Novel Brominated Flame Retardants in Dust from E-Waste-Dismantling Workplace in Central China: Contamination Status and Human Exposure Assessment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Target Chemicals
2.2. Studied Area and Sample Collection
2.3. Sample Preparation and Instrumental Analysis
2.4. Quality Assurance and Quality Control (QA/QC)
2.5. Risk Assessment
2.6. Statistical Analysis
3. Results and Discussion
3.1. NBFRs in Dust
3.2. Comparison between NBFRs and Legacy BFRs
3.3. Correlations among NBFR Compounds
3.4. Comparison between NBFRs and Other Emerging Flame Retardants
3.5. Occupational Exposure Assessment
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kalachova, K.; Hradkova, P.; Lankova, D.; Hajslova, J.; Pulkrabova, J. Occurrence of brominated flame retardants in household and car dust from the Czech Republic. Sci. Total Environ. 2012, 441, 182–193. [Google Scholar] [CrossRef] [PubMed]
- Besis, A.; Christia, C.; Poma, G.; Covaci, A.; Samara, C. Legacy and novel brominated flame retardants in interior car dust—Implications for human exposure. Environ. Pollut. 2017, 230, 871–881. [Google Scholar] [CrossRef] [PubMed]
- Liagkouridis, L.; Cousins, A.P.; Cousins, I.T. Physical-chemical properties and evaluative fate modelling of ‘emerging’ and ‘novel’ brominated and organophosphorus flame retardants in the indoor and outdoor environment. Sci. Total Environ. 2015, 524, 416–426. [Google Scholar] [CrossRef] [PubMed]
- Zuiderveen, E.A.R.; Slootweg, J.C.; de Boer, J. Novel brominated flame retardants—A review of their occurrence in indoor air, dust, consumer goods and food. Chemosphere 2020, 255, 126816. [Google Scholar] [CrossRef] [PubMed]
- United Nations Environment Programme (UNEP). Report of the Conference of the Parties of the Stockholm Convention on Persistent Organic Pollutants on the Work of Its Fourth Meeting; UNEP: Nairobi, Kenya, 2009.
- United Nations Environment Programme (UNEP). Report of the Conference of the Parties to the Stockholm Convention on Persistent Organic Pollutants on the Work of Its Sixth; UNEP: Nairobi, Kenya, 2013.
- United Nations Environment Programme (UNEP). Report of the Conference of the Parties to the Stockholm Convention on Persistent Organic Pollutants on the Work of Its Eighth Meeting; UNEP: Nairobi, Kenya, 2017.
- Covaci, A.; Harrad, S.; Abdallah, M.A.E.; Ali, N.; Law, R.J.; Herzke, D.; de Wit, C.A. Novel brominated flame retardants: A review of their analysis, environmental fate and behaviour. Environ. Int. 2011, 37, 532–556. [Google Scholar] [CrossRef]
- Papachlimitzou, A.; Barber, J.L.; Losada, S.; Bersuder, P.; Law, R.J. A review of the analysis of novel brominated flame retardants. J. Chromatogr. A 2012, 1219, 15–28. [Google Scholar] [CrossRef]
- Shi, Z.; Zhang, L.; Li, J.; Wu, Y. Legacy and emerging brominated flame retardants in China: A review on food and human milk contamination, human dietary exposure and risk assessment. Chemosphere 2018, 198, 522–536. [Google Scholar] [CrossRef]
- Yu, G.; Bu, Q.; Cao, Z.; Du, X.; Xia, J.; Wu, M.; Huang, J. Brominated flame retardants (BFRs): A review on environmental contamination in China. Chemosphere 2016, 150, 479–490. [Google Scholar] [CrossRef]
