total Environ. 2022, 814, 151924. [Google Scholar] [CrossRef]
- Ethekwini Municipality. Environmental Impact Assessment Process 2014. KZN DAEA REF NO.: DM/0032/2014 and DM/WML/0050/2014 Royal HaskoningDHV; Ethekwini Municipality: KwaZulu-Natal, South Africa, 2014.
- Department of Water Affairs and Forestry (DWAF). First Order Assessment of Wastewater Treatment Works in KwaZulu-Natal; Department of Water Affairs and Forestry: Pretoria, South Africa, 2009.
- Msiya, N.; Mukhadi, F. Investigating the Capacity of the Wastewater Treatment Plants in the eThekwini Municipality; University of South Afric: Pretoria, South Africa, 2022. [Google Scholar]
- Bakare, B.F.; Adeyinka, G.C. Occurrence and Fate of Triclosan and Triclocarban in Selected Wastewater Systems across Durban Metropolis, KwaZulu-Natal, South Africa. Int. J. Environ. Res. Public Health 2022, 19, 6769. [Google Scholar] [CrossRef]
- IWA. Standard Methods for the Examination of Water and Wastewater; American Public Health Association (APHA): Washington, DC, USA, 2005. [Google Scholar]
- EPA. Method 3050B (SW-846): Acid Digestion of Sediment, Sludges and Soil Revision 2; IOP Publishing PhysicsWeb: Bristol, UK, 1996. [Google Scholar]
- Alves, R.I.; Sampaio, C.F.; Nadal, M.; Schuhmacher, M.; Domingo, J.L.; Segura-Muñoz, S.I. Metal concentrations in surface water and sediments from Pardo River, Brazil: Human health risks. Environ. Res. 2014, 133, 149–155. [Google Scholar] [CrossRef] [PubMed]
- Nickens, K.P.; Patierno, S.R.; Ceryak, S. Chromium genotoxicity: A double-edged sword. Chem. Biol. Interact. 2010, 188, 276–288. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Y.; Li, F.; Li, J.; Liu, Q.; Tu, C.; Suzuki, Y.; Huang, C. Spatial Distribution, Potential Sources, and Risk Assessment of Trace Metals of Groundwater in the North China Plain. Hum. Ecol. Risk Assess. 2015, 21, 726–743. [Google Scholar] [CrossRef] [Green Version]
- Kamunda, C.; Mathuthu, M.; Madhuku, M. Health Risk Assessment of Heavy Metals in Soils from Witwatersrand Gold Mining Basin, South Africa. Int. J. Environ. Res. Public Health 2016, 13, 663. [Google Scholar] [CrossRef] [PubMed]
- Pan, L.; Ma, J.; Hu, Y.; Su, B.; Fang, G.; Wang, Y.; Wang, Z.S.; Wang, L.; Xiang, B. Assessments of levels, potential ecological risk, and human health risk of heavy metals in the soils from a typical county in Shanxi province, China. Environ. Sci. Pollut. Res. 2016, 23, 19330–19340. [Google Scholar] [CrossRef] [PubMed]
- US Environmental Protection Agency (USEPA). Risk-Based Concentration Table. Available online: http://www.epa.gov/reg3hwmd/risk/human/rbc/rbc1006.pdf (accessed on 28 April 2022).
- Adewuyi, G.O.; Etchie, A.T.; Etchie, T.O. Health risk assessment of exposure to metals in a Nigerian water supply. Hum. Ecoll. Risk Assess. 2014, 20, 29–44. [Google Scholar] [CrossRef] [Green Version]
- USEPA. Definitions and General Principles for Exposure Assessment; Guidelines for Exposure Assessment; United States Environmental Protection Agency: Washington, DC, USA, 1992.
- USEPA. US Environmental Protection Agency’s Integrated Risk Information System; United States Environmental Protection Agency: Washington, DC, USA, 2011.
- Aendo, P.; Netvichian, R.; Thiendedsakul, P.; Khaodhiar, S.; Tulayakul, P. Carcinogenic Risk of Pb, Cd, Ni, and Cr and Critical Ecological Risk of Cd and Cu in Soil and Groundwater around the Municipal Solid Waste Open Dump in Central Thailand. J. Environ. Public Health 2022, 2022, 3062215. [Google Scholar] [CrossRef]
- United States Environmental Protection Agency (USEPA). Biosolids Generation, Use and Disposal in the United States; EPA530−R−99−009; Office of Solid Waste and Emergency Response: Washington, DC, USA, 1999.
