Trace Elements and Contaminants Concentrations in Tissues of Caspian Seals (Pusa caspica) along the Iranian Coast
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethical Aspects
2.2. Sampling
2.3. Sample Preparation and Analysis
2.4. Quality Assurance and Quality Control
2.5. Statistics
3. Results
3.1. Biometrics and Age/Sex Composition of the Sample
3.2. Concentrations of Trace Elements in Caspian Seals Tissues
3.3. Concentrations of Pesticides in Caspian Seals Blubber Tissues
3.4. Influence of Age and Sex on Tissue Distribution
4. Discussion
4.1. Biometrics and Age/Sex Composition of the Sample
4.2. Concentrations of Trace Elements in Caspian Seals Tissues
4.3. Concentrations of Pesticides in Caspian Seals Blubber Tissues
4.4. Influence of Age and Sex on Tissue Distribution
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- De Mora, S.; Sheikholeslami, M.R.; Wyse, E.; Azemard, S.; Cassi, R. An assessment of metal contamination in coastal sediments of the Caspian Sea. Mar. Pollut. Bull. 2004, 48, 61–77. [Google Scholar] [CrossRef] [PubMed]
- de Mora, S.; Villeneuve, J.-P.; Sheikholeslami, M.R.; Cattini, C.; Tolosa, I. Organochlorinated compounds in Caspian Sea sediments. Mar. Pollut. Bull. 2004, 48, 30–43. [Google Scholar] [CrossRef] [PubMed]
- de Mora, S.J.; Turner, T. The Caspian Sea: A microcosm for environmental science and international cooperation. Mar. Pollut. Bull. 2004, 48, 26–29. [Google Scholar] [CrossRef]
- Dumont, H. Ecocide in the Caspian Sea. Nature 1995, 377, 673–674. [Google Scholar] [CrossRef]
- Ghorbanzadeh, S.; Zaferani, A.; Machinchian Moradi, R.; Mousavi Nadushan, A.; Sari, F.S. Distribution pattern of heavy metals in the surficial sediment of Gorgan Bay (South Caspian Sea, Iran). Iran. J. Fish. Sci. 2016, 15, 1144–1166. [Google Scholar]
- Parizanganeh, A.; Lakhan, V.; Jalalian, H. A geochemical and statistical approach for assessing heavy metal pollution in sediments from the southern Caspian coast. Int. J. Environ. Sci. Technol. 2007, 4, 351–358. [Google Scholar] [CrossRef] [Green Version]
- Saghali, M.; Hoseini, S.M.; Hosseini, S.A.; Baqraf, R. Determination of heavy metal (Zn, Pb, Cd and Cr) concentration in benthic fauna tissues collected from the southeast Caspian Sea, Iran. Bull. Environ. Contam. Toxicol. 2014, 92, 57–60. [Google Scholar] [CrossRef]
- Sohrabi, T.; Ismail, A.; Nabavi, M. Distribution and normalization of some metals in surface sediments from South Caspian Sea. Bull. Environ. Contam. Toxicol. 2010, 85, 502–508. [Google Scholar] [CrossRef]
- Chronopoulos, J.; Haidouti, C.; Chronopoulou-Sereli, A.; Massas, I. Variations in plant and soil lead and cadmium content in urban parks in Athens, Greece. Sci. Total Environ. 1997, 196, 91–98. [Google Scholar] [CrossRef]
- O’Shea, T.J.; Geraci, J.R. Toxicology in marine mammals. In Zoo & Wild Animal Medicine: Current Therapy; Fowler, M.E., Miller, D.L., Eds.; W.B. Saunder Company: Philadelphia, PA, USA, 1999; pp. 412–478. [Google Scholar]
- Barron, M.G.; Heintz, R.; Krahn, M.M. Contaminant exposure and effects in pinnipeds: Implications for Steller sea lion declines in Alaska. Sci. Total Environ. 2003, 311, 111–133. [Google Scholar] [CrossRef]
- Das, K.; Debacker, V.; Pillet, S.; Bouquegneau, J.M. 7 Heavy metals in marine mammals. In Toxicology of Marine Mammals; Vos, J.G., Bossart, G., Fournier, M., O’Shea, T., Eds.; Taylor and Francis Publishers: Washington, DC, USA, 2003; pp. 135–167. [Google Scholar]
- Fossi, M.C.; Marsili, L.; Junin, M.; Castello, H.; Lorenzani, J.A.; Casini, S.; Savelli, C.; Leonzio, C. Use of nondestructive biomarkers and residue analysis to assess the health status of endangered species of pinnipeds in the south-west Atlantic. Mar. Pollut. Bull. 1997, 34, 157–162. [Google Scholar] [CrossRef]
- Storelli, M.M.; Storelli, A.; D’Addabbo, R.; Marano, C.; Bruno, R.; Marcotrigiano, G.O. Trace elements in loggerhead turtles (Caretta caretta) from the eastern Mediterranean Sea: Overview and evaluation. Environ. Pollut. 2005, 135, 163–170. [Google Scholar] [CrossRef] [PubMed]
- Cardellicchio, N.; Giandomenico, S.; Ragone, P.; Di Leo, A. Tissue distribution of metals in striped dolphins (Stenella coeruleoalba) from the Apulian coasts, Southern Italy. Mar. Environ. Res. 2000, 49, 55–66. [Google Scholar] [CrossRef] [PubMed]
- Anan, Y.; Kunito, T.; Ikemoto, T.; Kubota, R.; Watanabe, I.; Tanabe, S.; Miyazaki, N.; Petrov, E. Elevated concentrations of trace elements in Caspian seals (Phoca caspica) found stranded during the mass mortality events in 2000. Arch. Environ. Contam. Toxicol. 2002, 42, 354–362. [Google Scholar] [CrossRef]
- Anan, Y.; Kunito, T.; Watanabe, I.; Sakai, H.; Tanabe, S. Trace element accumulation in hawksbill turtles (Eretmochelys imbricata) and green turtles (Chelonia mydas) from Yaeyama Islands, Japan. Environ. Toxicol. Chem. 2001, 20, 2802–2814. [Google Scholar] [CrossRef]
- Brunborg, L.A.; Graff, I.E.; Frøyland, L.; Julshamn, K. Levels of non-essential elements in muscle from harp seal (Phagophilus groenlandicus) and hooded seal (Cystophora cristata) caught in the Greenland Sea area. Sci. Total Environ. 2006, 366, 784–798. [Google Scholar] [CrossRef]
- Bustamante, P.; Garrigue, C.; Breau, L.; Caurant, F.; Dabin, W.; Greaves, J.; Dodemont, R. Trace elements in two odontocete species (Kogia breviceps and Globicephala macrorhynchus) stranded in New Caledonia (South Pacific). Environ. Pollut. 2003, 124, 263–271. [Google Scholar] [CrossRef] [Green Version]