- Hou, R.; Lin, L.; Li, H.; Liu, S.; Xu, X.; Xu, Y.; Jin, X.; Yuan, Y.; Wang, Z. Occurrence, bioaccumulation, fate, and risk assessment of novel brominated flame retardants (NBFRs) in aquatic environments—A critical review. Water Res. 2021, 198, 117168. [Google Scholar] [CrossRef]
- Xiong, P.; Yan, X.; Zhu, Q.; Qu, G.; Shi, J.; Liao, C.; Jiang, G. A Review of Environmental Occurrence, Fate, and Toxicity of Novel Brominated Flame Retardants. Environ. Sci. Technol. 2019, 53, 13551–13569. [Google Scholar] [CrossRef]
- Liu, L.; Zhen, X.; Wang, X.; Li, Y.; Sun, X.; Tang, J. Legacy and novel halogenated flame retardants in seawater and atmosphere of the Bohai Sea: Spatial trends, seasonal variations, and influencing factors. Water Res. 2020, 184, 116117. [Google Scholar] [CrossRef]
- Ma, Y.; Salamova, A.; Venier, M.; Hites, R.A. Has the Phase-Out of PBDEs Affected Their Atmospheric Levels? Trends of PBDEs and Their Replacements in the Great Lakes Atmosphere. Environ. Sci. Technol. 2013, 47, 11457–11464. [Google Scholar] [CrossRef]
- Zhao, S.; Tian, L.; Zou, Z.; Liu, X.; Zhong, G.; Mo, Y.; Wang, Y.; Tian, Y.; Li, J.; Guo, H.; et al. Probing Legacy and Alternative Flame Retardants in the Air of Chinese Cities. Environ. Sci. Technol. 2021, 55, 9450–9459. [Google Scholar] [CrossRef]
- Tang, S.; Tan, H.; Liu, X.; Chen, D. Legacy and alternative flame retardants in house dust and hand wipes from South China. Sci. Total Environ. 2019, 656, 1–8. [Google Scholar] [CrossRef]
- Feng, H.; Cheng, Y.; Ruan, Y.; Tsui, M.M.P.; Wang, Q.; Jin, J.; Wu, R.; Zhang, H.; Lam, P.K.S. Occurrence and spatial distribution of legacy and novel brominated flame retardants in seawater and sediment of the South China sea. Environ. Pollut. 2021, 271, 116324. [Google Scholar] [CrossRef]
- Law, K.; Halldorson, T.; Danell, R.; Stern, G.; Gewurtz, S.; Alaee, M.; Marvin, C.; Whittle, M.; Tomy, G. Bioaccumulation and trophic transfer of some brominated flame retardants in a Lake Winnipeg (Canada) food web. Environ. Toxicol. Chem. 2006, 25, 2177–2186. [Google Scholar] [CrossRef]
- He, M.; Luo, X.; Chen, M.; Sun, Y.; Chen, S.; Mai, B. Bioaccumulation of polybrominated diphenyl ethers and decabromodiphenyl ethane in fish from a river system in a highly industrialized area, South China. Sci. Total Environ. 2012, 419, 109–115. [Google Scholar] [CrossRef]
- Li, W.; Ma, W.; Zhang, Z.; Liu, L.; Song, W.; Jia, H.; Ding, Y.; Nakata, H.; Minh, N.H.; Sinha, R.K.; et al. Occurrence and Source Effect of Novel Brominated Flame Retardants (NBFRs) in Soils from Five Asian Countries and Their Relationship with PBDEs. Environ. Sci. Technol. 2017, 51, 11126–11135. [Google Scholar] [CrossRef]
- Xie, J.; Sun, Y.; Cheng, Y.; Chen, Y.; Chen, L.; Xie, C.; Dai, S.; Luo, X.; Zhang, L.; Mai, B. Halogenated flame retardants in surface sediments from fourteen estuaries, South China. Mar. Pollut. Bull. 2021, 164, 112099. [Google Scholar] [CrossRef]