- United States Environmental Protection Agency (USEPA). Edition of the Drinking Water Standards and Health Advisories; EPA 822−S−12−001; Office of Water U.S. Environmental Protection Agency: Washington, DC, USA, 2012.
- WHO. Adverse Health Effects of Heavy Metals in Children; Children’s Health and the Environment; WHO Training Package for the Health Sector; World Health Organization: Geneva, Switzerland, 2011. [Google Scholar]
- Agoro, M.A.; Adeniji, A.O.; Adefisoye, M.A.; Okoh, O.O. Heavy Metals in Wastewater and Sewage Sludge from Selected Municipal Treatment Plants in Eastern Cape Province, South Africa. Water 2020, 12, 2746. [Google Scholar] [CrossRef]
- Lee, V. Heavy metals in wastewater: Locating pollution sources using portable XRF. Water Technol. 2022, 4. Available online: https://www.watertechonline.com/wastewater/article/14234231/heavy-metals-in-wastewater-locating-pollution-sources-using-portable-xrf (accessed on 6 April 2022).
- Sörme, L.; Lagerkvist, R. Sources of heavy metals in urban wastewater in Stockholm. Sci. Total Environ. 2002, 298, 131–1345. [Google Scholar] [CrossRef]
- Ayers, R.S.; Westcot, D.W. Water Quality for Agriculture; FAO Irrigation and Drainage Paper 29 (Rev. 1); FAO: Rome, Italy, 1985. [Google Scholar]
- Fuortes, L.; Schenck, D. Marked elevation of urinary zinc levels and pleural friction rub in metal fume fever. Vet. Hum. Toxicol. 2000, 42, 164–165. [Google Scholar] [PubMed]
- Abagale, F.K.; Sarpong, D.A.; Ojediran, J.O.; Osei-Agyemang, R.; Shaibu, A.G.; Birteeb, P.T. Heavy metal concentration in wastewater from car washing bays used for Agriculture in the Tamale metropolis, Ghana. Intern. J. Curr. Res. 2013, 5, 1571–1576. [Google Scholar]
- World Health Organization (WHO). Guidelines for Drinking−Water Quality: Fourth Edition Incorporating the First Addendum; WHO: Cham, Switzerland, 2017; Volume 631, ISBN 978−92−4−154995−0. [Google Scholar]
- Department of Water Affairs and Forestry (DWAF). South Africa Water Quality Guidelines, (Domestic Use), 2nd ed.; DWAF: Pretoria, South Africa, 1996; Volume 1, pp. 39–41.
- FAO. Guidelines for Heavy Metal Concentration in Water for Irrigation; FAO: Rome, Italy, 1992. [Google Scholar]
- Teijon, G.; Candela, L.; Tamoh, K.; Molina-Diaz, A.; Fernandez-Alba, A.R. Occurrence of emerging contaminants, priority substances (2008/105/CE) and heavy metals in treated wastewater and groundwater at Depurbaix facility (Barcelona, Spain). Sci. Total Environ. 2010, 408, 3584–3595. [Google Scholar] [CrossRef]
- Cao, Z.R.; Cui, S.M.; Lu, X.X.; Chen, X.M.; Yang, X.; Cui, J.P.; Zhang, G.H. Effects of occupational cadmium exposure on workers’ cardiovascular system. Zhonghua Lao Dong Wei Sheng Zhi Ye Bing Za Zhi 2013, 36, 474–477. [Google Scholar] [CrossRef]
- Nishijo, M.; Nakagawa, H.; Suwazono, Y.; Nogawa, K.; Kido, T. Causes of death in patients with Itai-itai disease suffering from severe chronic cadmium poisoning: A nested case–control analysis of a follow-up study in Japan. BMJ Open 2017, 7, e015694. [Google Scholar] [CrossRef] [Green Version]
- Hazardous Substances Data Bank (HSDB); National Library of Medicine Manganese. 2008. Available online: http://toxnet.nlm.nih.gov (accessed on 17 April 2022).