- Camacho, M.; Luzardo, O.P.; Boada, L.D.; Jurado, L.F.L.; Medina, M.; Zumbado, M.; Orós, J. Potential adverse health effects of persistent organic pollutants on sea turtles: Evidences from a cross-sectional study on Cape Verde loggerhead sea turtles. Sci. Total Environ. 2013, 458, 283–289. [Google Scholar] [CrossRef] [Green Version]
- Drescher, H.; Harms, U.; Huschenbeth, E. Organochlorines and heavy metals in the harbour seal Phoca vitulina from the German North Sea coast. Mar. Biol. 1977, 41, 99–106. [Google Scholar] [CrossRef]
- Frank, A.; Galgan, V.; Roos, A.; Olsson, M.; Petersson, L.R.; Bignert, A. Metal concentrations in seals from Swedish waters. Ambio. Stockh. 1992, 21, 529–538. [Google Scholar]
- Kakuschke, A.; Gandrass, J.; Luzardo, O.; Boada, L.; Zaccaroni, A.; Griesel, S.; Grebe, M.; Pröfrock, D.; Erbsloeh, H.-B.; Valentine-Thon, E. Postmortem health and pollution investigations on harbor seals (Phoca vitulina) of the islands Helgoland and Sylt. ISRN Zool. 2012, 2012, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Medvedev, N. Levels of Heavy Metals in Karelian Wildlife, 1989–1991. Environ. Monit. Assess. 1999, 56, 177–193. [Google Scholar] [CrossRef]
- Poppi, L.; Zaccaroni, A.; Pasotto, D.; Dotto, G.; Marcer, F.; Scaravelli, D.; Mazzariol, S. Post-mortem investigations on a leatherback turtle Dermochelys coriacea stranded along the Northern Adriatic coastline. Dis. Aquat. Org. 2012, 100, 71. [Google Scholar] [CrossRef] [Green Version]
- Watanabe, I.; Kunito, T.; Tanabe, S.; Amano, M.; Koyama, Y.; Miyazaki, N.; Petrov, E.; Tatsukawa, R. Accumulation of heavy metals in Caspian seals (Phoca caspica). Arch. Environ. Contam. Toxicol. 2002, 43, 109–120. [Google Scholar] [CrossRef] [PubMed]
- Ebadi, A.; Shokrzadeh, M. A survey and measurement of residues of lindane (organochlorine pesticides) in four species of the most consumed fish in the Caspian Sea (Iran). Toxicol. Ind. Health 2006, 22, 53–58. [Google Scholar] [CrossRef] [PubMed]
- Nasrabadi, T.; Bidhendi, G.N.; Karbassi, A.; Grathwohl, P.; Mehrdadi, N. Impact of major organophosphate pesticides used in agriculture to surface water and sediment quality (Southern Caspian Sea basin, Haraz River). Environ. Earth Sci. 2011, 63, 873–883. [Google Scholar] [CrossRef]
- Rahmanikhah, Z.; Sari, A.E.; Bahramifar, N.; Bousjien, Z.S. Organophosphorous pesticide residues in the surface and ground water in the Southern Coast Watershed of Caspian Sea, Iran. World Appl. Sci. J. 2010, 9, 160–166. [Google Scholar]
- Shahbazi, A.; Bahramifar, N.; Smolders, E. Elevated concentrations of pesticides and PCBs in soils at the Southern Caspian Sea (Iran) are related to land use. Soil Sediment Contam. Int. J. 2012, 21, 160–175. [Google Scholar] [CrossRef]
- Tanabe, S.; Iwata, H.; Tatsukawa, R. Global contamination by persistent organochlorines and their ecotoxicological impact on marine mammals. Sci. Total Environ. 1994, 154, 163–177. [Google Scholar] [CrossRef]
- Blanco-Muñoz, J.; Morales, M.M.; Lacasaña, M.; Aguilar-Garduño, C.; Bassol, S.; Cebrián, M.E. Exposure to organophosphate pesticides and male hormone profile in floriculturist of the state of Morelos, Mexico. Hum. Reprod. 2010, 25, 1787–1795. [Google Scholar] [CrossRef] [Green Version]
- Galloway, T.; Handy, R. Immunotoxicity of organophosphorous pesticides. Ecotoxicology 2003, 12, 345–363. [Google Scholar] [CrossRef]
- Helle, E.; Stenman, O.; Olsson, M.; Helander, B.; Härkönen, T. Baltic Seals; Ambio Special Report (Sweden); Kungl. Vetenskapsakademien: Stockholm, Sweden, 1990; p. 16. [Google Scholar]
- Readman, J.W.; Kwong, L.L.W.; Mee, L.D.; Bartocci, J.; Nilvé, G.; Rodriguez-Solano, J.; Gonzalez-Farias, F. Persistent organophosphorus pesticides in tropical marine environments. Mar. Pollut. Bull. 1992, 24, 398–402. [Google Scholar] [CrossRef]
- Aguilar, A.; Borrell, A. Abnormally high polychlorinated biphenyl levels in striped dolphins (Stenella coeruleoalba) affected by the 1990–1992 Mediterranean epizootic. Sci. Total Environ. 1994, 154, 237–247. [Google Scholar] [CrossRef] [PubMed]
- Das, K.; Seibel, H.; Hasseilmeier, I.; Lehnert, K.; Hellwig, V.; Dupont, A.; Weijs, L.; Siebert, U. New Insights in the Toxicology and Health Status of Marine Marine Mammals: Use of Free-Ranging Harbour Seals from the Wadden Sea. 2011. Available online: https://orbi.uliege.be/handle/2268/87995 (accessed on 30 October 2022).
- Fair, P.A.; Adams, J.; Mitchum, G.; Hulsey, T.C.; Reif, J.S.; Houde, M.; Muir, D.; Wirth, E.; Wetzel, D.; Zolman, E. Contaminant blubber burdens in Atlantic bottlenose dolphins (Tursiops truncatus) from two southeastern US estuarine areas: Concentrations and patterns of PCBs, pesticides, PBDEs, PFCs, and PAHs. Sci. Total Environ. 2010, 408, 1577–1597. [Google Scholar] [CrossRef] [PubMed]
- Kajiwara, N.; Niimi, S.; Watanabe, M.; Ito, Y.; Takahashi, S.; Tanabe, S.; Khuraskin, L.; Miyazaki, N. Organochlorine and organotin compounds in Caspian seals (Phoca caspica) collected during an unusual mortality event in the Caspian Sea in 2000. Environ. Pollut. 2002, 117, 391–402. [Google Scholar] [CrossRef]
- Goodman, S.; Dmitrieva, L. Pusa caspica. The IUCN Red List of Threatened Species e.T41669A45230700. 2016. Available online: https://doi.org/10.2305/IUCN.UK.2016-1.RLTS.T41669A45230700.en (accessed on 30 October 2022).