- Anh Quoc, H.; Takahashi, S.; Nhu Da, L.; Thi Thuy, D.; Thi Mai Huong, P.; Thi Ngoc Mai, P.; Thi Anh Huong, N.; Tri Manh, T.; Minh Binh, T.; Thi Phuong Quynh, L. Comprehensive determination of polychlorinated biphenyls and brominated flame retardants in surface sediment samples from Hanoi urban area, Vietnam: Contamination status, accumulation profiles, and potential ecological risks. Environ. Res. 2021, 197, 111158. [Google Scholar]
- Chen, S.; Feng, A.; He, M.; Chen, M.; Luo, X.; Mai, B. Current levels and composition profiles of PBDEs and alternative flame retardants in surface sediments from the Pearl River Delta, southern China: Comparison with historical data. Sci. Total Environ. 2013, 444, 205–211. [Google Scholar] [CrossRef] [PubMed]
- Gramatica, P.; Cassani, S.; Sangion, A. Are some “safer alternatives” hazardous as PSTs? The case study of new flame retardants. J. Hazard. Mater. 2016, 306, 237–246. [Google Scholar] [CrossRef] [PubMed]
- Dong, L.; Wang, S.; Qu, J.; You, H.; Liu, D. New understanding of novel brominated flame retardants (NBFRs): Neuro (endocrine) toxicity. Ecotoxicol. Environ. Saf. 2021, 208, 111570. [Google Scholar] [CrossRef] [PubMed]
- Frazzoli, C.; Ruggieri, F.; Battistini, B.; Orisakwe, O.E.; Igbo, J.K.; Bocca, B. E-WASTE threatens health: The scientific solution adopts the one health strategy. Environ. Res. 2022, 212, 113227. [Google Scholar] [CrossRef] [PubMed]
- Guo, J.; Stabbings, W.A.; Romanak, K.; Nguyen, L.V.; Jantunen, L.; Melymuk, L.; Arrandale, V.; Diamond, M.L.; Venier, M. Alternative Flame Retardant, 2,4,6-Tris(2,4,6-tribromophenoxy)-1,3,5-triazine, in an E-waste Recycling Facility and House Dust in North America. Environ. Sci. Technol. 2018, 52, 3599–3607. [Google Scholar] [CrossRef]
- Zheng, X.; Xu, F.; Chen, K.; Zeng, Y.; Luo, X.; Chen, S.; Mai, B.; Covaci, A. Flame retardants and organochlorines in indoor dust from several e-waste recycling sites in South China: Composition variations and implications for human exposure. Environ. Int. 2015, 78, 1–7. [Google Scholar] [CrossRef]
- Qiao, L.; Zheng, X.; Zheng, J.; Chen, S.; Zhong, C.; Chen, J.; Yang, Z.; Mai, B. Legacy and Currently Used Organic Contaminants in Human Hair and Hand Wipes of Female E-Waste Dismantling Workers and Workplace Dust in South China. Environ. Sci. Technol. 2019, 53, 2820–2829. [Google Scholar] [CrossRef]
- Ling, S.; Zhou, S.; Tan, J.; Lu, C.; Fu, M.; Peng, C.; Zhang, W.; Hu, S.; Lin, K.; Zhou, B. Brominated flame retardants (BFRs) in sediment from a typical e-waste dismantling region in Southern China: Occurrence, spatial distribution, composition profiles, and ecological risks. Sci. Total Environ. 2022, 824, 153813. [Google Scholar] [CrossRef]
- Wang, Y.; Sun, H.; Zhu, H.; Yao, Y.; Chen, H.; Ren, C.; Wu, F.; Kannan, K. Occurrence and distribution of organophosphate flame retardants (OPFRs) in soil and outdoor settled dust from a multi-waste recycling area in China. Sci. Total Environ. 2018, 625, 1056–1064. [Google Scholar] [CrossRef]
- Zhang, Q.; Li, X.; Wang, Y.; Zhang, C.; Cheng, Z.; Zhao, L.; Li, X.; Sun, Z.; Zhang, J.; Yao, Y.; et al. Occurrence of novel organophosphate esters derived from organophosphite antioxidants in an e-waste dismantling area: Associations between hand wipes and dust. Environ. Int. 2021, 157, 106860. [Google Scholar] [CrossRef]