- Csatorday, K.; Gombos, Z.; Szalontai, B. Manganese and Cobalt toxicity in chlorophyll biosynthesis. Cell Biol. 1984, 81, 476–478. [Google Scholar]
- Kinuthia, G.K.; Ngure, V.; Beti, D.; Lugalia, R.; Wangila, A.; Kamau, L. Levels of heavy metals in wastewater and soil samples from open drainage channels in Nairobi, Kenya: Community health implication. Sci. Rep. 2020, 10, 8434. [Google Scholar] [CrossRef]
- Bainies, J. Dietary exposure assessments lead. In Australia and New Zealand National Assessments; National Assessments Bureau: Wellington, New Zealand, 1999; pp. 120–122. [Google Scholar]
- Joseph, C.L.; Havstad, S.; Ownby, D.R.; Peterson, E.L.; Maliarik, M.; McCabe, M.J., Jr.; Barone, C.; Johnson, C.C. Blood lead level and risk of asthma. Environ. Health Perspect. 2005, 113, 900–904. [Google Scholar] [CrossRef] [Green Version]
- Jacobs, D.E.; Wilson, J.; Dixon, S.L.; Smith, J.; Evens, A. The relationship of housing and population health: A 30-year retrospective analysis. Environ. Health Perspect. 2009, 117, 597–604. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kianoush, S.; Balali-Mood, M.; Mousavi, S.R.; Moradi, V.; Sadeghi, M.; Dadpour, B.; Rajabi, O.; Shakeri, M.T. Comparison of therapeutic effects of garlic and d-penicillamine in patients with chronic occupational lead poisoning. Basic Clin. Pharmacol. Toxicol. 2012, 110, 476–481. [Google Scholar] [CrossRef]
- Mohan, D.; Pittman, C.U., Jr. Arsenic removal from water/wastewater using adsorbents—A critical review. J. Hazard. Mater. 2007, 142, 1–53. [Google Scholar] [CrossRef] [PubMed]
- Rimayi, C.; Odusanya, D.; Weiss, J.M.; de Boer, J.; Chimuka, L. Contaminants of emerging concern in the Hartbeespoort Dam catchment and the Umgeni River estuary 2016 pollution incident, South Africa. Sci. Total Environ. 2018, 627, 1008–1017. [Google Scholar] [CrossRef] [PubMed]
- Gajec, M.; Krol, A.; Kukulska-Zajac, E. Determination of metals in selected elements of the environment in the context of applicable legal regulations. Nafta-Gaz 2019, 5, 283–292. [Google Scholar] [CrossRef]
- Bissen, M.; Frimmel, F.H. Arsenic—A review. Part I: Occurrence, toxicity, speciation, mobility. Acta Hydrochim. Hydrobiol. 2003, 31, 9–18. [Google Scholar] [CrossRef]
- Sharma, V.K.; Sohn, M. Aquatic arsenic: Toxicity, speciation, transformations, and remediation. Environ. Int. 2009, 35, 743–759. [Google Scholar] [CrossRef]
- Sun, L.; Lu, M.; Li, Q.; Jiang, H.; Yin, S. Research progress of arsenic removal from wastewater. IOP Conf. Ser. Earth Environ. Sci. 2019, 218, 012142. [Google Scholar] [CrossRef]
- Shomar, B.H.; Muller, G.; Yahya, A. Potential use of treated wastewater and sludge in the agricultural sector of the Gaza Strip. Clean Technol. Environ. Policy 2004, 6, 128–137. [Google Scholar]
- Helen, L.E.; Othman, O.C. Levels of selected heavy metals in soil, tomatoes and selected vegetables from Lushoto district-Tanzania. Intern. J. Environ. Monit. Anal. 2014, 2, 313–319. [Google Scholar] [CrossRef] [Green Version]
- Seilkop, S.K.; Oller, A.R. Respiratory cancer risks associated with low-level nickel exposure: An integrated assessment based on animal, epidemiological, and mechanistic data. Regul. Toxicol. Pharmacol. 2003, 37, 173–190. [Google Scholar] [CrossRef]
- Fang, Z.; Zhao, M.; Zhen, H.; Chen, L.; Shi, P.; Huang, Z. Genotoxicity of tri-and hexavalent chromium compounds in vivo and their modes of action on DNA damage in vitro. PLoS ONE 2014, 9, e103194. [Google Scholar] [CrossRef]
- The United States Department of Health and Human Services (HHS); Public Health Service (PHS); Agency for Toxic Substances Disease Registry (ATSDR). Toxicological Profile for Cobalt; Astdr Toxicological Profile: Atlanta, GA, USA, 2004.
- Suh, M.; Thompson, C.M.; Brorby, G.P.; Mittal, L.; Proctor, D.M. Inhalation cancer risk assessment of cobalt metal. Regul. Toxicol. Pharmacol. 2016, 79, 74–82. [Google Scholar] [CrossRef] [PubMed]
- Canadian Council of the Ministers of the Environment (CCME). Canadian Water Quality Guidelines; CCME: Ottawa, QC, Canada, 1992.