- Hall, A.; Duck, C.; Law, R.; Allchin, C.; Wilson, S.; Eybator, T. Organochlorine contaminants in Caspian and harbour seal blubber. Environ. Pollut. 1999, 106, 203–212. [Google Scholar] [CrossRef]
- Kajiwara, N.; Watanabe, M.; Wilson, S.; Eybatov, T.; Mitrofanov, I.V.; Aubrey, D.G.; Khuraskin, L.S.; Miyazaki, N.; Tanabe, S. Persistent organic pollutants (POPs) in Caspian seals of unusual mortality event during 2000 and 2001. Environ. Pollut. 2008, 152, 431–442. [Google Scholar] [CrossRef]
- Kennedy, S.; Kuiken, T.; Jepson, P.D.; Deaville, R.; Forsyth, M.; Barrett, T.; Van de Bildt, M.; Osterhaus, A.; Eybatov, T.; Duck, C. Mass die-off of Caspian seals caused by canine distemper virus. Emerg. Infect. Dis. 2000, 6, 637. [Google Scholar] [CrossRef] [Green Version]
- Kuiken, T.; Kennedy, S.; Barrett, T.; Van de Bildt, M.; Borgsteede, F.; Brew, S.; Codd, G.; Duck, C.; Deaville, R.; Eybatov, T. The 2000 canine distemper epidemic in Caspian seals (Phoca caspica): Pathology and analysis of contributory factors. Vet. Pathol. 2006, 43, 321–338. [Google Scholar] [CrossRef] [Green Version]
- Watanabe, M.; Tanabe, S.; Tatsukawa, R.; Amano, M.; Miyazaki, N.; Petrov, E.; Khuraskin, S. Contamination levels and specific accumulation of persistent organochlorines in Caspian seal (Phoca caspica) from the Caspian Sea, Russia. Arch. Environ. Contam. Toxicol. 1999, 37, 396–407. [Google Scholar] [CrossRef]
- Wilson, S.C.; Eybatov, T.M.; Amano, M.; Jepson, P.D.; Goodman, S.J. The role of canine distemper virus and persistent organic pollutants in mortality patterns of Caspian seals (Pusa caspica). PLoS ONE 2014, 9, e99265. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ershova, T.; Zaitsev, V.; Chaplygin, V.; Gadzhiev, A. Concentration of Essential Elements (Cu, Fe, Zn, Mn) in Organs and Tissues of Caspian Seal Phoca caspica Gmelin, 1788. In Proceedings of the IOP Conference Series: Earth and Environmental Science, Jakarta, Indonesia, 25–26 September 2021; p. 012024. [Google Scholar]
- Dadar, M.; Adel, M.; Nasrollahzadeh Saravi, H.; Fakhri, Y. Trace element concentration and its risk assessment in common kilka (Clupeonella cultriventris caspia Bordin, 1904) from southern basin of Caspian Sea. Toxin Rev. 2017, 36, 222–227. [Google Scholar] [CrossRef]
- Dadar, M.; Adel, M.; Saravi, H.N.; Dadar, M. A comparative study of trace metals in male and female Caspian kutum (Rutilus frisii kutum) from the southern basin of Caspian Sea. Environ. Sci. Pollut. Res. 2016, 23, 24540–24546. [Google Scholar] [CrossRef] [PubMed]
- Najafpour, S.; Nasorllahzadeh, H.; Pourgholam, R.; Farabi, S.; Varedi, S.; Gholamipour, S.; Naderi, M.; Toohidi, F.; Eskandari, T.; Safari, R. Determination of Pollution Condition in Babolroud River from Viewpoint of Pesticides and Agrochemicals Fertilizers; Iranian Fisheries Science Research Institute: Tehran, Iran, 2015; p. 81. [Google Scholar]
- Zazouli, M.A.; Safarpour, M. A Systematic Review of Organochlorinated Pesticide Residues in Caspian Sea Fishes. Health Scope 2017, 6, e36279. [Google Scholar] [CrossRef] [Green Version]
- Amano, M.; Miyazaki, N.; Petrov, E. Age determination and growth of Baikal seals (Phoca sibirica). Adv. Ecol. Res. 2000, 31, 449–462. [Google Scholar]
- Zaccaroni, A.; Corteggio, A.; Altamura, G.; Silvi, M.; Di Vaia, R.; Formigaro, C.; Borzacchiello, G. Elements levels in dogs from “triangle of death” and different areas of Campania region (Italy). Chemosphere 2014, 108, 62–69. [Google Scholar] [CrossRef]
- Covaci, A.; Gheorghe, A.; Hulea, O.; Schepens, P. Levels and distribution of organochlorine pesticides, polychlorinated biphenyls and polybrominated diphenyl ethers in sediments and biota from the Danube Delta, Romania. Environ. Pollut. 2006, 140, 136–149. [Google Scholar] [CrossRef]
- Naseri, K.; Miri, M.; Zeinali, M.; Zeinali, T. Evaluation of organochlorine pesticide (OCP) residues in meat and edible organs, Iran. Environ. Sci. Pollut. Res. 2019, 26, 30980–30987. [Google Scholar] [CrossRef] [PubMed]
- Golshani, R.; Mashinchian Moradi, A.; Mosavi Nodoshan, R.; Fatemi, S.; GHavam Mostafavi, P. Organophosphorus pesticides (diazinon, malathion and azinfos methyl) accumulation in three fish species, in south coasts of the Caspian Sea, Iran. Iran. J. Fish. Sci. 2020, 19, 3050–3062. [Google Scholar]
- Ikemoto, T.; Kunito, T.; Watanabe, I.; Yasunaga, G.; Baba, N.; Miyazaki, N.; Petrov, E.A.; Tanabe, S. Comparison of trace element accumulation in Baikal seals (Pusa sibirica), Caspian seals (Pusa caspica) and northern fur seals (Callorhinus ursinus). Environ. Pollut. 2004, 127, 83–97. [Google Scholar] [CrossRef] [PubMed]
- Formigaro, C.; Karamanlidis, A.A.; Dendrinos, P.; Marsili, L.; Silvi, M.; Zaccaroni, A. Trace element concentrations in the Mediterranean monk seal (Monachus monachus) in the eastern Mediterranean Sea. Sci. Total Environ. 2017, 576, 528–537. [Google Scholar] [CrossRef] [PubMed]
- Lake, C.; Lake, J.; Haebler, R.; McKinney, R.; Boothman, W.; Sadove, S. Contaminant levels in harbor seals from the northeastern United States. Arch. Environ. Contam. Toxicol. 1995, 29, 128–134. [Google Scholar] [CrossRef] [PubMed]