- Zhao, L.; Lu, Y.; Zhu, H.; Cheng, Z.; Wang, Y.; Chen, H.; Yao, Y.; Zhang, J.; Li, X.; Sun, Z.; et al. E-waste dismantling-related occupational and routine exposure to melamine and its derivatives: Estimating exposure via dust ingestion and hand-to-mouth contact. Environ. Int. 2022, 165, 107299. [Google Scholar] [CrossRef]
- Wang, Y.; Yang, X.; Liu, Y.; Zhang, Q.; Xiao, H.; Wang, Y.; Yao, Y.; Sun, H. A low-volume air sampling method for legacy and novel brominated flame retardants in indoor environment using a newly developed sorbent mixture. Ecotoxicol. Environ. Saf. 2021, 210, 111837. [Google Scholar] [CrossRef]
- Sun, Y.; Zhu, H. Spatial and temporal distributions of hexabromocyclododecanes in surface soils of Jinan, China. Environ. Monit. Assess. 2020, 192, 629. [Google Scholar] [CrossRef]
- Zhu, H.; Sun, H.; Yao, Y.; Gan, Z.; Wang, Y.; Kannan, K. Legacy and alternative brominated flame retardants in outdoor dust and pine needles in mainland China: Spatial trends, dust-plant partitioning and human exposure. Environ. Pollut. 2018, 243, 758–765. [Google Scholar] [CrossRef]
- Shi, Z.; Wu, Y.; Li, J.; Zhao, Y.; Feng, J. Dietary exposure assessment of Chinese adults and nursing infants to tetrabromobisphenol-A and hexabromocyclododecanes: Occurrence measurements in foods and human milk. Ann. Nutr. Metab. 2009, 55, 523. [Google Scholar] [CrossRef]
- United States Environmental Protection Agency (USEPA). Exposure Factors Handbook; USEPA: Washington, DC, USA, 2011.
- Wang, Y.; Yao, Y.; Han, X.; Li, W.; Zhu, H.; Wang, L.; Sun, H.; Kannan, K. Organophosphate di- and tri-esters in indoor and outdoor dust from China and its implications for human exposure. Sci. Total Environ. 2020, 700, 134502. [Google Scholar] [CrossRef]
- Qi, H.; Li, W.; Liu, L.; Zhang, Z.; Zhu, N.; Song, W.; Ma, W.; Li, Y. Levels, distribution and human exposure of new non-BDE brominated flame retardants in the indoor dust of China. Environ. Pollut. 2014, 195, 1–8. [Google Scholar] [CrossRef]
- McGrath, T.J.; Morrison, P.D.; Ball, A.S.; Clarke, B.O. Detection of novel brominated flame retardants (NBFRs) in the urban soils of Melbourne, Australia. Emerg. Contam. 2017, 3, 23–31. [Google Scholar] [CrossRef]
- Hirayama, D.; Nunnenkamp, L.A.; Braga, F.H.G.; Saron, C. Enhanced mechanical properties of recycled blends acrylonitrile–butadiene–styrene/high–impact polystyrene from waste electrical and electronic equipment using compatibilizers and virgin polymers. J. Appl. Polym. Sci. 2021, 139, 51873. [Google Scholar] [CrossRef]
- Zhang, M.; Shi, J.; Meng, Y.; Guo, W.; Li, H.; Liu, X.; Zhang, Y.; Ge, H.; Yao, M.; Hu, Q. Occupational exposure characteristics and health risk of PBDEs at different domestic e-waste recycling workshops in China. Ecotoxicol. Environ. Saf. 2019, 174, 532–539. [Google Scholar] [CrossRef]
- European Commission (EC). Final Report: Study on Waste Related Issues of Newly Listed POPs andCandidate POPs; EC: Brussel, Belgium, 2011.
- United Nations Environment Programme (UNEP). Technical Review of the Implications of Recycling Commercial Penta and Octabromodiphenyl Ethers. Annexes. Stockholm Convention Document for 6th POP Reviewing Committee Meeting; UNEP: Nairobi, Kenya, 2010.