- Fernández-luqueño, F.; López-valdez, F.; Gamero-melo, P.; Luna-Suarez, S.; Aguilera-gonzález, E.N.; Martínez, A.I.; García-Guilermo, M.S.; Hernández-martínez, G.; Herrera-mendoza, R.; Álvarez-Garza, M.A.; et al. Heavy metal pollution in drinking water—A global risk for human health: A review. Afr. J. Environ. Sci. Technol. 2013, 7, 567–584. [Google Scholar] [CrossRef]
- Khan, S.A.; Din, Z.U.; Zubair, A. Levels of Selected Heavy Metals in Drinking Water. Int. J. Sci. Nat. 2011, 2, 648–652. [Google Scholar]
- Al-Saleh, I.; Abduljabbar, M. Heavy metals (lead, cadmium, methylmercury, arsenic) in commonly imported rice grains (Oryza sativa) sold in Saudi Arabia and their potential health risk. Int. J. Hyg. Environ. Health 2017, 220, 1168–1178. [Google Scholar] [CrossRef]
- Kavcar, P.; Sofuoglu, A.; Sofuoglu, S.C. A health risk assessment for exposure to trace metals via drinking water ingestion pathway. Int. J. Hyg. Environ. Health 2009, 212, 216–222. [Google Scholar] [CrossRef] [Green Version]
- Moloi, M.; Ogbeide, O.; Otomo, P.V. Probabilistic health risk assessment of heavy metals at wastewater discharge points within the Vaal River Basin, South Africa. Internat. J. Hyg. Environ. Health 2019, 224, 113421. [Google Scholar] [CrossRef]
- Rapant, S.; Krčmová, K. Health risk assessment maps for arsenic groundwater content: Application of national geochemical databases. Environ. Geochem. Health 2007, 29, 131–141. [Google Scholar] [CrossRef]
- Duan, B.; Zhang, W.; Zheng, H.; Wu, C.; Zhang, Q.; Bu, Y. Comparison of Health Risk Assessments of Heavy Metals and As in Sewage Sludge from Wastewater Treatment Plants (WWTPs) for Adults and Children in the Urban District of Taiyuan, China. Int. J. Environ. Res. Public Health 2017, 14, 1194. [Google Scholar] [CrossRef] [Green Version]
- USEPA. Risk Assessment Guidance for Superfund Volume I, Human Health Evaluation Manual (Part A): Interim Fnal; EPA/540/1-89/002; PB90–155581; USEPA (United States Environmental Protection Agency): Washington, DC, USA, 1989; Volume 289.
- Li, F.; Qiu, Z.; Zhang, J.; Liu, C.; Cai, Y.; Xiao, M. Spatial distribution and fuzzy health risk assessment of trace elements in surface water from Honghu Lake. Int. J. Environ. Res. Public Health 2017, 14, 1011. [Google Scholar] [CrossRef] [Green Version]
- Haque, M.A.; Jewel, M.A.; Ferdoushi, Z.; Begum, M.; Husain, M.I.; Mondal, S. Carcinogenic and Non−carcinogenic Human Health Risk from Exposure to Heavy Metals in Surface Water of Padma River. Res. J. Environ. Toxicol. 2018, 12, 18–23. [Google Scholar]
Sample | HQ Effluent Sample (Oral Ingestion) | |||||||||
Metal | As | Cd | Co | Cr | Fe | Mn | Ni | Pb | Zn | |
A E | 3.046 | 1.241 | 8.93 × 10−2 | 1.234 | 1.91 × 10−2 | 3.72 × 10−2 | 2.78 × 10−1 | 2.064 | 2.23 × 10−2 | |
B E | 3.102 | 1.284 | 9.41 × 10−2 | 1.325 | 8.83 × 10−2 | 1.022 × 10−1 | 2.96 × 10−1 | 2.318 | 2.67 × 10−2 | |
C E | 3.066 | 1.257 | 9.64 × 10−2 | 1.260 | 4.53 × 10−2 | 1.067 × 10−1 | 3.086 × 10−1 | 2.144 | 3.53 × 10−2 | |
D E | 3.052 | 1.243 | 8.88 × 10−2 | 1.231 | 1.94 × 10−2 | 4.078 × 10−2 | 2.78 × 10−1 | 2.061 | 1.38 × 10−2 | |