- Medvedev, N.; Panichev, N.; Hyvärinen, H. Levels of heavy metals in seals of Lake Ladoga and the White Sea. Sci. Total Environ. 1997, 206, 95–105. [Google Scholar] [CrossRef]
- Nyman, M.; Koistinen, J.; Fant, M.L.; Vartiainen, T.; Helle, E. Current levels of DDT, PCB and trace elements in the Baltic ringed seals (Phoca hispida baltica) and grey seals (Halichoerus grypus). Environ. Pollut. 2002, 119, 399–412. [Google Scholar] [CrossRef]
- Watanabe, I.; Tanabe, S.; Amano, M.; Miyazaki, N.; Petrov, E.; Tatsukawa, R. Age-dependent accumulation of heavy metals in Baikal seal (Phoca sibirica) from the Lake Baikal. Arch. Environ. Contam. Toxicol. 1998, 35, 518–526. [Google Scholar] [CrossRef]
- Brookens, T.J.; O’Hara, T.M.; Taylor, R.J.; Bratton, G.R.; Harvey, J.T. Total mercury body burden in Pacific harbor seal, Phoca vitulina richardii, pups from central California. Mar. Pollut. Bull. 2008, 56, 27–41. [Google Scholar] [CrossRef] [PubMed]
- Bustamante, P.; Caurant, F.; Fowler, S.W.; Miramand, P. Cephalopods as a vector for the transfer of cadmium to top marine predators in the north-east Atlantic Ocean. Sci. Total Environ. 1998, 220, 71–80. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Julshamn, K.; Grahl-Nielsen, O. Trace element levels in harp seal (Pagophilus groenlandicus) and hooded seal (Cystophora cristata) from the Greenland Sea. A multivariate approach. Sci. Total Environ. 2000, 250, 123–133. [Google Scholar] [CrossRef]
- Skaare, J.U.; Degre, E.; Aspholm, P.E.; Ugland, K.I. Mercury and selenium in Arctic and coastal seals off the coast of Norway. Environ. Pollut. 1994, 85, 153–160. [Google Scholar] [CrossRef]
- Skaare, J.U.; Markussen, N.H.; Norheim, G.; Haugen, S.; Holt, G. Levels of polychlorinated biphenyls, organochlorine pesticides, mercury, cadmium, copper, selenium, arsenic, and zinc in the harbour seal, Phoca vitulina, in Norwegian waters. Environ. Pollut. 1990, 66, 309–324. [Google Scholar] [CrossRef]
- Palmisano, F.; Cardellicchio, N.; Zambonin, P. Speciation of mercury in dolphin liver: A two-stage mechanism for the demethylation accumulation process and role of selenium. Mar. Environ. Res. 1995, 40, 109–121. [Google Scholar] [CrossRef]
- Law, R. Metals in marine mammals. In Environmental Contaminant s in Wildlife: Interpreting Tissue Concentrations; Beyer, W.N., Heinz, G.H., Redmond-Norwood, A.W., Eds.; CRC Press Inc., Lewis Publishers Inc.: Boca Raton, FL, USA, 1996; pp. 357–376. [Google Scholar]
- Wellinghausen, N.; Martin, M.; Rink, L. Zinc inhibits interleukin-1-dependent T cell stimulation. Eur. J. Immunol. 1997, 27, 2529–2535. [Google Scholar] [CrossRef] [PubMed]
- Chandra, R.K. Nutrition and the immune system: An introduction. Am. J. Clin. Nutr. 1997, 66, 460S–463S. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chandra, R.K. Graying of the immune system: Can nutrient supplements improve immunity in the elderly? JAMA 1997, 277, 1398–1399. [Google Scholar] [CrossRef] [PubMed]
- Chandra, R. Excessive intake of zinc impairs immune responses. Pediatr. Infect. Dis. J. 1985, 4, 112. [Google Scholar] [CrossRef]
- Chandra, R.K.; Grace, A. Goldsmith Award lecture. Trace element regulation of immunity and infection. J. Am. Coll. Nutr. 1985, 4, 5–16. [Google Scholar] [CrossRef]
- Eslami, S.; Moghaddam, A.H.; Jafari, N.; Nabavi, S.F.; Nabavi, S.M.; Ebrahimzadeh, M.A. Trace element level in different tissues of Rutilus frisii kutum collected from Tajan River, Iran. Biol. Trace Elem. Res. 2011, 143, 965–973. [Google Scholar] [CrossRef]
- Davis, G.K. Microelement interactions of zinc, copper, and iron in mammalian species. Ann. N. Y. Acad. Sci. 1980, 355, 130–139. [Google Scholar] [CrossRef]
- Perttilä, M.; Stenman, O.; Pyysalo, H.; Wickström, K. Heavy metals and organochlorine compounds in seals in the Gulf of Finland. Mar. Environ. Res. 1986, 18, 43–59. [Google Scholar] [CrossRef]
- Yeats, P.; Stenson, G.; Hellou, J. Essential elements and priority contaminants in liver, kidney, muscle and blubber of harp seal beaters. Sci. Total Environ. 1999, 243–244, 157–167. [Google Scholar] [CrossRef]
- AMAP. AMAP Assessment 2002: Heavy Metals in the Arctic; Arctic Monitoring and Assessment Programme (AMAP): Tromsø, Norway, 2005. [Google Scholar]
- Freeman, H.; Sangalang, G.; Uthe, J.; Ronald, K. Steroidogenesis in vitro in the harp seal (Pagophilus groenlandicus) without and with methyl mercury treatment in vivo. Environ. Physiol. Biochem. 1975, 5, 428–439. [Google Scholar]
- Wolfe, M.F.; Schwarzbach, S.; Sulaiman, R.A. Effects of mercury on wildlife: A comprehensive review. Environ. Toxicol. Chem. Int. J. 1998, 17, 146–160. [Google Scholar] [CrossRef]
- Manavi, P.N.; Mahdavi, E.S.; Mazumder, A. Organochlorine pesticides in two fish species from the southern Caspian Sea. Mar. Pollut. Bull. 2018, 133, 289–293. [Google Scholar] [CrossRef] [PubMed]
- Seifzadeh, M.; Valipour, A.; Zarehgashti, G.; Khanipour, A. Study on bioaccumulation of aldrin, diazinon and endrin pesticides in the edible muscle tissues of commercially important fish species of the Anzali Wetland. Iran. Sci. Fish. J. 2018, 27, 23–30. [Google Scholar]