- Nguyen, L.V.; Diamond, M.L.; Venier, M.; Stubbings, W.A.; Romanak, K.; Bajard, L.; Melymuk, L.; Jantunen, L.M.; Arrandale, V.H. Exposure of Canadian electronic waste dismantlers to flame retardants. Environ. Int. 2019, 129, 95–104. [Google Scholar] [CrossRef] [PubMed]
- Wannomai, T.; Matsukami, H.; Uchida, N.; Takahashi, F.; Tuyen, L.H.; Viet, P.H.; Takahashi, S.; Kunisue, T.; Suzuki, G. Bioaccessibility and exposure assessment of flame retardants via dust ingestion for workers in e-waste processing workshops in northern Vietnam. Chemosphere 2020, 251, 126632. [Google Scholar] [CrossRef] [PubMed]
- Organization for Economic Co-operation and Development (OECD). Selected Brominatedflame Retardants, Background and National Experience with Reducing Risk; Risk Reduction Monograph no. 3, OCDE/GE (94/96); OECD: Paris, France, 1994.
- Andersson, P.L.; Oberg, K.; Orn, U. Chemical characterization of brominated flame retardants and identification of structurally representative compounds. Environ. Toxicol. Chem. 2006, 25, 1275–1282. [Google Scholar] [CrossRef] [PubMed]
- Stapleton, H.M.; Allen, J.G.; Kelly, S.M.; Konstantinov, A.; Klosterhaus, S.; Watkins, D.; McClean, M.D.; Webster, T.F. Alternate and new brominated flame retardants detected in US house dust. Environ. Sci. Technol. 2008, 42, 6910–6916. [Google Scholar] [CrossRef]
- Waiyarat, S.; Boontanon, S.K.; Boontanon, N.; Fujii, S.; Harrad, S.; Drage, D.S.; Abdallah, M.A.-E. Exposure, risk and predictors of hexabromocyclododecane and Tetrabromobisphenol-A in house dust from urban, rural and E-waste dismantling sites in Thailand. Chemosphere 2022, 302, 134730. [Google Scholar] [CrossRef]
- De la Torre, A.; Navarro, I.; Sanz, P.; de los Ángeles Martínez, M. Organophosphate compounds, polybrominated diphenyl ethers and novel brominated flame retardants in European indoor house dust: Use, evidence for replacements and assessment of human exposure. J. Hazard. Mater. 2020, 382, 121009. [Google Scholar] [CrossRef]
- EPA. Integrated Risk Information System. 1991. Available online: www.epa.gov/ncea/iris/index.html (accessed on 15 August 2008).
- Ali, N.; Harrad, S.; Goosey, E.; Neels, H.; Covaci, A. “Novel” brominated flame retardants in Belgian and UK indoor dust: Implications for human exposure. Chemosphere 2011, 83, 1360–1365. [Google Scholar]
- Bu, Q.; Wu, D.; Xia, J.; Yu, M.; Liu, X.; Cao, Z.; Yu, G. Polybrominated diphenyl ethers and novel brominated flame retardants in indoor dust of different microenvironments in Beijing, China. Environ. Int. 2019, 122, 159–167. [Google Scholar]
- CRAES. The Chinese Research Academy of Environmental Sciences. In Highlights of the Chinese Exposure Factors Handbook (Adults); Academic Press: Cambridge, MA, USA, 2015; ISBN 978-0-12-803125-4. [Google Scholar]
- Hoang, M.T.T.; Anh, H.Q.; Kadokami, K.; Duong, H.T.; Hoang, H.M.; Van Nguyen, T.; Takahashi, S.; Le, G.T.; Trinh, H.T. Contamination status, emission sources, and human health risk of brominated flame retardants in urban indoor dust from Hanoi, Vietnam: The replacement of legacy polybrominated diphenyl ether mixtures by alternative formulations. Environ. Sci. Pollut. Res. 2021, 28, 43885–43896. [Google Scholar]