HQ Effluent Sample (Dermal Contact) | ||||||||||
As | Cd | Co | Cr | Fe | Mn | Ni | Pb | Zn | ||
A E | 1.57 × 10−4 | 2.55 × 10−6 | 9.18 × 10−10 | 5.08 × 10−4 | 2.10 × 10−10 | 2.79 × 10−8 | 1.36 × 10−8 | 7.08 × 10−11 | 1.03 × 10−10 | |
B E | 1.60 × 10−4 | 2.64 × 10−6 | 9.68 × 10−10 | 5.45 × 10−4 | 9.74 × 10−10 | 7.67 × 10−8 | 1.45 × 10−8 | 7.95 × 10−11 | 1.24 × 10−10 | |
C E | 1.58 × 10−4 | 2.59 × 10−6 | 9.92 × 10−10 | 5.18 × 10−4 | 4.99 × 10−10 | 8.02 × 10−8 | 1.51 × 10−8 | 7.35 × 10−11 | 1.63 × 10−10 | |
D E | 1.57 × 10−4 | 2.56 × 10−6 | 9.14 × 10−10 | 5.06 × 10−4 | 2.14 × 10−10 | 3.06 × 10−8 | 1.36 × 10−8 | 7.06 × 10−11 | 6.37 × 10−11 |
Sample | HQ Total | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
As | Cd | Co | Cr | Fe | Mn | Ni | Pb | Zn | HI Total | |
A E | 3.0465 | 1.241 | 8.92 × 10−2 | 1.235 | 1.91 × 10−2 | 3.72 × 10−2 | 2.78 × 10−1 | 2.064 | 2.23 × 10−2 | 8.032 |
B E | 3.1024 | 1.284 | 9.41 × 10−2 | 1.326 | 8.84 × 10−2 | 1.023 × 10−1 | 2.95 × 10−1 | 2.318 | 2.68 × 10−2 | 8.638 |
C E | 3.0662 | 1.257 | 9.64 × 10−2 | 1.260 | 4.53 × 10−2 | 0.1.07 × 10−1 | 3.086 × 10−1 | 2.143 | 3.53 × 10−2 | 8.320 |
D E | 3.0517 | 1.243 | 8.88 × 10−2 | 1.231 | 1.94 × 10−2 | 4.078 × 10−2 | 2.78 × 10−1 | 2.061 | 1.38 × 10−2 | 8.027 |
Sample | CR (Oral Ingestion) | CR (Dermal Contact) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Metal | Cd | Cr | Ni | Pb | RI | Pb | Fe | Ni | RI | |
A E | 6.203 × 10−3 | 1.851 × 10−3 | 9.459 × 10−3 | 7.016 × 10−5 | 1.758 × 10−2 | 9.988 × 10−11 | 1.473 × 10−9 | 2.862 × 10−10 | 1.860 × 10−9 | |
B E | 6.420 × 10−3 | 1.988 × 10−3 | 1.010 × 10−2 | 7.884 × 10−5 | 1.855 × 10−2 | 1.122 × 10−10 | 6.818 × 10−9 | 3.043 × 10−10 | 7.235 × 10−9 | |
C E | 6.287 × 10−3 | 1.888 × 10−3 | 1.050 × 10−2 | 7.288 × 10−5 | 1.874 × 10−2 | 1.038 × 10−10 | 3.491 × 10−9 | 3.174 × 10−10 | 3.912 × 10−9 | |
D E | 6.213 × 10−3 | 1.846 × 10−3 | 9.443 × 10−3 | 7.0059 × 10−5 | 1.757 × 10−2 | 9.974 × 10−11 | 1.50 × 10−9 | 2.857 × 10−10 | 1.884 × 10−9 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bakare, B.F.; Adeyinka, G.C. Evaluating the Potential Health Risks of Selected Heavy Metals across Four Wastewater Treatment Water Works in Durban, South Africa. Toxics 2022, 10, 340. https://doi.org/10.3390/toxics10060340
Bakare BF, Adeyinka GC. Evaluating the Potential Health Risks of Selected Heavy Metals across Four Wastewater Treatment Water Works in Durban, South Africa. Toxics. 2022; 10(6):340. https://doi.org/10.3390/toxics10060340
Chicago/Turabian StyleBakare, Babatunde Femi, and Gbadebo Clement Adeyinka. 2022. "Evaluating the Potential Health Risks of Selected Heavy Metals across Four Wastewater Treatment Water Works in Durban, South Africa" Toxics 10, no. 6: 340. https://doi.org/10.3390/toxics10060340
APA StyleBakare, B. F., & Adeyinka, G. C. (2022). Evaluating the Potential Health Risks of Selected Heavy Metals across Four Wastewater Treatment Water Works in Durban, South Africa. Toxics, 10(6), 340. https://doi.org/10.3390/toxics10060340