- Shokrzadeh, M. Survey and measurement of residues of dieldrin and endosulphan in four species of fishesin Casplan sea, Iran. Int. J. Biol. Biotechnol. (Pak.) 2005, 2, 47–51. [Google Scholar]
- Harkonen, T.; Jüssi, M.; Baimukanov, M.; Bignert, A.; Dmitrieva, L.; Kasimbekov, Y.; Verevkin, M.; Wilson, S.; Goodman, S.J. Pup production and breeding distribution of the Caspian seal (Phoca caspica) in relation to human impacts. AMBIO A J. Hum. Environ. 2008, 37, 356–361. [Google Scholar] [CrossRef]
- Vetted, W.; Natzeck, C.; Luckas, B.; Heidemann, G.; Kiabi, B.; Karami, M. Chlorinated hydrocarbons in the blubber of a seal (Phoca caspica) from the Caspian Sea. Chemosphere 1995, 30, 1685–1696. [Google Scholar] [CrossRef]
- Tanabe, S.; Niimi, S.; Minh, T.B.; Miyazaki, N.; Petrov, E.A. Temporal trends of persistent organochlorine contamination in Russia: A case study of Baikal and Caspian seal. Arch. Environ. Contam. Toxicol. 2003, 44, 0533–0545. [Google Scholar] [CrossRef]
- Aguilar, A. Relationship of DDE/ΣDDT in marine mammals to the chronology of DDT input into the ecosystem. Can. J. Fish. Aquat. Sci. 1984, 41, 840–844. [Google Scholar] [CrossRef]
- Hosseini, S.V.; Behrooz, R.D.; Esmaili-Sari, A.; Bahramifar, N.; Hosseini, S.M.; Tahergorabi, R.; Hosseini, S.F.; Feás, X. Contamination by organochlorine compounds in the edible tissue of four sturgeon species from the Caspian Sea (Iran). Chemosphere 2008, 73, 972–979. [Google Scholar] [CrossRef]
- Fadaei, A.; Dehghani, M.H.; Nasseri, S.; Mahvi, A.H.; Rastkari, N.; Shayeghi, M. Organophosphorous pesticides in surface water of Iran. Bull. Environ. Contam. Toxicol. 2012, 88, 867–869. [Google Scholar] [CrossRef]
- Pandey, G.; Carney, G. Environmental Engineering; Tata McGraw-Hill Publishing Company Limited: New York, NY, USA, 1989. [Google Scholar]
- Shayeghi, M.; Shahtaheri, S.; Selseleh, M. Phosphorous insecticides residues in Mazandaran river waters, Iran (2000). Iran. J. Public Health 2001, 30, 115–118. [Google Scholar]
- Shokrzadeh, M.; Karimi, M.; Mohammadi, H. Diazinon Residues in Rutilus Frisii Kutum, Cyprinus Carpio, and Leaping Mullet in Central Coast of the Caspian Sea. J. Maz. Univ. Med. Sci. 2016, 25, 183–192. [Google Scholar]
- Agusa, T.; Nomura, K.; Kunito, T.; Anan, Y.; Iwata, H.; Miyazaki, N.; Tatsukawa, R.; Tanabe, S. Interelement relationships and age-related variation of trace element concentrations in liver of striped dolphins (Stenella coeruleoalba) from Japanese coastal waters. Mar. Pollut. Bull. 2008, 57, 807–815. [Google Scholar] [CrossRef] [PubMed]
- Akmajian, A.; Calambokidis, J.; Huggins, J.L.; Lambourn, D. Age, Region, and Temporal Patterns of Trace Elements Measured in Stranded Harbor Seals (Phoca vitulina richardii) from Washington Inland Waters. Northwestern Nat. 2014, 95, 83–91. [Google Scholar] [CrossRef]
- García-Alvarez, N.; Fernández, A.; Boada, L.D.; Zumbado, M.; Zaccaroni, A.; Arbelo, M.; Sierra, E.; Almunia, J.; Luzardo, O.P. Mercury and selenium status of bottlenose dolphins (Tursiops truncatus): A study in stranded animals on the Canary Islands. Sci. Total Environ. 2015, 536, 489–498. [Google Scholar] [CrossRef]
- Lavery, T.J.; Butterfield, N.; Kemper, C.M.; Reid, R.J.; Sanderson, K. Metals and selenium in the liver and bone of three dolphin species from South Australia, 1988–2004. Sci. Total Environ. 2008, 390, 77–85. [Google Scholar] [CrossRef]
- Pompe-Gotal, J.; Srebocan, E.; Gomercic, H.; Crnic, A.P. Mercury concentrations in the tissues of bottlenose dolphins (Tursiops truncatus) and striped dolphins (Stenella coeruloalba) stranded on the Croatian Adriatic coast. Vet. Med. 2009, 54, 598–604. [Google Scholar] [CrossRef] [Green Version]
- Stewardson, C.; De Kock, A.; Saunders, C. Concentrations of heavy metals (Cd, Cu, Pb, Ni & Zn) and organochlorine contaminants (PCBs, DDT, DDE & DDD) in the blubber of Cape fur seals Arctocephalus pusillus pusillus off the Eastern Cape coast of South Africa. Trans. R. Soc. South Afr. 1999, 54, 205–215. [Google Scholar]
- Aguilar, A.; Borrell, A.; Pastor, T. Biological factors affecting variability of persistent pollutant levels in cetaceans. J. Cetacean Res. Manag. 1999, 83–116. [Google Scholar] [CrossRef]
- Méndez-Fernandez, P.; Webster, L.; Chouvelon, T.; Bustamante, P.; Ferreira, M.; González, A.F.; López, A.; Moffat, C.F.; Pierce, G.J.; Read, F.L. An assessment of contaminant concentrations in toothed whale species of the NW Iberian Peninsula: Part II. Trace element concentrations. Sci. Total Environ. 2014, 484, 206–217. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, I.; Ichihashi, H.; Tanabe, S.; Amano, M.; Miyazaki, N.; Petrov, E.A.; Tatsukawa, R. Trace element accumulation in Baikal seal (Phoca sibirica) from the Lake Baikal. Environ. Pollut. 1996, 94, 169–179. [Google Scholar] [CrossRef]
- Ciesielski, T.; Pastukhov, M.; Szefer, P.; Jenssen, B. Bioaccumulation of mercury in the pelagic food chain of the Lake Baikal. Chemosphere 2010, 78, 1378–1384. [Google Scholar] [CrossRef]
- Hyvärinen, H.; Sipilä, T. Heavy metals and high pup mortality in the Saimaa ringed seal population in Eastern Finland. Mar. Pollut. Bull. 1984, 15, 335–337. [Google Scholar] [CrossRef]