- Ling, S.; Lu, C.; Peng, C.; Zhang, W.; Lin, K.; Zhou, B. Characteristics of legacy and novel brominated flame retardants in water and sediment surrounding two e-waste dismantling regions in Taizhou, eastern China. Sci. Total Environ. 2021, 794, 148744. [Google Scholar]
- Wang, J.; Ma, Y.J.; Chen, S.J.; Tian, M.; Luo, X.J.; Mai, B.X. Brominated flame retardants in house dust from e-waste recycling and urban areas in South China: Implications on human exposure. Environ. Int. 2010, 36, 535–541. [Google Scholar]
- Wang, Y.; Zhang, Y.; Tan, F.; Yang, Y.; Qu, Z.; Kvasnicka, J.; Chen, J. Characteristics of halogenated flame retardants in the atmosphere of Dalian, China. Atmos. Environ. 2020, 223, 117219. [Google Scholar]
Target Compounds | HBBZ | EHTBB | BEHTBP | PBT | PBEB | BTBPE | Σ6NBFRs | Σ3HBCDs * | |
---|---|---|---|---|---|---|---|---|---|
DW1 (n = 20) | Median | 12.0 | 10.6 | 96.5 | 7.83 | 1.04 | 9.30 | 157 | 367 |
Average | 22.3 | 11.5 | 126 | 9.35 | 1.00 | 16.1 | 182 | 383 | |
Range | n.d.-101 | 2.02–40.0 | n.d.-332 | 3.91–25.5 | 0.62–1.65 | <MDL-59.1 | 43.3–379 | 367–1155 | |
DF | 60% | 100% | 85% | 100% | 100% | 95% | |||
DW2 (n = 10) | Median | n.d. | 1.78 | 111 | 3.09 | 1.00 | 25.9 | 169 | 110 |
Average | 281 | 4.20 | 158 | 10.2 | 1.76 | 41.9 | 497 | 789 | |
Range | n.d.-1173 | <MDL-15.3 | 32.1–420 | 0.40–35.3 | n.d.-4.79 | 7.40–145 | 70.2–1694 | 8.54–4542 | |
DF | 30% | 80% | 100% | 100% | 80% | 100% | |||
WO (n = 15) | Median | n.d. | 2.61 | 74.6 | 1.95 | 1.07 | 4.11 | 130 | 60.8 |
Average | 83.1 | 4.08 | 126 | 22.5 | 15.8 | 4.56 | 179 | 372 | |
Range | n.d.-923 | <MDL-18.7 | 32.4–337 | 0.87–299 | <MDL-222 | <MDL-9.48 | 39.5–1690 | 11.5–602 | |
DF | 27% | 87% | 100% | 100% | 60% | 73% | |||
RAO (n = 5) | Median | n.d. | 2.24 | 9.72 | 0.21 | n.d. | 2.62 | 17.3 | 5.16 |
Average | n.d. | 3.76 | 323 | 0.90 | n.d. | 50.0 | 377 | 110 | |
Range | n.d.-n.d. | 0.85–11.4 | <MDL-1546 | 0.05–2.10 | n.d.-n.d. | <MDL-241 | 7.09–1799 | 2.94–498 | |
DF | 0% | 100% | 60% | 100% | 0% | 80% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, X.; Wang, Y.; Bai, W.; Zhang, Q.; Zhao, L.; Cheng, Z.; Zhu, H.; Sun, H. Novel Brominated Flame Retardants in Dust from E-Waste-Dismantling Workplace in Central China: Contamination Status and Human Exposure Assessment. Toxics 2023, 11, 58. https://doi.org/10.3390/toxics11010058
Li X, Wang Y, Bai W, Zhang Q, Zhao L, Cheng Z, Zhu H, Sun H. Novel Brominated Flame Retardants in Dust from E-Waste-Dismantling Workplace in Central China: Contamination Status and Human Exposure Assessment. Toxics. 2023; 11(1):58. https://doi.org/10.3390/toxics11010058
Chicago/Turabian StyleLi, Xuelin, Yu Wang, Wenbin Bai, Qiuyue Zhang, Leicheng Zhao, Zhipeng Cheng, Hongkai Zhu, and Hongwen Sun. 2023. "Novel Brominated Flame Retardants in Dust from E-Waste-Dismantling Workplace in Central China: Contamination Status and Human Exposure Assessment" Toxics 11, no. 1: 58. https://doi.org/10.3390/toxics11010058
APA StyleLi, X., Wang, Y., Bai, W., Zhang, Q., Zhao, L., Cheng, Z., Zhu, H., & Sun, H. (2023). Novel Brominated Flame Retardants in Dust from E-Waste-Dismantling Workplace in Central China: Contamination Status and Human Exposure Assessment. Toxics, 11(1), 58. https://doi.org/10.3390/toxics11010058