- Hyvärinen, H.; Sipilä, T.; Kunnasranta, M.; Koskela, J.T. Mercury pollution and the Saimaa ringed seal (Phoca hispida saimensis). Mar. Pollut. Bull. 1998, 36, 76–81. [Google Scholar] [CrossRef]
- Lyytikäinen, M.; Pätynen, J.; Hyvärinen, H.; Sipilä, T.; Kunnasranta, M. Mercury and Selenium Balance in Endangered Saimaa Ringed Seal Depend on Age and Sex. Environ. Sci. Technol. 2015, 49, 11808–11816. [Google Scholar] [CrossRef] [PubMed]
- Ciesielski, T.; Pastukhov, M.V.; Fodor, P.; Bertenyi, Z.; Namieśnik, J.; Szefer, P. Relationships and bioaccumulation of chemical elements in the Baikal seal (Phoca sibirica). Environ. Pollut. 2006, 139, 372–384. [Google Scholar] [CrossRef]
- Honda, K.; Tatsukawa, R.; Itano, K.; Miyazaki, N.; Fujiyama, T. Heavy metal concentrations in muscle, liver and kidney tissue of striped dolphin, Stenella coeruleoalba, and their variations with body length, weight, age and sex. Agric. Biol. Chem. 1983, 47, 1219–1228. [Google Scholar]
- Wagemann, R.; Innes, S.; Richard, P. Overview and regional and temporal differences of heavy metals in Arctic whales and ringed seals in the Canadian Arctic. Sci. Total Environ. 1996, 186, 41–66. [Google Scholar] [CrossRef]
- Haraguchi, H. Multielement Profiling Analyses of Biological, Geochemical, and Environmental Samples as Studied by Analytical Atomic Spectrometry. Bull. Chem. Soc. Jpn. 1999, 72, 1163–1186. [Google Scholar] [CrossRef]
- Imura, N.; Pan, S.; Shimizu, M.; Ukita, T.; Tonomura, K. Formation and accumulation of methylmercury in organisms. Ecotoxicol. Environ. Saf. 1977, 1, 255–261. [Google Scholar] [CrossRef]
- Lasorsa, B.; Allen-Gil, S. The methylmercury to total mercury ratio in selected marine, freshwater, and terrestrial organisms. In Mercury as a Global Pollutant; Springer: Berlin/Heidelberg, Germany, 1995; pp. 905–913. [Google Scholar]
- Harding, G.; Dalziel, J.; Vass, P. Bioaccumulation of methylmercury within the marine food web of the outer Bay of Fundy, Gulf of Maine. PLoS ONE 2018, 13, e0197220. [Google Scholar] [CrossRef] [PubMed]
- Ruus, A.; Øverjordet, I.B.; Braaten, H.F.V.; Evenset, A.; Christensen, G.; Heimstad, E.S.; Gabrielsen, G.W.; Borgå, K. Methylmercury biomagnification in an Arctic pelagic food web. Environ. Toxicol. Chem. 2015, 34, 2636–2643. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Borrell, A.; Aguilar, A.; Cantos, G.; Lockyer, C.; Heide-Jǿrgensen, M.P.; Jensen, J. Organochlorine residues in harbour porpoises from Southwest Greenland. Environ. Pollut. 2004, 128, 381–391. [Google Scholar] [CrossRef] [PubMed]
- Nakata, H.; Tanabe, S.; Tatsukawa, R.; Koyama, Y.; Miyazaki, N.; Belikov, S.; Boltunov, A. Persistent organochlorine contaminants in ringed seals (Phoca hispida) from the Kara Sea, Russian Arctic. Environ. Toxicol. Chem. 1998, 17, 1745–1755. [Google Scholar] [CrossRef]
- Dmitrieva, L.; Härkönen, T.; Baimukanov, M.; Bignert, A.; Jüssi, I.; Jüssi, M.; Kasimbekov, Y.; Verevkin, M.; Vysotskiy, V.; Wilson, S. Inter-year variation in pup production of Caspian seals Pusa caspica 2005 2012 determined from aerial surveys. Endanger. Species Res. 2015, 28, 209–223. [Google Scholar] [CrossRef] [Green Version]
- Harkonen, T.; Harding, K.C.; Wilson, S.; Baimukanov, M.; Dmitrieva, L.; Svensson, C.J.; Goodman, S.J. Collapse of a marine mammal species driven by human impacts. PLoS ONE 2012, 7, e43130. [Google Scholar] [CrossRef]
- Espeland, O.; Kleivane, L.; Haugen, S.; Skaare, J.U. Organochlorines in mother and pup pairs in two Arctic seal species: Harp seal (Phoca groenlandica) and hooded seal (Cystophora cristata). Mar. Environ. Res. 1997, 44, 315–330. [Google Scholar] [CrossRef]
- Wagemann, R. Concentrations of Heavy Metals and Organochlorines in Marine Mammlas of Northern Waters: Overview and Evaluation; Fisheries and Oceans Canada: Winnipeg, Canada, 1984; p. 97. [Google Scholar]
- Dietz, R.; Sonne, C.; Basu, N.; Braune, B.; O’Hara, T.; Letcher, R.J.; Scheuhammer, T.; Andersen, M.; Andreasen, C.; Andriashek, D. What are the toxicological effects of mercury in Arctic biota? Sci. Total Environ. 2013, 443, 775–790. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scheuhammer, A.; Braune, B.; Chan, H.M.; Frouin, H.; Krey, A.; Letcher, R.; Loseto, L.; Noël, M.; Ostertag, S.; Ross, P. Recent progress on our understanding of the biological effects of mercury in fish and wildlife in the Canadian Arctic. Sci. Total Environ. 2015, 509, 91–103. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shoham-Frider, E.; Goffman, O.; Harlavan, Y.; Kress, N.; Morick, D.; Roditi-Elasar, M.; Shefer, E.; Kerem, D. Trace elements in striped dolphins (Stenella coeruleoalba) from the Eastern Mediterranean: A 10-years perspective. Mar. Pollut. Bull. 2016, 109, 624–632. [Google Scholar] [CrossRef] [PubMed]
- Shoham-Frider, E.; Kerem, D.; Roditi-Elasar, M.; Goffman, O.; Morick, D.; Yoffe, O.; Kress, N. Trace elements in tissues of cetacean species rarely stranded along the Israeli Mediterranean coast. Mar. Pollut. Bull. 2014, 83, 376–382. [Google Scholar] [CrossRef] [PubMed]
- Forsyth, D. Extrapolation of laboratory tests to field populations. In Ecotoxicology of Wild Mammals; John Wiley and Sons: Chichester, UK, 2001; pp. 577–634. [Google Scholar]
- Abbasian, H.; Ashayeri, A.; Meigooni, H.G.; Hosseinmarzeh, S. Aquatic ecosystem pollution and ecological impacts of agricultural sewage in the Caspian Sea watershed. J. Ecol. Nat. Environ. 2012, 4, 241–246. [Google Scholar] [CrossRef]
Compound | Units | LOD | LOQ | Recovery% |
---|---|---|---|---|
beta-Mevinphos | ppb | 0.66 | 2.20 | 69 |
Trifluralin | ppb | 0.39 | 1.30 | 76 |
Diazinon | ppb | 0.56 | 1.86 | 82 |
Disolfoton | ppb | 1.30 | 4.33 | 81 |
Methyl Parathion | ppb | 0,88 | 2.93 | 70 |
Ethyl Paraoxon | ppb | 0.76 | 2.53 | 89 |
Fenitrothion | ppb | 0.78 | 2.60 | 87 |
Malathion | ppb | 0.65 | 2.16 | 79 |
Fenthion | ppb | 0.12 | 0.40 | 88 |
Chlorpyrifos | ppb | 0.19 | 0.63 | 79 |
Parathion | ppb | 0.32 | 1.07 | 102 |
Bromofos | ppb | 0.39 | 1.30 | 89 |
Trans-Chlorfenvinphos | ppb | 0.49 | 1.63 | 93 |
Butachlor | ppb | 0.55 | 1.83 | 81 |
Profenophos | ppb | 0.36 | 1.20 | 77 |
Ethion | ppb | 0.39 | 1.30 | 106 |
Azinphos methyl | ppb | 0.50 | 1.50 | 93 |
Aldrin | ppb | 1.69 | 5.63 | 100 |
Dieldrin | ppb | 2.08 | 6.94 | 101 |
Endrin | ppb | 2.26 | 7.52 | 104 |
Endrinketon | ppb | 1.76 | 5,86 | 98 |
Endrin aldehyde | ppb | 1.21 | 4.02 | 105 |
Lindane | ppb | 1.43 | 4.76 | 102 |
4,4-DDT | ppb | 1.86 | 6.21 | 95 |
4,4-DDE | ppb | 1.23 | 4.11 | 96 |
4,4-DDD | ppb | 2.16 | 7.21 | 96 |
Endosulfan | ppb | 2.92 | 9.73 | 100 |
ά-HCH | ppb | 1.11 | 3.70 | 105 |
delta-HCH | ppb | 1.45 | 4.84 | 96 |
Heptachlor | ppb | 8.95 | 29.82 | 98 |
Heptachlor epoxide | ppb | 2.16 | 7.21 | 104 |
Methoxychlor | ppb | 4.23 | 14.11 | 95 |
Cu | ppb | 0.77 | 0.95 | 95 |
Fe | ppb | 0.55 | 0.73 | 100 |
Mn | ppb | 0.14 | 0.23 | 98 |
Zn | ppb | 0.64 | 0.83 | 90 |
Cr | ppb | 0.71 | 0.81 | 105 |
Ni | ppb | 1.8 | 2.03 | 98 |
As | ppb | 0.1 | 0.15 | 112 |
Pb | ppb | 0.1 | 0.13 | 96 |
Cd | ppb | 1.8 | 2.11 | 99 |
Se | ppb | 0.1 | 0.15 | 115 |
Hg | ppb | 0.061 | 0.10 | 120 |
Seal | Age | Sex | BT (cm) | SL (cm) | AG (cm) |
---|---|---|---|---|---|
1 | 18 | F | 5 | 131 | 84 |
2 | 17 | F | 6.1 | 130 | 89 |
3 | 16 | M | 5 | 118 | 83 |
4 | 26 | F | 5.5 | 140 | 88 |
5 | 19 | F | 4.2 | 132 | 74 |
6 | 27 | F | 5.3 | 148 | 101 |
7 | 10 | M | 0.8 | 99 | 75 |
8 | 20 | M | 2.3 | 136 | 52 |
9 | 6 | M | 6 | 95 | 82 |
10 | 19 | F | 6.5 | 131 | 100 |
11 | 11 | F | 4.2 | 115 | 104 |
12 | 11 | F | 2.8 | 125 | 65 |
13 | 25 | M | 6 | 149 | 95 |
14 | 9 | M | 5.9 | 98 | 83 |
15 | 15 | F | 4.8 | 128 | 100 |
16 | 10 | M | 4.8 | 100 | 90 |
17 | 21 | F | 4.6 | 145 | 97 |
18 | 7 | M | 3.9 | 96 | 82 |
19 | 12 | M | 5.5 | 120 | 96 |
20 | 28 | M | 7 | 150 | 99 |
Tissue | Cu | Fe | Mn | Zn | Cr | Ni | |
Blubber | Total | 0.62 ± 0.33 | 8.86 ± 5.80 | 0.14 ± 0.03 | 0.27 ± 0.24 | 0.16 ± 0.11 | 0.09 ± 0.08 |
Females | 0.58 ± 0.32 | 9.85 ± 7.55 | 0.15 ± 0.03 | 0.38 ± 0.27 | 0.15 ± 0.09 | 0.10 ± 0.11 | |
Males | 0.69 ± 0.39 | 7.53 ± 3.27 | 0.12 ± 0.03 | 0.12 ± 0.05 | 0.18 ± 0.16 | 0.07 ± 0.02 | |
Liver | Total | 13.19 ± 5.40 | 543.50 ± 570.93 | 2.95 ± 1.85 | 30.1 ± 47.30 | 0.29 ± 0.17 | 0.13 ± 0.05 |
Females | 15.17 ± 3.35 | 372.57 ± 136.39 | 2.17 ± 1.27 | 16.99 ± 5.89 | 0.30 ± 0.12 | 0.16 ± 0.08 | |
Males | 11.87 ± 6.37 | 657.45 ± 732.55 | 3.47 ± 2.10 | 38.69 ± 61.48 | 0.28 ± 0.20 | 0.21 ± 0.13 | |
Kidney | Total | 12.88 ± 5.79 | 360.38 ± 79.89 | 1.68 ± 1.87 | 24.82 ± 27.73 | 0.34 ± 0.13 | 0.13 ± 0.07 |
Females | 15.18 ± 4.90 | 338.33 ± 62.93 | 1.21 ± 0.56 | 16.53 ± 4.42 | 0.33 ± 0.16 | 0.10 ± 0.03 | |
Males | 11.73 ± 6.27 | 371.40 ± 90.50 | 1.92 ± 2.29 | 28.96 ± 34.06 | 0.43 ± 0.13 | 0.14 ± 0.09 | |
Heart | Total | 13.21 ± 2.47 | 207.93 ± 51.78 | 0.49 ± 0.11 | 22.65 ± 4.82 | 0.28 ± 0.11 | 0.08 ± 0.03 |
Females | 14.00 ± 0.76 | 226.86 ± 73.45 | 0.59 ± 0.11 | 23.02 ± 0.36 | 0.36 ± 0.18 | 0.11 ± 0.05 | |
Males | 12.81 ± 3.05 | 198.47 ± 48.09 | 0.44 ± 0.08 | 22.46 ± 6.21 | 0.24 ± 0.05 | 0.07 ± 0.02 | |
Muscle | Total | 9.99 ± 9.03 | 290.46 ± 250.35 | 2.03 ± 2.26 | 12.19 ± 9.29 | 0.33 ± 0.09 | 0.12 ± 0. 80 |
Females | 10.57 ± 8.34 | 301.24 ± 189.71 | 2.41 ± 1.71 | 10.41 ± 8.27 | 0.41 ± 0.11 | 0.11 ± 0.07 | |
Males | 9.41 ± 9.71 | 279.68 ± 310.98 | 1.65 ± 2.81 | 13.97 ± 10.31 | 0.24 ± 0.06 | 0.13 ± 0.09 | |
Tissue | As | Pb | Cd | Se | Hg | ||
Blubber | Total | 0.10 ± 0.05 | 0.03 ± 0.02 | 0.02 ± 0.004 | 0.06 ± 0.06 | 1.09 ± 0.49 | |
Females | 0.12 ± 0.05 | 0.03 ± 0.02 | 0.03 ± 0.002 | 0.05 ± 0.05 | 1.46 ± 0.22 | ||
Males | 0.07 ± 0.04 | 0.02 ± 0.01 | 0.02 ± 0.01 | 0.07 ± 0.07 | 0.59 ± 0.05 | ||
Liver | Total | 0.06 ± 0.03 | 1.76 ± 4.79 | 0.61 ± 0.87 | 0.75 ± 0.44 | 15.12 ± 15.84 | |
Females | 0.06 ± 0.04 | 0.52 ± 0.75 | 0.77 ± 0.56 | 0.83 ± 0.56 | 5.09 ± 2.55 | ||
Males | 0.05 ± 0.02 | 2.58 ± 6.23 | 0.51 ± 1.07 | 0.70 ± 0.39 | 21.80 ± 17.70 | ||
Kidney | Total | 0.06 ± 0.01 | 0.18 ± 0.28 | 5.89 ± 14.37 | 0.29 ± 0.20 | 5.09 ± 3.72 | |
Females | 0.05 ± 0.01 | 0.08 ± 0.06 | 1.61 ± 1.08 | 0.28 ± 0.42 | 4.02 ± 2.12 | ||
Males | 0.07± 0.01 | 0.22 ± 0.35 | 8.03 ± 17.70 | 0.30 ± 0.20 | 5.63 ± 4.39 | ||
Heart | Total | 0.05 ± 0.03 | 0.07 ± 0.09 | 0.03 ± 0.01 | 0.34 ± 0.07 | 2.79 ± 1.54 | |
Females | 0.06 ± 0.04 | 0.02 ± 0.001 | 0.03 ± 0.01 | 0.39 ± 0.05 | 3.08 ± 2.58 | ||
Males | 0.04 ± 0.03 | 0.09 ± 0.11 | 0.02 ± 0.01 | 0.31 ± 0.07 | 2.65 ± 1.29 | ||
Muscle | Total | 0.06 ± 0.02 | 0.60 ± 1.01 | 0.18 ± 0.37 | 0.45 ± 0.55 | 7.67 ± 2.29 | |
Females | 0.07 ± 0.02 | 0.57 ± 0.99 | 0.15 ± 0.41 | 0.45 ± 0.51 | 8.05 ± 2.01 | ||
Males | 0.05 ± 0.01 | 0.62 ± 1.02 | 0.21 ± 0.33 | 0.44 ± 0.58 | 7.29 ± 2.56 |
Trace Element | Tissue Concentration (mg/kg) | Reference | ||||
---|---|---|---|---|---|---|
Liver | Kidney | Muscle | Blubber | Heart | ||
Fe | 543.50 ± 570.93 | 360.38 ± 79.89 | 290.46 ± 250.35 | 8.86 ± 5.80 | 207.93 ± 51.78 | Present study |
470 ± 580 | 150 ± 42 | 200 ± 64 | [26] | |||
543.50 ± 570.93 | 543.50 ± 570.93 | 543.50 ± 570.93 | 543.50 ± 570.93 | 543.50 ± 570.93 | [47] | |
1100 ± 510 (2000) | 200 ± 97 (2000) | 410 ± 200 (2000) | [16] | |||
481.9 ± 15.6 | 287.2 ± 12.3 | 338.9 ± 14.3 | 367 ± 12.9 | 280.8 ± 11.4 | [47] | |
Mn | 2.95 ± 1.85 | 1.68 ± 1.87 | 2.03 ± 2.26 | 0.14 ± 0.03 | 0.49 ± 0.11 | Present study |
5.5 ± 1.3 | 1 ± 0.2 | 0.18 ± 0.06 | [26] | |||
6.37 ± 1.94 (1998) 6.15 ± 3.29 (2000) | 1.21 ± 0.2 (1998) 1.01 ± 0.27 (2000) | 0.2 ± 0.094 (1998) 1.04 ± 1.25 (2000) | [16] | |||
20.3 ± 6.1 | 5.03 ± 0.96 | 0.671 ± 0.361 | [57] | |||
8.6 ± 0.8 | 1.9 ± 0.4 | 0.6 ± 0.04 | 0.2 ± 0.01 | 1.3 ± 0.3 | [47] | |
Zn | 30.1 ± 47.30 | 24.82 ± 27.73 | 12.19 ± 9.29 | 0.27 ± 0.24 | 22.65 ± 4.82 | Present study |
49 ± 15 | 27 ± 7 | 30 ± 9 | [26] | |||
70.9 ± 17.4 (1998) 90.7 ± 52 (2000) | 47.9 ± 13 (1998) 58.4 ± 30.8 (2000) | 41.8± 10.9 (1998) 44.8 ± 13.2 (2000) | [16] | |||
226 ± 54.9 | 199 ± 55 | 141 ± 38 | [57] | |||
109.4 ± 3.4 | 87.3 ± 3.4 | 69.8 ± 3.2 | 42.5 ± 3.3 | 63.6 ± 2.1 | [47] | |
Cu | 13.19 ± 5.40 | 12.88 ± 5.79 | 9.99 ± 9.03 | 0.62 ± 0.33 | 13.21 ± 2.47 | Present study |
11 ± 5 | 3.3 ± 0.6 | 1.1 ± 0.2 | [26] | |||
13.4 ± 9.4 (1998) 5.63 ± 3.54 (2000) | 4.12 ± 1.38 (1998) 4.66 ± 1.23 (2000) | 1.08 ± 0.34 (1998) 1.6 ± 0.46 (2000) | [16] | |||
42.9 ± 30.3 | 17.1 ± 5.7 | 3.63 ± 1.13 | [57] | |||
31.8 ± 1.1 | 10.8 ± 0.7 | 5.8 ± 0.2 | 0.6 ± 0.04 | 11.8 ± 0.5 | [47] | |
Pb | 1.76 ± 4.79 | 0.18 ± 0.28 | 0.60 ± 1.01 | 0.03 ± 0.02 | 0.07 ± 0.09 | Present study |
0.068 ± 0.046 | 0.078 ± 0.097 | 0.027 ± 0.028 | [26] | |||
0.002 ± 0.007 (1998) 0.019 ± 0.011 (2000) | 0.031 ± 0.084 (1998) 0.005 ± 0.004 (2000) | 0.005 ± 0.014 (1998) 0.018 ± 0.027 (2000) | [16] | |||
0.006 ± 0.024 | 0.116 ± 0.311 | 0.018 ± 0.05 | [57] | |||
Ni | 0.13 ± 0.05 | 0.13 ± 0.07 | 0.12 ± 0. 80 | 0.09± 0.08 | 0.08 ± 0.03 | Present study |
<0.07 | 0.07 ± 0.039 | <0.04 | [26] | |||
Cd | 0.61 ± 0.87 | 5.89 ± 14.37 | 0.18 ± 0.37 | 0.02 ± 0.004 | 0.03 ± 0.01 | Present study |
1.1 ± 1.7 | 9.5 ± 11 | 0.01 ± 0.017 | [26] | |||
0.732 ± 0.593 (1998) 0.929 ± 1.41 (2000) | 12.5 ± 11.2 (1998) 6.99 ± 7.81 (2000) | 0.016 ± 0.034 (1998) 0.024 ± 0.014 (2000) | [16] | |||
2.37 ± 1.94 | 51.4 ± 44.3 | 0.054± 0.116 | [57] | |||
Hg | 15.12 ± 15.84 | 5.09 ± 3.72 | 7.67 ± 2.29 | 1.09 ± 0.49 | 2.79 ± 1.54 | Present study |
15 ± 26 | 1.6 ± 1.3 | 0.55 ± 0.30 | [26] | |||
27 ± 23 (1998) 5.8 ± 8.4 (2000) | 1.9 ± 3.4 (1998) 1.8 ± 3.1 (2000) | 0.44 ± 0.24 (1998) 0.48 ± 0.39 (2000) | [16] | |||
85 ± 74 | 8.1 ± 15.4 | 1.5 ± 0.8 | [57] | |||
As | 0.06 ± 0.03 | 0.06 ± 0.01 | 0.06 ± 0.02 | 0.10 ± 0.05 | 0.05 ± 0.03 | Present study |
0.17 ± 0.09 (2000) | 0.16 ± 0.08 (2000) | 0.11 ± 0.04 (2000) | [16] | |||
Cr | 0.29 ± 0.17 | 0.34 ± 0.13 | 0.33 ± 0.09 | 0.16 ± 0.11 | 0.28 ± 0.11 | Present study |
0.081 ± 0.081 (1998) 0.11 ± 0.061 (2000) | 0.076 ± 0.091 (1998) 0.072 ± 0.033 (2000) | 0.015 ± 0.031 (1998) 0.073± 0.016 (2000) | [16] | |||
0.26 ± 0.27 | 0.32 ± 0.39 | 0.05 ± 0.1 | [57] | |||
Se | 0.75 ± 0.44 | 0.29 ± 0.20 | 0.45 ± 0.55 | 0.06 ± 0.06 | 0.34 ± 0.07 | Present study |
19 ± 13 (1998) 5.2 ± 4.4 (2000) | 3.6 ± 1.2 (1998) 2.8 ± 0.9 (2000) | 0.66 ± 0.19 (1998) 0.62 ± 0.30 (2000) | [16] | |||
60 ± 42 | 15 ± 5 | 2.2 ± 0.6 | [57] |
Seal ID | Age (years) | Gender | Tissue (mg/kg w.w.) | |||
---|---|---|---|---|---|---|
Heart | Kidney | Liver | Muscle | |||
7 | 10 | Male | Hg: 31.86 | Pb: 1.79 | ||
8 | 20 | Male | Pb: 0.25 | Hg: 42.35 | ||
9 | 6 | Male | Cd: 44.16 | Fe: 2119.06 Ni: 0.45 Pb: 15.30 Zn: 163.79 | ||
16 | 10 | Male | Pb: 0.92 | |||
20 | 28 | Male | Hg: 38.79 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hoseini, S.M.; Namroodi, S.; Sayadshirazi, A.; Zaccaroni, A. Trace Elements and Contaminants Concentrations in Tissues of Caspian Seals (Pusa caspica) along the Iranian Coast. Toxics 2023, 11, 39. https://doi.org/10.3390/toxics11010039
Hoseini SM, Namroodi S, Sayadshirazi A, Zaccaroni A. Trace Elements and Contaminants Concentrations in Tissues of Caspian Seals (Pusa caspica) along the Iranian Coast. Toxics. 2023; 11(1):39. https://doi.org/10.3390/toxics11010039
Chicago/Turabian StyleHoseini, Seyedeh Malihe, Somayeh Namroodi, Amir Sayadshirazi, and Annalisa Zaccaroni. 2023. "Trace Elements and Contaminants Concentrations in Tissues of Caspian Seals (Pusa caspica) along the Iranian Coast" Toxics 11, no. 1: 39. https://doi.org/10.3390/toxics11010039
APA StyleHoseini, S. M., Namroodi, S., Sayadshirazi, A., & Zaccaroni, A. (2023). Trace Elements and Contaminants Concentrations in Tissues of Caspian Seals (Pusa caspica) along the Iranian Coast. Toxics, 11(1), 39. https://doi.org/10.3390/toxics11010039